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General information

1 Overview
The objective of this course is to understand the theoretical and
practical aspects of asset management

2 Prerequisites
M1 Finance or equivalent

3 ECTS
3

4 Keywords
Finance, Asset Management, Optimization, Statistics

5 Hours
Lectures: 24h, HomeWork: 30h

6 Evaluation
Project + oral examination

7 Course website
http://www.thierry-roncalli.com/RiskBasedAM.html
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Objective of the course

The objective of the course is twofold:

1 having a financial culture on asset management

2 being proficient in quantitative portfolio management
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Class schedule

Course sessions

January 8 (6 hours, AM+PM)

January 15 (6 hours, AM+PM)

January 22 (6 hours, AM+PM)

January 29 (6 hours, AM+PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm–4:00pm, University of Evry
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Agenda

Lecture 1: Portfolio Optimization

Lecture 2: Risk Budgeting

Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia

Lecture 4: Green and Sustainable Finance, ESG Investing and Climate
Risk

Lecture 5: Machine Learning in Asset Management
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Textbook

Roncalli, T. (2013), Introduction to Risk Parity and Budgeting,
Chapman & Hall/CRC Financial Mathematics Series.
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Additional materials

Slides, tutorial exercises and past exams can be downloaded at the
following address:

http://www.thierry-roncalli.com/RiskBasedAM.html

Solutions of exercises can be found in the companion book, which can
be downloaded at the following address:

http://www.thierry-roncalli.com/RiskParityBook.html
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Notations

We consider a universe of n assets

x = (x1, . . . , xn) is the vector of weights in the portfolio

The portfolio is fully invested:

n∑
i=1

xi = 1>n x = 1

R = (R1, . . . ,Rn) is the vector of asset returns where Ri is the return
of asset i

The return of the portfolio is equal to:

R (x) =
n∑

i=1

xiRi = x>R

µ = E [R] and Σ = E
[
(R − µ) (R − µ)>

]
are the vector of expected

returns and the covariance matrix of asset returns
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Computation of the first two moments

The expected return of the portfolio is:

µ (x) = E [R (x)] = E
[
x>R

]
= x>E [R] = x>µ

whereas its variance is equal to:

σ2 (x) = E
[
(R (x)− µ (x)) (R (x)− µ (x))>

]
= E

[(
x>R − x>µ

) (
x>R − x>µ

)>]
= E

[
x> (R − µ) (R − µ)> x

]
= x>E

[
(R − µ) (R − µ)>

]
x

= x>Σx
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Efficient frontier

Two equivalent optimization problems

1 Maximizing the expected return of the portfolio under a volatility
constraint (σ-problem):

maxµ (x) u.c. σ (x) ≤ σ?

2 Or minimizing the volatility of the portfolio under a return constraint
(µ-problem):

minσ (x) u.c. µ (x) ≥ µ?
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Efficient frontier

Example 1

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00
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Efficient frontier

Figure 1: Optimized Markowitz portfolios (1 000 simulations)

Thierry Roncalli Asset Management (Lecture 1) 13 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Markowitz trick

Markowitz transforms the two original non-linear optimization problems
into a quadratic optimization problem:

x? (φ) = arg max x>µ− φ

2
x>Σx

u.c. 1>n x = 1

where φ is a risk-aversion parameter:

φ = 0 ⇒ we have µ (x? (0)) = µ+

If φ =∞, the optimization problem becomes:

x? (∞) = arg min
1

2
x>Σx

u.c. 1>n x = 1

⇒ we have σ (x? (∞)) = σ−. This is the minimum variance (or MV)
portfolio
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The γ-problem

The previous problem can also be written as follows:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c. 1>n x = 1

with γ = φ−1

⇒ This is a standard QP problem

The minimum variance portfolio corresponds to γ = 0

Generally, we use the γ-problem, not the φ-problem
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Quadratic programming problem

Definition

This is an optimization problem with a quadratic objective function and
linear inequality constraints:

x? = arg min
1

2
x>Qx − x>R

u.c. Sx ≤ T

where x is a n × 1 vector, Q is a n × n matrix and R is a n × 1 vector

⇒ Sx ≤ T allows specifying linear equality constraints Ax = B (Ax ≥ B
and Ax ≤ B) or weight constraints x− ≤ x ≤ x+
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Quadratic programming problem

Mathematical softwares consider the following formulation:

x? = arg min
1

2
x>Qx − x>R

u.c.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+

because:

Sx ≤ T ⇔


−A
A
C
−In
In

 x ≤


−B
B
D
−x−
x+
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Efficient frontier

The efficient frontier is the parametric function (σ (x? (φ)) , µ (x? (φ)))
with φ ∈ R+
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Optimized portfolios

Table 1: Solving the φ-problem

φ +∞ 5.00 2.00 1.00 0.50 0.20
x?1 72.74 68.48 62.09 51.44 30.15 −33.75
x?2 49.46 35.35 14.17 −21.13 −91.72 −303.49
x?3 −20.45 12.61 62.21 144.88 310.22 806.22
x?4 −1.75 −16.44 −38.48 −75.20 −148.65 −368.99

µ (x?) 4.86 5.57 6.62 8.38 11.90 22.46
σ (x?) 12.00 12.57 15.23 22.27 39.39 94.57
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Solving µ- and σ-problems

This is equivalent to finding the optimal value of γ such that:

µ (x? (γ)) = µ?

or:
σ (x? (γ)) = σ?

We know that:

the functions µ (x? (γ)) and σ (x? (γ)) are increasing with respect to γ

the functions µ (x? (γ)) and σ (x? (γ)) are bounded:

µ− ≤ µ (x? (γ)) ≤ µ+

σ− ≤ σ (x? (γ)) ≤ σ+

⇒ The optimal value of γ can then be easily computed using the bisection
algorithm
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Solving µ- and σ-problems

We want to solve f (γ) = c where:

f (γ) = µ (x? (γ)) and c = µ?

or f (γ) = σ (x? (γ)) and c = σ?

Bisection algorithm

1 We assume that γ? ∈ [γ1, γ2]

2 If γ2 − γ1 ≤ ε, then stop

3 We compute:

γ̄ =
γ1 + γ2

2

and f (γ̄)
4 We update γ1 and γ2 as follows:

1 If f (γ̄) < c, then γ? ∈ [γc , γ2] and γ1 ← γc
2 If f (γ̄) > c, then γ? ∈ [γ1, γc ] and γ2 ← γc

5 Go to Step 2
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Solving µ- and σ-problems

Table 2: Solving the unconstrained µ-problem

µ? 5.00 6.00 7.00 8.00 9.00
x?1 71.92 65.87 59.81 53.76 47.71
x?2 46.73 26.67 6.62 −13.44 −33.50
x?3 −14.04 32.93 79.91 126.88 173.86
x?4 −4.60 −25.47 −46.34 −67.20 −88.07

σ (x?) 12.02 13.44 16.54 20.58 25.10
φ 25.79 3.10 1.65 1.12 0.85

Table 3: Solving the unconstrained σ-problem

σ? 15.00 20.00 25.00 30.00 35.00
x?1 62.52 54.57 47.84 41.53 35.42
x?2 15.58 −10.75 −33.07 −54.00 −74.25
x?3 58.92 120.58 172.85 221.88 269.31
x?4 −37.01 −64.41 −87.62 −109.40 −130.48

µ (x?) 6.55 7.87 8.98 10.02 11.03
φ 2.08 1.17 0.86 0.68 0.57
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Adding some constraints

We have:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c.

