
1

1

Lecture 1
Overview of ASIC and FPGA Design

Alex Jones
ECE 2120

Hardware Design Methodologies
Fall 2007

2

Today’s Topics

 Administrivia
 Course Overview

 Introduction to ASICs
 Physical Design 101
 ASIC Design Flow
 ASIC Alternatives
 READING: Bhatnagar Chapter 1

2

3

Class Administration

 Lectures Once a Week,
 W 5:20-7:50pm
 BEH 370

 Instructors
 Alex Jones, Gayatri Mehta
 Office 334 BEH, 272 BEH
 Email: akj8@pitt.edu,

gayatrimehta1@gmail.com

 Web Page
 TBA

4

Class Prerequisites

 CoE: 1502, EE/CoE 142 or permission
 Topics for review

 Need a familiarity with VHDL
 Need a solid background with digital logic

structures (e.g. gates, registers, memory)
 Understand Finite State Machines
 Background in Logic Simplification
 Understand area performance power

tradeoffs of various implementation options
 Familiarity with UNIX/CAD tools like Mentor

 A UNIX account (signup sheet)

3

5

Class Textbooks and References
 Required Textbooks

 J. Bhasker, “A VHDL Synthesis Primer,” Second Edition,
Star Galaxy Press, 1998.

 Supplementary Textbooks
 H. Bhatnagar, “Advanced ASIC Chip Synthesis: Using

Synopsys Design Compiler Physical Compiler and
PrimeTime,” Second Edition, Kluwer, 2002.

 P. Ashenden, “The Designer’s Guide to VHDL,” Second
Edition, Morgan Kaufmann, 2001.

 Classnotes
 Online Slides
 Tutorials

 Online Documentation to CAD Tools

6

Grades
 Tentative Grading Schedule

 35% Homeworks and Labs
 35% Exams
 30% Project

 Structure
 First Half of Class

 Homeworks/Mini Projects each week
 Individual Work

 Second Half
 Single Larger Project
 Teams of at least 2 depends

 Late Work will have minimum of 10% Penalty
per day late.
 Not guaranteed to accept late work at all

4

7

Summary

 I will walk away from this class knowing
 How hardware synthesis tools work
 How to write synthesizable VHDL
 The design flow for ASICs

 Synthesis: Synopsys Design Compiler
 Simulation: Mentor Graphics Modelsim
 Placement and Routing: Cadence SoC Encounter

 The design flow for FPGAs
 Synthesis: Synplicity Synplify Pro
 Simulation: Modelsim
 Placement and Routing: Xilinx ISE

 How to optimize my design for area,
performance, and power.

8

What this class is NOT

 A course in designed CAD tools and
algorithms (ECE 3130)

 A course in physical design (ECE
1192/2192)

 A course in computer architecture and
processors (ECE 2162)

 A course in the formal verification of
hardware designs (ECE 2141)

 A course in real-time or embedded
processing (ECE 2160)

 A course in hardware/software co-
design (ECE 2140)

5

9

What is an ASIC?

 What is an Integrated Circuit (IC)?
 ICs are basically “chips”

 Silicon Wafers
 Transistors, resistors, capacitors fabricated

 Can be either Digital or Analog
 Microprocessors, Amplifier, Memory

 ASICs are Application Specific ICs
 Designed for a special application
 ASICs may be customized or mass-

produced
 Digital to Audio Converter
 Mpeg2 Decoder

10

Hierarchy of IC Design

General Purpose Processors

Application Specific Processors (ASIP)

Application Specific Integrated Circuits (ASIC)

Field Programmable Gate Arrays (FPGA)

Microprocessors

Sparc, Pentium, ARM/XScale, PowerPC

PIC74, Intel 8-bit (check 205 course)

TI DSPs

Reprogrammable for General Hardware – speed/size 10x behind ASIC

D/A Converter, I/O Controller

Higher Level
Low Perf.

Lower Level
High Perf.