{
1>n x = 1
x ∈ Ω

where x ∈ Ω corresponds to the set of restrictions

Two classical constraints:

no short-selling restriction
xi ≥ 0

upper bound
xi ≤ c

Thierry Roncalli Asset Management (Lecture 1) 23 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Adding some constraints

Figure 2: The efficient frontier with some weight constraints
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Adding some constraints

Table 4: Solving the σ-problem with weight constraints

xi ∈ R xi ≥ 0 0 ≤ xi ≤ 40%
σ? 15.00 20.00 15.00 20.00 15.00 20.00
x?1 62.52 54.57 45.59 24.88 40.00 6.13
x?2 15.58 −10.75 24.74 4.96 34.36 40.00
x?3 58.92 120.58 29.67 70.15 25.64 40.00
x?4 −37.01 −64.41 0.00 0.00 0.00 13.87

µ (x?) 6.55 7.87 6.14 7.15 6.11 6.74
φ 2.08 1.17 1.61 0.91 1.97 0.28
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Analytical solution

The Lagrange function is:

L (x ;λ0) = x>µ− φ

2
x>Σx + λ0

(
1>n x − 1

)
The first-order conditions are:{

∂x L (x ;λ0) = µ− φΣx + λ01n = 0n

∂λ0 L (x ;λ0) = 1>n x − 1 = 0

We obtain:
x = φ−1Σ−1 (µ+ λ01n)

Because 1>n x − 1 = 0, we have:

1>n φ
−1Σ−1µ+ λ0

(
1>n φ

−1Σ−11n

)
= 1

It follows that:

λ0 =
1− 1>n φ

−1Σ−1µ

1>n φ
−1Σ−11n
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Analytical solution

The solution is then:

x? (φ) =
Σ−11n

1>n Σ−11n
+

1

φ
·
(
1>n Σ−11n

)
Σ−1µ−

(
1>n Σ−1µ

)
Σ−11n

1>n Σ−11n

Remark

The global minimum variance portfolio is:

xmv = x? (∞) =
Σ−11n

1>n Σ−11n
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Analytical solution

In the case of no short-selling, the Lagrange function becomes:

L (x ;λ0, λ) = x>µ− φ

2
x>Σx + λ0

(
1>n x − 1

)
+ λ>x

where λ = (λ1, . . . , λn) ≥ 0n is the vector of Lagrange coefficients
associated with the constraints xi ≥ 0

The first-order condition is:

µ− φΣx + λ01+λ = 0n

The Kuhn-Tucker conditions are:

min (λi , xi ) = 0
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The tangency portfolio

Markowitz

There are many optimized portfolios
⇒ there are many optimal portfolios

Tobin

One optimized portfolio dominates all
the others if there is a risk-free asset
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The tangency portfolio

We consider a combination of the risk-free asset and a portfolio x :

R (y) = (1− α) r + αR (x)

where:

r is the return of the risk-free asset

y =

(
αx

1− α

)
is a vector of dimension (n + 1)

α ≥ 0 is the proportion of the wealth invested in the risky portfolio

It follows that:

µ (y) = (1− α) r + αµ (x) = r + α (µ (x)− r)

and:
σ2 (y) = α2σ2 (x)

We deduce that:

µ (y) = r +
(µ (x)− r)

σ (x)
σ (y)
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The tangency portfolio

Figure 3: The capital market line (r = 1.5%)
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The tangency portfolio

Let SR (x | r) be the Sharpe ratio of portfolio x :

SR (x | r) =
µ (x)− r

σ (x)

We obtain:

µ (y)− r

σ (y)
=
µ (x)− r

σ (x)
⇔ SR (y | r) = SR (x | r)

The tangency portfolio is the one that maximizes the angle θ or
equivalently tan θ:

tan θ = SR (x | r) =
µ (x)− r

σ (x)

The tangency portfolio is the risky portfolio
corresponding to the maximum Sharpe ratio
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The tangency portfolio

Example 2

We consider Example 1 and r = 1.5%

The composition of the tangency portfolio x? is:

x? =


63.63%
19.27%
50.28%
−33.17%


We have:

µ (x?) = 6.37%

σ (x?) = 14.43%

SR (x? | r) = 0.34

θ (x?) = 18.64 degrees
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The tangency portfolio

Let us consider a portfolio x of risky assets and a risk-free asset r . We
denote by x̃ the augmented vector of dimension n + 1 such that:

x̃ =

(
x
xr

)
and Σ̃ =

(
Σ 0n

0>n 0

)
and µ̃ =

(
µ
r

)
If we include the risk-free asset, the Markowitz γ-problem becomes:

x̃? (γ) = arg min
1

2
x̃>Σ̃x̃ − γx̃>µ̃

u.c. 1>n x̃ = 1

Two-fund separation theorem

We can show that (RPB, pages 13-14):

x̃? = α ·
(

x?0
0

)
︸ ︷︷ ︸

risky assets

+ (1− α) ·
(

0n

1

)
︸ ︷︷ ︸

risk-free asset
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The tangency portfolio

Figure 4: The efficient frontier with a risk-free asset
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Market equilibrium and CAPM

x? is the tangency portfolio

On the efficient frontier, we have:

µ (y) = r +
σ (y)

σ (x?)
(µ (x?)− r)

We consider a portfolio z with a proportion w invested in the asset i
and a proportion (1− w) invested in the tangency portfolio x?:

µ (z) = wµi + (1− w)µ (x?)

σ2 (z) = w2σ2
i + (1− w)2

σ2 (x?) + 2w (1− w) ρ (ei , x
?)σiσ (x?)

It follows that:

∂ µ (z)

∂ σ (z)
=

µi − µ (x?)

(wσ2
i + (w − 1)σ2 (x?) + (1− 2w) ρ (ei , x?)σiσ (x?))σ−1 (z)
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1 When w = 0, we have:

∂ µ (z)

∂ σ (z)
=

µi − µ (x?)

(−σ2 (x?) + ρ (ei , x?)σiσ (x?))σ−1 (x?)

2 When w = 0, the portfolio z is the tangency portfolio x? and the
previous derivative is equal to the Sharpe ratio SR (x? | r)

We deduce that:

(µi − µ (x?))σ (x?)

ρ (ei , x?)σiσ (x?)− σ2 (x?)
=
µ (x?)− r

σ (x?)

which is equivalent to:

πi = µi − r = βi (µ (x?)− r)

with πi the risk premium of the asset i and:

βi =
ρ (ei , x

?)σi
σ (x?)

=
cov (Ri ,R (x?))

var (R (x?))
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Market equilibrium and CAPM

CAPM

The risk premium of the asset i is equal to its beta times the excess return
of the tangency portfolio

⇒ We can extend the previous result to the case of a portfolio x (and not
only to the asset i):

z = wx + (1− w) x?

In this case, we have:

π (x) = µ (x)− r = β (x | x?) (µ (x?)− r)
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Computation of the beta

The least squares method

Ri,t and Rt (x) be the returns of asset i and portfolio x at time t

βi is estimated with the linear regression:

Ri,t = αi + βiRt (x) + εi,t

For a portfolio y , we have:

Rt (y) = α + βRt (x) + εt
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Computation of the beta

The covariance method

Another way to compute the beta of portfolio y is to use the following
relationship:

β (y | x) =
σ (y , x)

σ2 (x)
=

y>Σx

x>Σx

We deduce that the expression of the beta of asset i is also:

βi = β (ei | x) =
e>i Σx

x>Σx
=

(Σx)i
x>Σx

The beta of a portfolio is the weighted average of the beta of the assets
that compose the portfolio:

β (y | x) =
y>Σx

x>Σx
= y>

Σx

x>Σx
=

n∑
i=1

yiβi
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Market equilibrium and CAPM

We have x? = (63.63%, 19.27%, 50.28%,−33.17%) and µ (x?) = 6.37%

Table 5: Computation of the beta and the risk premium (Example 2)

Portfolio y µ (y) µ (y)− r β (y | x?) π (y | x?)
e1 5.00 3.50 0.72 3.50
e2 6.00 4.50 0.92 4.50
e3 8.00 6.50 1.33 6.50
e4 6.00 4.50 0.92 4.50
xew 6.25 4.75 0.98 4.75

Example 2

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are
equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


The risk free rate is equal to r = 1.5%
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From active management to passive management

Active management

Sharpe (1964)
π (x) = β (x | x?)π (x?)

Jensen (1969)
Rt (x) = α + βRt (b) + εt

where Rt (x) is the fund return and Rt (b) is the benchmark return

Passive management (John McQuown, WFIA, 1971)

Active management = Alpha

Passive management = Beta
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Impact of the constraints

If we impose a lower bound xi ≥ 0, the tangency portfolio becomes
x? = (53.64%, 32.42%, 13.93%, 0.00%) and we have µ (x?) = 5.74%

Table 6: Computation of the beta with a constrained tangency portfolio

Portfolio µ (y)− r β (y | x?) π (y | x?)
e1 3.50 0.83 3.50
e2 4.50 1.06 4.50
e3 6.50 1.53 6.50
e4 4.50 1.54 6.53
xew 4.75 1.24 5.26

⇒ µ4 − r = β4 (µ (x?)− r) + π−4 where π−4 ≤ 0 represents a negative
premium due to a lack of arbitrage on the fourth asset
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Tracking error

Portfolio x = (x1, . . . , xn)

Benchmark b = (b1, . . . , bn)

The tracking error between the active portfolio x and its benchmark b
is the difference between the return of the portfolio and the return of
the benchmark:

e = R (x)− R (b) =
n∑

i=1

xiRi −
n∑

i=1

biRi = x>R − b>R = (x − b)> R

The expected excess return is:

µ (x | b) = E [e] = (x − b)> µ

The volatility of the tracking error is:

σ (x | b) = σ (e) =

√
(x − b)> Σ (x − b)
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Markowitz optimization problem

The expected return of the portfolio is replaced by the expected excess
return and the volatility of the portfolio is replaced by the volatility of the
tracking error

σ-problem

The objective of the investor is to maximize the expected tracking error
with a constraint on the tracking error volatility:

x? = arg maxµ (x | b)

u.c.

{
1>n x = 1
σ (x | b) ≤ σ?
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Equivalent QP problem

We transform the σ-problem into a γ-problem:

x? (γ) = arg min f (x | b)

with:

f (x | b) =
1

2
(x − b)>Σ (x − b)− γ (x − b)> µ

=
1

2
x>Σx − x> (γµ+ Σb) +

(
1

2
b>Σb + γb>µ

)
=

1

2
x>Σx − x> (γµ+ Σb) + c

where c is a constant which does not depend on Portfolio x

QP problem with Q = Σ and R = γµ+ Σb

Remark

The efficient frontier is the parametric curve (σ (x? (γ) | b) , µ (x? (γ) | b))
with γ ∈ R+
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Efficient frontier with a benchmark

Example 3

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


The benchmark of the portfolio manager is equal to
b = (60%, 40%, 20%,−20%)

1st case: No constraint

2nd case: x−
i ≤ xi with x−

i = −10%

3rd case: x−
i ≤ xi ≤ x+

i with x−
1 = x−

2 = x−
3 = 0%, x−

4 = −20% and x+
i = 50%
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Efficient frontier with a benchmark

Figure 5: The efficient frontier with a benchmark (Example 3)
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Information ratio

Definition

The information ratio is defined as follows:

IR (x | b) =
µ (x | b)

σ (x | b)
=

(x − b)> µ√
(x − b)>Σ (x − b)
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Information ratio

If we consider a combination of the benchmark b and the active portfolio
x , the composition of the portfolio is:

y = (1− α) b + αx

with α ≥ 0 the proportion of wealth invested in the portfolio x . It follows
that:

µ (y | b) = (y − b)> µ = αµ (x | b)

and:
σ2 (y | b) = (y − b)>Σ (y − b) = α2σ2 (x | b)

We deduce that:
µ (y | b) = IR (x | b) · σ (y | b)

The efficient frontier is a straight line

Thierry Roncalli Asset Management (Lecture 1) 50 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Tangency portfolio

If we add some constraints, the portfolio optimization problem becomes:

x? (γ) = arg min
1

2
x>Σx − x> (γµ+ Σb)

u.c.

{
1>n x = 1
x ∈ Ω

The efficient frontier is no longer a straight line

Tangency portfolio

One optimized portfolio dominates all the other portfolios. It is the
portfolio which belongs to the efficient frontier and the straight line which
is tangent to the efficient frontier. It is also the portfolio which maximizes
the information ratio
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Constrained efficient frontier with a benchmark

Figure 6: The tangency portfolio with respect to a benchmark (Example 3, 3rd

case)
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Tangency portfolio

If x−i ≤ xi ≤ x+
i with x−1 = x−2 = x−3 = 0%, x−4 = −20% and x+

i = 50%,
the tangency portfolio is equal to:

x? =


49.51%
29.99%
40.50%
−20.00%


If r = 1.5%, we recall that the MSR (maximum Sharpe ratio) portfolio is
equal to:

x? =


63.63%
19.27%
50.28%
−33.17%
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When the benchmark is the risk-free rate

The Markowitz-Tobin-Sharpe approach is obtained when the benchmark is
the risk-free asset r . We have:

x̃ =

(
x
0

)
and b̃ =

(
0n

1

)
It follows that:

Σ̃ =

(
Σ 0n

0>n 0

)
and µ̃ =

(
µ
r

)
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When the benchmark is the risk-free rate

The objective function is then defined as follows:

f
(
x̃ | b̃

)
=

1

2

(
x̃ − b̃

)>
Σ
(
x̃ − b̃

)
− γ

(
x̃ − b̃

)>
µ

=
1

2
x̃>Σ̃x̃ − x̃>

(
γµ̃+ Σ̃b̃

)
+

(
1

2
b̃>Σ̃b̃ + γb̃>µ̃

)
=

1

2
x>Σx − γ

(
x>µ− r

)
=

1

2
x>Σx − γx> (µ− r1n)
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When the benchmark is the risk-free rate

The solution of the QP problem x̃? (γ) = arg min f
(
x̃ | b̃

)
is related to

the solution x? (γ) of the Markowitz γ-problem in the following way:

x̃? (γ) =

(
x? (γ)

0

)
We have σ

(
x̃? (γ) | b̃

)
= σ (x? (φ))

Remark

⇒The MSR portfolio is obtained by replacing the vector µ of expected
returns by the vector µ− r1n of expected excess returns. We have:

SR (x? (γ) | r) = IR
(
x̃? (γ) | b̃

)
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Black-Litterman model

Tactical asset allocation (TAA) model

How to incorporate portfolio manager’s views in a strategic asset
allocation (SAA)?

Two-step approach:

1 Initial allocation ⇒ implied risk premia (Sharpe)

2 Portfolio optimization ⇒ coherent with the bets of the portfolio
manager (Markowitz)
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Implied risk premium

x? = arg min
1

2
x>Σx − γx> (µ− r1n)

u.c.

{
1>n x = 1
x ∈ Ω

If the constraints are satisfied, the first-order condition is:

Σx − γ (µ− r1n) = 0n

The solution is:
x? = γΣ−1 (µ− r1n)

In the Markowitz model, the unknown variable is the vector x
If the initial allocation x0 is given, it must be optimal for the investor,
implying that:

µ̃ = r1n +
1

γ
Σx0

µ̃ is the vector of expected returns which is coherent with x0
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Implied risk premium

We deduce that:

π̃ = µ̃− r

=
1

γ
Σx0

The variable π̃ is:

the risk premium priced by the portfolio manager

the ‘implied risk premium’ of the portfolio manager

the ‘market risk premium’ when x0 is the market portfolio
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Implied risk aversion

The computation of µ̃ needs to the value of the parameter γ or the risk
aversion φ = γ−1

Since we have Σx0 − γ (µ̃− r1n) = 0n, we deduce that:

(∗) ⇔ γ (µ̃− r1n) = Σx0

⇔ γ
(
x>0 µ̃− rx>0 1n

)
= x>0 Σx0

⇔ γ
(
x>0 µ̃− r

)
= x>0 Σx0

⇔ γ =
x>0 Σx0

x>0 µ̃− r

It follows that

φ =
x>0 µ̃− r

x>0 Σx0
=

SR (x0 | r)√
x>0 Σx0

=
SR (x0 | r)

σ (x0)

where SR (x0 | r) is the portfolio’s expected Sharpe ratio
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Implied risk aversion

We have:

µ̃ = r + SR (x0 | r)
Σx0√
x>0 Σx0

and:

π̃ = SR (x0 | r)
Σx0√
x>0 Σx0
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Implied risk premium

Example 4

We consider Example 1 and we suppose that the initial allocation x0 is
(40%, 30%, 20%, 10%)

The volatility of the portfolio is equal to:

σ (x0) = 15.35%

The objective of the portfolio manager is to target a Sharpe ratio
equal to 0.25

We obtain φ = 1.63

If r = 3%, the implied expected returns are:

µ̃ =


5.47%
6.68%
8.70%
9.06%
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Specification of the bets

Black and Litterman assume that µ is a Gaussian vector with expected
returns µ̃ and covariance matrix Γ:

µ ∼ N (µ̃, Γ)

The portfolio manager’s views are given by this relationship:

Pµ = Q + ε

where P is a (k × n) matrix, Q is a (k × 1) vector and ε ∼ N (0,Ω) is a
Gaussian vector of dimension k

If the portfolio manager has two views, the matrix P has two rows ⇒
k is then the number of views

Ω is the covariance matrix of Pµ− Q, therefore it measures the
uncertainty of the views
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Absolute views

We consider the three-asset case:

µ =

 µ1

µ2

µ3


The portfolio manager has an absolute view on the expected return of
the first asset:

µ1 = q1 + ε1

We have:

P =
(

1 0 0
)

, Q = q1, ε = ε1 and Ω = ω2
1

If ω1 = 0, the portfolio manager has a very high level of confidence. If
ω1 6= 0, his view is uncertain
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Absolute views

The portfolio manager has an absolute view on the expected return of
the second asset:

µ2 = q2 + ε2

We have:

P =
(

0 1 0
)

, Q = q2, ε = ε2 and Ω = ω2
2

The portfolio manager has two absolute views:

µ1 = q1 + ε1

µ2 = q2 + ε2

We have:

P =

(
1 0 0
0 1 0

)
, Q =

(
q1

q2

)
, ε =

(
ε1

ε2

)
and Ω =

(
ω2

1 0
0 ω2

2

)
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Relative views

The portfolio manager thinks that the outperformance of the first
asset with respect to the second asset is q:

µ1 − µ2 = q1|2 + ε1|2

We have:

P =
(

1 −1 0
)

, Q = q1|2, ε = ε1|2 and Ω = ω2
1|2
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Portfolio optimization

The Markowitz optimization problem becomes:

x? (γ) = arg min
1

2
x>Σx − γx> (µ̄− r1n)

u.c. 1>n x = 1

where µ̄ is the vector of expected returns conditional to the views:

µ̄ = E [µ | views]

= E [µ | Pµ = Q + ε]

= E [µ | Pµ− ε = Q]

To compute µ̄, we consider the random vector:(
µ

ν = Pµ− ε

)
∼ N

((
µ̃
Pµ̃

)
,

(
Γ ΓP>

PΓ PΓP> + Ω

))
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Conditional distribution in the case of the normal
distribution

Let us consider a Gaussian random vector defined as follows:(
X
Y

)
∼ N

((
µx

µy

)
,

(
Σx,x Σx,y

Σy ,x Σy ,y

))
We have:

Y | X = x ∼ N
(
µy |x ,Σy ,y |x

)
where:

µy |x = E [Y | X = x ] = µy + Σy ,xΣ−1
x,x (x − µx)

and:
Σy ,y |x = cov (Y | X = x) = Σy ,y − Σy ,xΣ−1

x,xΣx,y
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Computation of the conditional expectation

We apply the conditional expectation formula:

µ̄ = E [µ | ν = Q]

= E [µ] + cov (µ, v) var (v)−1 (Q − E [v ])

= µ̃+ ΓP>
(
PΓP> + Ω

)−1
(Q − Pµ̃)

The conditional expectation µ̄ has two components:

1 The first component corresponds to the vector of implied expected
returns µ̃

2 The second component is a correction term which takes into account
the disequilibrium (Q − Pµ̃) between the manager views and the
market views
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Computation of the conditional covariance matrix

The condition covariance matrix is equal to:

Σ̄ = var (µ | ν = Q)

= Γ− ΓP>
(
PΓP> + Ω

)−1
PΓ

Another expression is:

Σ̄ =
(
In + ΓP>Ω−1P

)−1
Γ

=
(
Γ−1 + P>Ω−1P

)−1

The conditional covariance matrix is a weighted average of the covariance
matrix Γ and the covariance matrix Ω of the manager views.
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Choice of covariance matrices

Choice of Σ

From a theoretical point of view, we
have:

Σ = Σ̄ =
(
Γ−1 + P>Ω−1P

)−1

In practice, we use:

Σ = Σ̂

Choice of Γ

We assume that:

Γ = τΣ

We can also target a tracking error
volatility and deduce τ
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Numerical implementation of the model

The five-step approach to implement the Black-Litterman model is:

1 We estimate the empirical covariance matrix Σ̂ and set Σ = Σ̂

2 Given the current portfolio, we compute the implied risk aversion
φ = γ−1 and we deduce the vector µ̃ of implied expected returns

3 We specify the views by defining the P, Q and Ω matrices

4 Given a matrix Γ, we compute the conditional expectation µ̄

5 We finally perform the portfolio optimization with Σ̂, µ̄ and γ
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Illustration

We use Example 4 and impose that the optimized weights are positive

The portfolio manager has an absolute view on the first asset and a
relative view on the second and third assets:

P =

(
1 0 0 0
0 1 −1 0

)
, Q =

(
q1

q2−3

)
and Ω =

(
$2

1 0
0 $2

2−3

)
q1 = 4%, q2−3 = −1%, $1 = 10% and $2−3 = 5%
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Illustration

Case #1: τ = 1

Case #2: τ = 1 and q1 = 7%

Case #3: τ = 1 and $1 = $2−3 = 20%

Case #4: τ = 10%

Case #5: τ = 1%
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Illustration

Table 7: Black-Litterman portfolios

#0 #1 #2 #3 #4 #5
x?1 40.00 33.41 51.16 36.41 38.25 39.77
x?2 30.00 51.56 39.91 42.97 42.72 32.60
x?3 20.00 5.46 0.00 10.85 9.14 17.65
x?4 10.00 9.58 8.93 9.77 9.89 9.98

σ (x? | x0) 0.00 3.65 3.67 2.19 2.18 0.45
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Illustration

To calibrate the parameter τ , we could target a tracking error volatility σ?:

If σ? = 2%, the optimized portfolio is between portfolios #4
(σ (x? | x0) = 2.18%) and #5 (σ (x? | x0) = 0.45%)

The optimal value of τ is between 10% and 1%

Using a bisection algorithm, we obtain τ = 5.2%

The optimal portfolio is:

x? =


36.80%
41.83%
11.58%
9.79%
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Empirical estimator

We have:

Σ̂ =
1

T

T∑
t=1

(
Rt − R̄

) (
Rt − R̄

)>
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Figure 7: Trading hours of asynchronous markets (UTC time)
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Asynchronous markets

Figure 8: Density of the estimator ρ̂ with asynchronous returns (ρ = 70%)
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Figure 9: Hayashi-Yoshida estimator
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Hayashi-Yoshida estimator

We have:

Σ̃i,j =
1

T

T∑
t=1

(
Ri,t − R̄i

) (
Rj,t − R̄j

)
+

1

T

T∑
t=1

(
Ri,t − R̄i

) (
Rj,t−1 − R̄j

)
where j is the equity index which has a closing time after the equity index
i . In our case, j is necessarily the S&P 500 index whereas i can be the
Topix index or the Eurostoxx index. This estimator has two components:

1 The first component is the classical covariance estimator Σ̂i,j

2 The second component is a correction to take into account the lag
between the two closing times
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Other statistical methods

EWMA methods

GARCH models

Factor models

Uniform correlation
ρi,j = ρ

Sector approach (inter-correlation and intra-correlation)
Linear factor models:

Ri,t = A>i Ft + εi,t
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Economic/econometric approach

Market timing (MT)

Tactical asset allocation (TAA)

Strategic asset allocation (SAA)

�

�

�

�
-‖ ‖

MT TAA SAA

1 Day – 1 Month 3 Months – 3 Years 7 Years – 50 Years

Figure 10: Time horizon of MT, TAA and SAA
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Statistical/scoring approach

Stock picking models: fundamental scoring, value, quality, sector
analysis, etc.

Bond picking models: fundamental scoring, structural model, credit
arbitrage model, etc.

Statistical models: mean-reverting, trend-following, cointegration, etc.

Machine learning: return forecasting, scoring model, etc.
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Stability issues

Example 5

We consider a universe of 3 assets. The parameters are: µ1 = µ2 = 8%,
µ3 = 5%, σ1 = 20%, σ2 = 21%, σ3 = 10% and ρi,j = 80%. The objective
is to maximize the expected return for a 15% volatility target. The optimal
portfolio is (38.3%, 20.2%, 41.5%).