6

11

ASIC Design Methodologies

 Gate Level Design (ECE 132/501)
 Implement Logic at Gate Level
 Schematic Editor (Mentor Graphics)
 Hardware Description Language (Gates)
 Logic Synthesis to Netlist
 Implement in Silicon

 Full Custom Layout (ECE 1192/2192)
 Design Logic at the Transistor Level
 Hierarchical Design
 Build Design from Bottom Up
 Connect Components Manually

12

ASIC Design Methodologies

 Behavioral Design (Seminar course)
 Describe Algorithm Behavior (C like code)
 Use Behavioral Synthesis tools
 Result is RTL-HDL or Gate-level Netlist
 Implement in Silicon

 RTL Design (THIS COURSE!)
 Describe Behavior
 Synthesizable Subset of Hardware

Description Language
 Use RTL Synthesis tools for Gate-level

Netlist
 Implement in Silicon

7

13

Hierarchy of ASIC Design

Behavioral Design

Gate Level Design

Full Custom Layout

RTL Design

Synopsys Behavioral Compiler (VHDL, Verilog, SystemC), Mentor Graphics Catapult-C

Synopsys Design Compiler (VHDL/Verilog)

Mentor Graphics Schematic, Synopsys Design Compiler (VHDL/Verilog)

Mentor Graphics Layout, Cadence Virtuoso

Higher Level
Less Control
Short Design
Time

Lower Level
More Control
Long Design
Time

14

ASIC Implementation Techniques

 I’ve got a Gate-Level Netlist, now what?
 Most Common Implementation

Technique is to use Standard Cells
 Commercial CAD tools map the Netlist

to the particular technology
 A die size is created based on the logic

required from the netlist
 Cells are placed on the die using CAD

Placement Algorithms (ECE 3130)
 Wiring between the cells also uses CAD

routing algorithms (ECE 3130)

8

15

Standard Cells

 During Placement: Cells are placed in
rows on the die
 Horizontal routing channels between rows
 Vertical routing around outside
 Vertical routing can also use “filler” cells
 Placement algorithms attempt to minimize

the distance between cells connected in the
netlist

 During Routing: Cells are connected
using wires

16

Physical Design 101

 Ok great, but what’s a Standard Cell?
 Before we talk about that, let’s discuss

the fundamentals of Physical Design
 In ECE 132 we learned that gates are

implemented using transistors

9

17

CMOS Process

18

CMOS Process at a Glance

Define active areas
Etch and fill trenches

Implant well regions

Deposit and pattern
polysilicon layer

Implant source and drain
regions and substrate contacts

Create contact and via windows
Deposit and pattern metal layers

10

19

Design Rules

 Interface between designer and process
engineer

 Guidelines for constructing process masks
 Unit dimension: Minimum line width

 scalable design rules: lambda parameter
 absolute dimensions (micron rules)

Layer

Polysilicon
Metal1
Metal2
Contact To Poly
Contact To Diffusion
Via

Well (p,n)
Active Area (n+,p+)

Color Representation
Yellow
Green

Red
Blue
Magenta
Black
Black
Black

Select (p+,n+) Green

20

n-type substrate
(default)

metal1

pplus
select

contact_aa2m1

poly

pwell

active area
(default: n-type)

pplus select over
active = p-type

active layer

PMOS
transistor

NMOS
transistor

nwell
(substrate) tied

to Vdd using
this contact

pwell tied to
ground using
this contactVSS

VDD

INOUT

Example: Inverter

11

21

Packaging Requirements

 Electrical: Low parasitics

 Mechanical: Reliable and robust

 Thermal: Efficient heat removal

 Economical: Cheap

22

Tape-Automated Bonding (TAB)

(a) Polymer Tape with imprinted

(b) Die attachment using solder bumps.

wiring pattern.