Table 8: Sensitivity of the MVO portfolio to input parameters

ρ 70% 90% 90%
σ2 18% 18%
µ1 9%
x1 38.3 38.3 44.6 13.7 −8.0 60.6
x2 20.2 25.9 8.9 56.1 74.1 −5.4
x3 41.5 35.8 46.5 30.2 34.0 44.8
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Solutions

In order to stabilize the optimal portfolio, we have to introduce some
regularization techniques:

Resampling techniques

Factor analysis

Shrinkage methods

Random matrix theory

Norm penalization

Etc.
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Resampling techniques

Jacknife

Cross validation

Hold-out
K-fold

Bootstrap

Resubstitution
Out of the bag
.632
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Resampling techniques

Example 6

We consider a universe of four assets. The expected returns are µ̂1 = 5%,
µ̂2 = 9%, µ̂3 = 7% and µ̂4 = 6% whereas the volatilities are equal to
σ̂1 = 4%, σ̂2 = 15%, σ̂3 = 5% and σ̂4 = 10%. The correlation matrix is
the following:

Ĉ =


1.00
0.10 1.00
0.40 0.20 1.00
−0.10 −0.10 −0.20 1.00
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Resampling techniques

Figure 11: Uncertainty of the efficient frontier
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Resampling techniques

Figure 12: Resampled efficient frontier
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Resampling techniques

Figure 13: S&P 100 resampled efficient frontier (Bootstrap approach)

Source: Bruder et al. (2013)
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How to denoise the covariance matrix?

1 Factor analysis by imposing a correlation structure (MSCI Barra)

2 Factor analysis by filtering the correlation structure (APT)

3 Principal component analysis

4 Random matrix theory

5 Shrinkage methods
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How to denoise the covariance matrix?

The eigendecomposition Σ̂ of is

Σ̂ = VΛV>

where Λ = diag (λ1, . . . , λn) is the diagonal matrix of eigenvalues
with λ1 > λ2 > . . . > λn and V is an orthonormal matrix

The endogenous factors are Ft = Λ−1/2V>Rt

By considering only the m first components, we can build an
estimation of Σ with less noise
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How to denoise the covariance matrix?

Choice of m

1 We keep factors that explain more than 1/n of asset variance:

m = sup {i : λi ≥ (λ1 + . . .+ λn) /n}

2 Laloux et al. (1999) propose to use the random matrix theory (RMT)

1 The maximum eigenvalue of a random matrix M is equal to:

λmax = σ2
(

1 + n/T + 2
√

n/T
)

where T is the sample size
2 We keep the first m factors such that:

m = sup {i : λi > λmax}
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How to denoise the covariance matrix?

Shrinkage methods

Σ̂ is an unbiased estimator, but its convergence is very slow

Φ̂ is a biased estimator that converges more quickly

Ledoit and Wolf (2003) propose to combine Σ̂ and Φ̂:

Σ̂α = αΦ̂ + (1− α) Σ̂

The value of α is estimated by minimizing a quadratic loss:

α? = arg minE
[∥∥∥αΦ̂ + (1− α) Σ̂− Σ

∥∥∥2
]

They find an analytical expression of α? when:

Φ̂ has a constant correlation structure

Φ̂ corresponds to a factor model or is deduced from PCA
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How to denoise the covariance matrix?

Example 7 (equity correlation matrix)

We consider a universe with eight equity indices: S&P 500, Eurostoxx,
FTSE 100, Topix, Bovespa, RTS, Nifty and HSI. The study period is
January 2005–December 2011 and we use weekly returns.

The empirical correlation matrix is:

Ĉ =



1.00
0.88 1.00
0.88 0.94 1.00
0.64 0.68 0.65 1.00
0.77 0.76 0.78 0.61 1.00
0.56 0.61 0.61 0.50 0.64 1.00
0.53 0.61 0.57 0.53 0.60 0.57 1.00
0.64 0.68 0.67 0.68 0.68 0.60 0.66 1.00


Thierry Roncalli Asset Management (Lecture 1) 96 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

How to denoise the covariance matrix?

Uniform correlation
ρ̂ = 66.24%

One common factor + two specific factors

Ĉ =



1.00
0.77 1.00
0.77 0.77 1.00
0.77 0.77 0.77 1.00
0.50 0.50 0.50 0.50 1.00
0.50 0.50 0.50 0.50 0.59 1.00
0.50 0.50 0.50 0.50 0.59 0.59 1.00
0.50 0.50 0.50 0.50 0.59 0.59 0.59 1.00
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How to denoise the covariance matrix?

Two-linear factor model

Ĉ =



1.00
0.88 1.00
0.88 0.94 1.00
0.63 0.67 0.66 1.00
0.73 0.78 0.78 0.63 1.00
0.58 0.62 0.60 0.54 0.59 1.00
0.56 0.59 0.58 0.56 0.60 0.54 1.00
0.64 0.68 0.66 0.65 0.69 0.62 0.67 1.00
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How to denoise the covariance matrix?

RMT estimation

Ĉ =



1.00
0.73 1.00
0.72 0.76 1.00
0.61 0.64 0.64 1.00
0.72 0.76 0.75 0.64 1.00
0.71 0.75 0.74 0.63 0.74 1.00
0.63 0.66 0.65 0.56 0.66 0.65 1.00
0.68 0.72 0.71 0.60 0.71 0.70 0.62 1.00
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How to denoise the covariance matrix?

Ledoit-Wolf shrinkage estimation (constant correlation matrix)

Ĉ =



1.00
0.77 1.00
0.77 0.80 1.00
0.65 0.67 0.65 1.00
0.72 0.71 0.72 0.63 1.00
0.61 0.64 0.63 0.58 0.65 1.00
0.60 0.64 0.62 0.60 0.63 0.62 1.00
0.65 0.67 0.67 0.67 0.67 0.63 0.66 1.00


We obtain:

α? = 51.2%

What does this result become in the case of a multi-asset-class
universe?

α? ' 0
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Why standard regularization techniques are not sufficient

Optimized portfolios are solutions of the following quadratic program:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c.

{
1>n x = 1
x ∈ Rn

We have:

x? (γ) =
Σ−11n

1>n Σ−11n
+ γ ·

(
1>n Σ−11n

)
Σ−1µ−

(
1>n Σ−1µ

)
Σ−11n

1>n Σ−11n
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Why standard regularization techniques are not sufficient

Optimal solutions are of the following form:

x? ∝ f
(
Σ−1

)

The important quantity is then the precision matrix I = Σ−1,
not the covariance matrix Σ
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Why standard regularization techniques are not sufficient

For the covariance matrix Σ, we have:

Σ = VΛV>

where V−1 = V> and Λ = (λ1, . . . , λn) with λ1 ≥ . . . ≥ λn the
ordered eigenvalues

The decomposition for the precisions matrix is

I = U∆U>

We have:

Σ−1 =
(
VΛV>

)−1

=
(
V>
)−1

Λ−1V−1

= VΛ−1V>

We deduce that U = V and δi = 1/λn−i+1
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Why standard regularization techniques are not sufficient

Remark

The eigenvectors of the precision matrix are the same as those of the
covariance matrix, but the eigenvalues of the precision matrix are the
inverse of the eigenvalues of the covariance matrix. This means that the
risk factors are the same, but they are in the reverse order
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Why standard regularization techniques are not sufficient

Example 8

We consider a universe of 3 assets, where µ1 = µ2 = 8%, µ3 = 5%,
σ1 = 20%, σ2 = 21%, σ3 = 10% and ρi,j = 80%.

The eigendecomposition of the covariance and precision matrices is:

Covariance matrix Σ Information matrix I
Asset / Factor 1 2 3 1 2 3

1 65.35% −72.29% −22.43% −22.43% −72.29% 65.35%
2 69.38% 69.06% −20.43% −20.43% 69.06% 69.38%
3 30.26% −2.21% 95.29% 95.29% −2.21% 30.26%

Eigenvalue 8.31% 0.84% 0.26% 379.97 119.18 12.04
% cumulated 88.29% 97.20% 100.00% 74.33% 97.65% 100.00%

⇒ It means that the first factor of the information matrix corresponds to
the last factor of the covariance matrix and that the last factor of the
information matrix corresponds to the first factor.