Substrate

Die

Solder BumpFilm + Pattern

Sprocket

hole

Polymer film

Lead

frame

Test

pads

12

23

Package Types

24

Standard Cells

 Ok great, but what’s a Standard Cell?
 Standard Cells are custom physical

layouts of basic logic building blocks
 Ex: basic gates, RAM blocks, I/O devices

 There are restrictions on cell design
 Fixed Height

 based on technology feature size or λ design rule

 Variable width (based on logic complexity)
 Fixed locations for logic inputs, outputs,

Vdd, Vss

 Standard Cells are kept in libraries tied
to a particular technology process

13

25

n-type substrate
(default)

metal1

pplus
select

contact_aa2m1

poly

pwell

active area
(default: n-type)

pplus select over
active = p-type

active layer

PMOS
transistor

NMOS
transistor

nwell
(substrate) tied

to Vdd using
this contact

pwell tied to
ground using
this contactVSS

VDD

INOUT

Standard Cell: Inverter

26

Standard Cell Example

14

27

ASIC Implementation Techniques

 We now have a physical layout of the
ASIC chip for fabrication
 Omitted some specifics
 I/O Pins
 Clock Trees
 Power Nets

 Design Verification
 Timing, Area, Power requirements

 Tape Out, and Fabrication
 Testing

28

ASIC Design Flow Overview
Design RTL-VHDL
Mentor Graphics VHDL

Compiler

Simulate RTL-VHDL
Mentor Graphics ModelSim

Synthesize RTL-VHDL
Synopsys Design Compiler

Map Design to Technology
Synopsys Design Compiler

Place and Route Netlist
Cadence SoC Encounter

Technology
Characteristics

Physical Layout
Cadence Virtuoso

Physical
Layouts

15

29

Detailed ASIC Design Overview

 Large Part of
ASIC Design is
Verification and
Testing

 Correctness
 Area
 Timing
 Power

Correct?
Y

N

Design RTL-VHDL
Model Tech Compiler

Simulate RTL-VHDL
Model Tech Simulator

Synthesize RTL-VHDL
Synopsys Design Compiler

Correct?

Design RTL-VHDL
Model Tech Compiler

Simulate RTL-VHDL
Model Tech Simulator

Synthesize RTL-VHDL
Synopsys Design Compiler

Place and Route Netlist
Cadence Silicon Ensemble

Y

N

Correct?

Design RTL-VHDL
VHDL Compiler

Simulate RTL-VHDL
Mentor Graphics ModelSim

Synthesize RTL-VHDL
Synopsys Design Compiler

Place and Route Netlist
Cadence SoC Encounter

Y

N

Physical Layout
Cadence Virtuoso

30

Verification

 Originally HDLs designed for verification
 Designs written in HDL and translated

manually to schematics
 Mentor Design Architect, Altera Quartus II
 RTL Synthesis Tool replaces this step

 Test Benches still used for verification
 Test bench written in behavioral HDL
 RTL Design Simulated with test bench

 Determines correctness of design intent
 Several other factors not considered
 Timing, manufacturing process, power

16

31

Formal Verification

 Verification through simulation is
problematic
 Long simulation times
 Likely does not test all possible

permutations

 Formal Verification (ECE 2141)
 Reduces time to do verification
 Proves the structure of the two designs are

logically equivalent
 Can test original RTL against successive

iterations of RTL
 Test RTL against synthesized netlist
 Test pre vs. post layout netlist

32

Timing Verification

 Course topic all by itself!
 One of the most important aspects of

ASIC design
 Analyze critical paths to verify that they

meet timing constraints
 Can be done pre or post layout

 Pre-layout uses wire load models to
estimate delays

 Post-layout back annotates actual wire
delays extracted from layout tools

17

33

Design for Test

 Design for test (DFT) adds logic to the
design to verify the function of the chip.

 Built in self test (BIST) is synthesizable
logic added to the chip
 Some EDA tools generate this logic

automatically
 Generates logic vectors to test the memory

or logic of the hardware

 Boundary Scan (JTAG)
 For testing board connections

 Scan Insertion
 Multiplexed FF’s, turns into shift style

register, applying logic vectors

34

Alternate Hardware Implementation

 Gate Array
 Transistors are laid out on the die

 Arrays of p and n transistors

 User connects the transistors to create logic
 Generally this is done by mapping logic

gates down the the transistors
 Remember NAND/NAND networks?

 NAND gates map efficiently to gate arrays
 Any combinational logic is possible with NAND

 Sequential Logic?
 Just add registers!