⇒ Optimization on arbitrage risk factors, idiosyncratic risk factors and
(certainly) noise factors!
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Why standard regularization techniques are not sufficient

Example 9

We consider a universe of 6 assets. The volatilities are respectively equal to
20%, 21%, 17%, 24%, 20% and 16%. For the correlation matrix, we have:

ρ =


1.00
0.40 1.00
0.40 0.40 1.00
0.50 0.50 0.50 1.00
0.50 0.50 0.50 0.60 1.00
0.50 0.50 0.50 0.60 0.60 1.00


⇒ We compute the minimum variance (MV) portfolio with a shortsale
constraint
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Why standard regularization techniques are not sufficient

Table 9: Effect of deleting a PCA factor

x? MV λ1 = 0 λ2 = 0 λ3 = 0 λ4 = 0 λ5 = 0 λ6 = 0
x?1 15.29 15.77 20.79 27.98 0.00 13.40 0.00
x?2 10.98 16.92 1.46 12.31 0.00 8.86 0.00
x?3 34.40 12.68 35.76 28.24 52.73 53.38 2.58
x?4 0.00 22.88 0.00 0.00 0.00 0.00 0.00
x?5 1.01 17.99 2.42 0.00 15.93 0.00 0.00
x?6 38.32 13.76 39.57 31.48 31.34 24.36 97.42
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Why standard regularization techniques are not sufficient

Figure 14: PCA applied to the stocks of the FTSE index (June 2012)
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Arbitrage factors, hedging factors or risk factors

We consider the following linear regression model:

Ri,t = β0 + β>i R
(−i)
t + εi,t

R
(−i)
t denotes the vector of asset returns Rt excluding the i th asset

εi,t ∼ N (0, s2
i )

R2
i is the R-squared of the linear regression

Precision matrix

Stevens (1998) shows that the precision matrix is given by:

Ii,i =
1

σ̂2
i (1−R2

i )
and Ii,j = − β̂i,j

σ̂2
i (1−R2

i )
= − β̂j,i

σ̂2
j

(
1−R2

j

)
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Arbitrage factors, hedging factors or risk factors

Example 10

We consider a universe of four assets. The expected returns are µ̂1 = 7%,
µ̂2 = 8%, µ̂3 = 9% and µ̂4 = 10% whereas the volatilities are equal to
σ̂1 = 15%, σ̂2 = 18%, σ̂3 = 20% and σ̂4 = 25%. The correlation matrix is
the following:

Ĉ =


1.00
0.50 1.00
0.50 0.50 1.00
0.60 0.50 0.40 1.00


We do not impose that the sum of weights are equal to 100%
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Arbitrage factors, hedging factors or risk factors

Table 10: Hedging portfolios when ρ3,4 = 40%

Asset β̂i R2
i ŝi µ̄i x?

1 0.139 0.187 0.250 45.83% 11.04% 1.70% 69.80%
2 0.230 0.268 0.191 37.77% 14.20% 2.06% 51.18%
3 0.409 0.354 0.045 33.52% 16.31% 2.85% 53.66%
4 0.750 0.347 0.063 41.50% 19.12% 1.41% 19.28%

Table 11: Hedging portfolios when ρ3,4 = 95%

Asset β̂i R2
i ŝi µ̄i x?

1 0.244 −0.595 0.724 47.41% 10.88% 3.16% 133.45%
2 0.443 0.470 −0.157 33.70% 14.66% 2.23% 52.01%
3 −0.174 0.076 0.795 91.34% 5.89% 1.66% 239.34%
4 0.292 −0.035 1.094 92.38% 6.90% −1.61% −168.67%
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Arbitrage factors, hedging factors or risk factors

Table 12: Hedging portfolios (in %) at the end of 2006

SPX SX5E TPX RTY EM US HY EMBI EUR JPY GSCI
SPX 58.6 6.0 150.3 -30.8 -0.5 5.0 -7.3 15.3 -25.5
SX5E 9.0 -1.2 -1.3 35.2 0.8 3.2 -4.5 -5.0 -1.5
TPX 0.4 -0.6 -2.4 38.1 1.1 -3.5 -4.9 -0.8 -0.3
RTY 48.6 -2.7 -10.4 26.2 -0.6 1.9 0.2 -6.4 5.6
EM -4.1 30.9 69.2 10.9 0.9 4.6 9.1 3.9 33.1
US HY -5.0 53.5 160.0 -18.8 69.5 95.6 48.4 31.4 -211.7
EMBI 10.8 44.2 -102.1 12.3 73.4 19.4 -5.8 40.5 86.2
EUR -3.6 -14.7 -33.4 0.3 33.8 2.3 -1.4 56.7 48.2
JPY 6.8 -14.5 -4.8 -8.8 12.7 1.3 8.4 50.4 -33.2
GSCI -1.1 -0.4 -0.2 0.8 10.7 -0.9 1.8 4.2 -3.3
ŝi 0.3 0.7 0.9 0.5 0.7 0.1 0.2 0.4 0.4 1.2
R2

i 83.0 47.7 34.9 82.4 60.9 39.8 51.6 42.3 43.7 12.1

Source: Bruder et al. (2013)

Thierry Roncalli Asset Management (Lecture 1) 112 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

Arbitrage factors, hedging factors or risk factors

We finally obtain:

x?i (γ) = γ
µi − β̂>i µ(−i)

ŝ2
i

From this equation, we deduce the following conclusions:

1 The better the hedge, the higher the exposure. This is why highly
correlated assets produces unstable MVO portfolios

2 The long/short position is defined by the sign of µi − β̂>i µ(−i). If the
expected return of the asset is lower than the conditional expected
return of the hedging portfolio, the weight is negative

�
�

�
Markowitz diversification 6= Diversification of risk factors

= Concentration on arbitrage factors
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QP problem

We use the following formulation of the QP problem:

x? = arg min
1

2
x>Qx − x>R

u.c.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+
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Standard constraints

γ-problem

arg min
1

2
x>Σx − γx> (µ− r1n)⇒

{
Q = Σ
R = γµ

Full allocation

1>n x = 1⇒
{

A = 1>n
B = 1

No short selling
xi ≥ 0⇒ x− = 0n

Cash neutral (and portfolio optimization with unfunded strategies)

1>n x = 0⇒
{

A = 1>n
B = 0
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Asset class constraints

Example 11

We consider a multi-asset universe of eight asset classes represented by the
following indices:

four equity indices: S&P 500, Eurostoxx, Topix, MSCI EM

two bond indices: EGBI, US BIG

two alternatives indices: GSCI, EPRA

The portfolio manager wants the following exposures:

at least 50% bonds

less than 10% commodities

Emerging market equities cannot represent more than one third of the
total exposure on equities
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Asset class constraints

The constraints are then expressed as follows:
x5 + x6 ≥ 50%
x7 ≤ 10%
x4 ≤ 1

3 (x1 + x2 + x3 + x4)

The corresponding formulation Cx ≤ D of the QP problem is:

 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 1 0

−1/3 −1/3 −1/3 2/3 0 0 0 0





x1

x2

x3

x4

x5

x6

x7

x8


≤

 −0.50
0.10
0.00
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Non-standard constraints (turnover management)

We want to limit the turnover of the long-only optimized portfolio
with respect to a current portfolio x0:

Ω =

{
x ∈ [0, 1]n :

n∑
i=1

∣∣xi − x0
i

∣∣ ≤ τ+

}

where τ+ is the maximum turnover

Scherer (2007) proposes to introduce some additional variables x−i
and x+

i such that:
xi = x0

i + ∆x+
i −∆x−i

with ∆x−i ≥ 0 and ∆x+
i ≥ 0

∆x+
i indicates a positive weight change with respect to the initial

weight x0
i

∆x−i indicates a negative weight change with respect to the initial
weight x0

i
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Non-standard constraints (turnover management)

The expression of the turnover becomes:

n∑
i=1

∣∣xi − x0
i

∣∣ =
n∑

i=1

∣∣∆x+
i −∆x−i

∣∣ =
n∑

i=1

∆x+
i +

n∑
i=1

∆x−i

We obtain the following γ-problem:

x? = arg min
1

2
x>Σx − γx>µ

u.c.



∑n
i=1 xi = 1

xi = x0
i + ∆x+

i −∆x−i∑n
i=1 ∆x+

i +
∑n

i=1 ∆x−i ≤ τ+

0 ≤ xi ≤ 1
0 ≤ ∆x−i ≤ 1
0 ≤ ∆x+

i ≤ 1
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Non-standard constraints (turnover management)

We obtain an augmented QP problem of dimension 3n instead of n:

X ? = arg min
1

2
X>QX − X>R

u.c.