18

35

Alternate Hardware Implementation

 Field Programmable Gate Arrays (FPGA)
 Hardware-like Speeds (10-100x slower)
 Software-like Programmability (10-100x

harder)

 Design Flow similar, but easier than
ASIC flows

 Design logic at the Gate-Level or higher
 ASIC can go down to polysilicon level

 Logic is traditionally mapped to LUTs
 Routing is mapped to pre-existing lines

and switches

36

Field Programmable Gate Arrays

 Originally Designed as
“Reprogrammable” Hardware solution
 Can be retargeted in “the field”
 Early devices, extremely small and slow
 1000 gates? < 20 MHz

 Now billed as “ASIC replacement”
 >> 1 Million Gates, > 500 MHz
 Pay a fixed price per part
 ASIC Fabrication Start-up cost becoming

prohibitive
 FPGAs also used for testing ASICs before

fabrication
 But more about this next time….

19

37

Via Programmable Gate Arrays

 LSI Logic and Carnegie Mellon
 Middle ground between FPGA and Gate

Array (ASIC)
 Use Gate Array approach for logic

implementation
 Fixed Route Structures

 Horizontal Lines in Metal 1
 Vertical Lines in Metal 2

 You place the vias to do interconnects
 Like a “program once” FPGA

 Also called programmable ASIC

38

Design Flow and EDA Tools

Gayatri Mehta

20

39

Design Flow

Design
 Entry

Design
Synthesis

Design
Implementation

Simulate

Behavioral
Simulation Post-synthesis Netlist

Post-layout Netlist

Check Results

40

Design Flow

 Design Entry
 VHDL/Verilog
 Schematic

 Synthesis
 FPGA- Synplify Pro
 ASIC- Design Compiler/Design Analyzer

 Place & Route
 FPGA- Xilinix ISE
 ASIC- SoC Encounter

 Simulate
 ModelSim

21

41

Synplify Pro (FPGA)
 Synthesizes the HDL code

 Provides optimized netlist for the target FPGA
technology

 Does synthesis in two steps:
 Compile-

 syntax check
 creates technology independent optimized netlist

 Technology Map-
 based on the timing constraints specified by the user,

optimizes the netlist generated by the compiler to the
technology

42

Synplify Pro

22

43

Xilinx ISE (FPGA)

 Design Implementation:

 Translate- merges the incoming netlists and
constraints into a Xilinx design file (.ngd file)

 Map- maps the design into the available
resources (CLBs and IOBs) on the target
device (.ncd file)

 Place and Route- places and routes the
design to the timing constraints

44

Xilinx ISE

23

45

Design Compiler (ASIC)

 Takes an RTL hardware description and
a standard cell library as input

 Produces optimized netlist as output

 Synthesis involves many steps:
 High-level RTL optimizations
 Technology independent optimizations
 Technology mapping to the standard cells

46

Design Compiler (ASIC)

 File types

 Script files (.tcl)
 Use Synopsys

commands to execute
synthesis

 RTL Verilog (.v)
 Synthesized Verilog

(.sv)
 RTL VHDL (.vhd)
 Synthesized VHDL

(.svhd)

 Synopsys Database
(.db)
 Binary format that

represents RTL,
gates, or internal
libraries

 Reports (.rpt)
 Logs (.log)

24

47

Design Analyzer

48

SoC Encounter (ASIC)

 SoC Encounter provides an integrated
solution for an RTL-to-GDSII design flow
 Advanced RTL synthesis
 Silicon virtual prototyping
 Mixed-signal support
 Nanometer routing

25

49

SoC Encounter

50

ModelSim

 Provides a comprehensive simulation
and debug environment for ASIC and
FPGA designs

 Can be used for functional and timing
simulation of the designs

26

51

ModelSim

52

Summary

 Introduction to ASICs
 Physical Design 101
 ASIC Design Flow
 ASIC Alternatives
 Course Overview
 Design Flow and EDA Tools
 NEXT LECTURE: Review of VHDL
 READING: Bhasker Chapter 1