 AX = B
CX ≤ D
03n ≤ X ≤ 13n

where X is a 3n × 1 vector:

X =
(
x1, . . . , xn,∆x−1 , . . . ,∆x−n ,∆x+

1 , . . . ,∆x+
n

)
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Non-standard constraints (turnover management)

The augmented QP matrices are:

Q3n×3n =

 Σ 0n×n 0n×n
0n×n 0n×n 0n×n
0n×n 0n×n 0n×n

 , R3n×1 =

 γµ
0n

0n

 ,

A(n+1)×3n =

(
1>n 0>n 0>n
In In −In

)
, B(n+1)×1 =

(
1
x0

)
,

C1×3n =
(

0>n 1>n 1>n
)

and D1×1 = τ+
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Non-standard constraints (turnover management)

Example 12

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

ρ =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


We impose that the weights are positive

The optimal portfolio x? for a 15% volatility target is
(45.59%, 24.74%, 29.67%, 0.00%)

We assume that the current portfolio x0 is (30%, 45%, 15%, 10%)

If we move directly from portfolio x0 to portfolio x?, the turnover is
equal to 60.53%
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Non-standard constraints (turnover management)

Table 13: Limiting the turnover of MVO portfolios

τ+ 5.00 10.00 25.00 50.00 75.00 x0

x?1 35.00 36.40 42.34 45.59 30.00
x?2 45.00 42.50 30.00 24.74 45.00
x?3 15.00 21.10 27.66 29.67 15.00
x?4 5.00 0.00 0.00 0.00 10.00

µ (x?) 5.95 6.06 6.13 6.14 6.00
σ (x?) 15.00 15.00 15.00 15.00 15.69

τ
(
x? | x0

)
10.00 25.00 50.00 60.53
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Non-standard constraints (transaction cost management)

Let c−i and c+
i be the bid and ask transactions costs. The net expected

return is equal to:

µ (x) =
n∑

i=1

xiµi −
n∑

i=1

∆x−i c−i −
n∑

i=1

∆x+
i c+

i

The γ-problem becomes:

x? = arg min
1

2
x>Σx − γ

(
n∑

i=1

xiµi −
n∑

i=1

∆x−i c−i −
n∑

i=1

∆x+
i c+

i

)

u.c.



∑n
i=1

(
xi + ∆x−i c−i + ∆x+

i c+
i

)
= 1

xi = x0
i + ∆x+

i −∆x−i
0 ≤ xi ≤ 1
0 ≤ ∆x−i ≤ 1
0 ≤ ∆x+

i ≤ 1
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Non-standard constraints (transaction cost management)

The augmented QP problem becomes:

X ? = arg min
1

2
X>QX − X>R

u.c.

{
AX = B
03n ≤ X ≤ 13n

where X is a 3n × 1 vector:

X =
(
x1, . . . , xn,∆x−1 , . . . ,∆x−n ,∆x+

1 , . . . ,∆x+
n

)
and:

Q3n×3n =

 Σ 0n×n 0n×n
0n×n 0n×n 0n×n
0n×n 0n×n 0n×n

 , R3n×1 =

 γµ
−c−
−c+

 ,

A(n+1)×3n =

(
1>n (c−)

>
(c+)

>

In In −In

)
and B(n+1)×1 =

(
1
x0

)
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Index sampling

The underlying idea is to replicate an index b with n stocks by a portfolio
x with nx stocks and nx � n

From a mathematical point of view, index sampling can be written as a
portfolio optimization problem with a benchmark:

x? = arg min
1

2
(x − b)>Σ (x − b)

u.c.

 1>n x = 1
x ≥ 0n∑n

i=1 1 {xi > 0} ≤ nx

where b is the vector of index weights

We obtain a mixed integer non-linear optimization problem
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Index sampling

Three stepwise algorithms:

1 The backward elimination algorithm starts with all the stocks,
computes the optimized portfolio, deletes the stock which presents
the highest tracking error variance, and repeats this process until the
number of stocks in the optimized portfolio reaches the target value
nx

2 The forward selection algorithm starts with no stocks in the portfolio,
adds the stock which presents the smallest tracking error variance,
and repeats this process until the number of stocks in the optimized
portfolio reaches the target value nx

3 The heuristic algorithm is a variant of the backward elimination
algorithm, but the elimination process of the heuristic algorithm uses
the criterion of the smallest weight
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Heuristic algorithm

1 The algorithm is initialized with N(0) = ∅ and x?(0) = b.
2 At the iteration k, we define a set I(k) of stocks having the smallest

positive weights in the portfolio x?(k−1). We then update the set N(k)

with N(k) = N(k−1) ∪ I(k) and define the upper bounds x+
(k):

x+
(k),i =

{
0 if i ∈ N(k)

1 if i /∈ N(k)

3 We solve the QP problem by using the new upper bounds x+
(k):

x?(k) = arg min
1

2

(
x(k) − b

)>
Σ
(
x(k) − b

)
u.c.

{
1>n x(k) = 1
0n ≤ x(k) ≤ x+

(k)

4 We iterate steps 2 and 3 until the convergence criterion:
n∑

i=1

1
{
x∗(k),i > 0

}
≤ nx
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Complexity of the three numerical algorithms

The number of solved QP problems is respectively equal to:

nb − nx for the heuristic algorithm

(nb − nx) (nb + nx + 1) /2 for the backward elimination algorithm

nx (2nb − nx + 1) /2 for the forward selection algorithm

Number of solved QP problems
nb nx Heuristic Backward Forward

50
10 40 1 220 455
40 10 455 1 220

500
50 450 123 975 23 775

450 50 23 775 123 975

1 500
100 1 400 1 120 700 145 050

1 000 500 625 250 1 000 500
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Index sampling (Eurostoxx 50, June 2012)

Table 14: Sampling the SX5E index with the heuristic algorithm

k Stock bi σ
(
x(k) | b

)
1 Nokia 0.45 0.18
2 Carrefour 0.60 0.23
3 Repsol 0.71 0.28
4 Unibail-Rodamco 0.99 0.30
5 Muenchener Rueckver 1.34 0.32
6 RWE 1.18 0.36
7 Koninklijke Philips 1.07 0.41
8 Generali 1.06 0.45
9 CRH 0.82 0.51

10 Volkswagen 1.34 0.55
42 LVMH 2.39 3.67
43 Telefonica 3.08 3.81
44 Bayer 3.51 4.33
45 Vinci 1.46 5.02
46 BBVA 2.13 6.53
47 Sanofi 5.38 7.26
48 Allianz 2.67 10.76
49 Total 5.89 12.83
50 Siemens 4.36 30.33
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Index sampling (Eurostoxx 50, June 2012)

Table 15: Sampling the SX5E index with the backward elimination algorithm

k Stock bi σ
(
x(k) | b

)
1 Iberdrola 1.05 0.11
2 France Telecom 1.48 0.18
3 Carrefour 0.60 0.22
4 Muenchener Rueckver 1.34 0.26
5 Repsol 0.71 0.30
6 BMW 1.37 0.34
7 Generali 1.06 0.37
8 RWE 1.18 0.41
9 Koninklijke Philips 1.07 0.44

10 Air Liquide 2.10 0.48
42 GDF Suez 1.92 3.49
43 Bayer 3.51 3.88
44 BNP Paribas 2.26 4.42
45 Total 5.89 4.99
46 LVMH 2.39 5.74
47 Allianz 2.67 7.15
48 Sanofi 5.38 8.90
49 BBVA 2.13 12.83
50 Siemens 4.36 30.33
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Index sampling (Eurostoxx 50, June 2012)

Table 16: Sampling the SX5E index with the forward selection algorithm

k Stock bi σ
(
x(k) | b

)
1 Siemens 4.36 12.83
2 Banco Santander 3.65 8.86
3 Bayer 3.51 6.92
4 Eni 3.32 5.98
5 Allianz 2.67 5.11
6 LVMH 2.39 4.55
7 France Telecom 1.48 3.93
8 Carrefour 0.60 3.62
9 BMW 1.37 3.35

41 Société Générale 1.07 0.50
42 CRH 0.82 0.45
43 Air Liquide 2.10 0.41
44 RWE 1.18 0.37
45 Nokia 0.45 0.33
46 Unibail-Rodamco 0.99 0.28
47 Repsol 0.71 0.24
48 Essilor 1.17 0.18
49 Muenchener Rueckver 1.34 0.11
50 Iberdrola 1.05 0.00
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Index sampling

Figure 15: Sampling the SX5E and SPX indices (June 2012)
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The impact of weight constraints

We specify the optimization problem as follows:

min
1

2
x>Σx

u.c.

 1>n x = 1
µ>x ≥ µ?
x ∈ C

where C is the set of weights constraints. We define:

the unconstrained portfolio x? or x? (µ,Σ):

C = Rn

the constrained portfolio x̃ :

C
(
x−, x+

)
=
{
x ∈ Rn : x−i ≤ xi ≤ x+

i

}
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The impact of weight constraints

Theorem

Jagannathan and Ma (2003) show that the constrained portfolio is the
solution of the unconstrained problem:

x̃ = x?
(
µ̃, Σ̃

)
with: {

µ̃ = µ

Σ̃ = Σ + (λ+ − λ−) 1>n + 1n (λ+ − λ−)
>

where λ− and λ+ are the Lagrange coefficients vectors associated to the
lower and upper bounds.

⇒ Introducing weights constraints is equivalent to introduce a shrinkage
method or to introduce some relative views (similar to the Black-Litterman
approach).
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The impact of weight constraints

Proof (step 1)

Without weight constraints, the expression of the Lagrangian is:

L (x ;λ0, λ1) =
1

2
x>Σx − λ0

(
1>n x − 1

)
− λ1

(
µ>x − µ?

)
with λ0 ≥ 0 and λ1 ≥ 0. The first-order conditions are:

Σx − λ01n − λ1µ = 0n

1>n x − 1 = 0
µ>x − µ? = 0

We deduce that the solution x? depends on the vector of expected return
µ and the covariance matrix Σ and we note x? = x? (µ,Σ)
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The impact of weight constraints

Proof (step 2)

If we impose now the weight constraints C (x−, x+), we have:

L
(
x ;λ0, λ1, λ

−, λ+
)

=
1

2
x>Σx − λ0

(
1>n x − 1

)
− λ1

(
µ>x − µ?

)
−

λ−>
(
x − x−

)
− λ+> (x+ − x

)
with λ0 ≥ 0, λ1 ≥ 0, λ−i ≥ 0 and λ+

i ≥ 0. In this case, the Kuhn-Tucker
conditions are: 

Σx − λ01n − λ1µ− λ− + λ+ = 0n

1>n x − 1 = 0
µ>x − µ? = 0
min

(
λ−i , xi − x−i

)
= 0

min
(
λ+
i , x

+
i − xi

)
= 0
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The impact of weight constraints

Proof (step 3)

Given a constrained portfolio x̃ , it is possible to find a covariance matrix Σ̃
such that x̃ is the solution of unconstrained mean-variance portfolio. Let

E =
{

Σ̃ > 0 : x̃ = x?
(
µ, Σ̃

)}
denote the corresponding set:

E =
{

Σ̃ > 0 : Σ̃x̃ − λ01n − λ1µ = 0n

}
Of course, the set E contains several solutions. From a financial point of
view, we are interested in covariance matrices Σ̃ that are close to Σ.
Jagannathan and Ma note that the matrix Σ̃ defined by:

Σ̃ = Σ +
(
λ+ − λ−

)
1>n + 1n

(
λ+ − λ−

)>
is a solution of E
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The impact of weight constraints

Proof (step 4)

Indeed, we have:

Σ̃x̃ = Σx̃ +
(
λ+ − λ−

)
1>n x̃ + 1n

(
λ+ − λ−

)>
x̃

= Σx̃ +
(
λ+ − λ−

)
+ 1n

(
λ+ − λ−

)>
x̃

= λ01n + λ1µ+ 1n (λ01n + λ1µ−Σx̃)> x̃

= λ01n + λ1µ+ 1n

(
λ0 + λ1µ

? − x̃>Σx̃
)

=
(
2λ0 − x̃>Σx̃ + λ1µ

?
)

1n + λ1µ

It proves that x̃ is the solution of the unconstrained optimization problem.
The Lagrange coefficients λ?0 and λ?1 for the unconstrained problem are
respectively equal to 2λ̃0 − x̃>Σx̃ + λ̃1µ

? and λ̃1 where λ̃0 and λ̃1 are the
Lagrange coefficient for the constrained problem. Moreover, Σ̃ is generally
a positive definite matrix
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The impact of weight constraints

Example 13

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


Given these parameters, the global minimum variance portfolio is equal to:

x? =


72.742%
49.464%
−20.454%
−1.753%
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The impact of weight constraints

Table 17: Minimum variance portfolio when xi ≥ 10%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

72.742 56.195 0.000 0.000 15.00 100.00
49.464 23.805 0.000 0.000 20.00 10.00 100.00
−20.454 10.000 1.190 0.000 19.67 10.50 58.71 100.00
−1.753 10.000 1.625 0.000 23.98 17.38 16.16 67.52 100.00

Table 18: Minimum variance portfolio when 10% ≤ xi ≤ 40%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

72.742 40.000 0.000 0.915 20.20 100.00
49.464 40.000 0.000 0.000 20.00 30.08 100.00
−20.454 10.000 0.915 0.000 21.02 35.32 61.48 100.00
−1.753 10.000 1.050 0.000 26.27 39.86 25.70 73.06 100.00
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The impact of weight constraints

Table 19: Mean-variance portfolio when 10% ≤ xi ≤ 40% and µ? = 6%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

65.866 40.000 0.000 0.125 15.81 100.00
26.670 30.000 0.000 0.000 20.00 13.44 100.00
32.933 20.000 0.000 0.000 25.00 41.11 70.00 100.00
−25.470 10.000 1.460 0.000 24.66 23.47 19.06 73.65 100.00

Table 20: MSR portfolio when 10% ≤ xi ≤ 40%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

51.197 40.000 0.000 0.342 17.13 100.00
50.784 39.377 0.000 0.000 20.00 18.75 100.00
−21.800 10.000 0.390 0.000 23.39 36.25 66.49 100.00

19.818 10.623 0.000 0.000 30.00 50.44 40.00 79.96 100.00
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Variations on the efficient frontier

Exercise

We consider an investment universe of four assets. We assume that their
expected returns are equal to 5%, 6%, 8% and 6%, and their volatilities
are equal to 15%, 20%, 25% and 30%. The correlation matrix is:

ρ =


100%

10% 100%
40% 70% 100%
50% 40% 80% 100%


We note xi the weight of the i th asset in the portfolio. We only impose
that the sum of the weights is equal to 100%.
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Variations on the efficient frontier

Question 1

Represent the efficient frontier by considering the following values of γ:
−1, −0.5, −0.25, 0, 0.25, 0.5, 1 and 2.

Thierry Roncalli Asset Management (Lecture 1) 144 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

We deduce that the covariance matrix is:

Σ =


2.250 0.300 1.500 2.250
0.300 4.000 3.500 2.400
1.500 3.500 6.250 6.000
2.250 2.400 6.000 9.000

× 10−2

We then have to solve the γ-formulation of the Markowitz problem:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c. 1>n x = 1

We obtain the results1 given in Table 21. We represent the efficient
frontier in Figure 16.

1The weights, expected returns and volatilities are expressed in %.
Thierry Roncalli Asset Management (Lecture 1) 145 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

Table 21: Solution of Question 1

γ −1.00 −0.50 −0.25 0.00 0.25 0.50 1.00 2.00
x?1 94.04 83.39 78.07 72.74 67.42 62.09 51.44 30.15
x?2 120.05 84.76 67.11 49.46 31.82 14.17 −21.13 −91.72
x?3 −185.79 −103.12 −61.79 −20.45 20.88 62.21 144.88 310.22
x?4 71.69 34.97 16.61 −1.75 −20.12 −38.48 −75.20 −148.65

µ (x?) 1.34 3.10 3.98 4.86 5.74 6.62 8.38 11.90
σ (x?) 22.27 15.23 12.88 12.00 12.88 15.23 22.27 39.39
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Variations on the efficient frontier

Figure 16: Markowitz efficient frontier
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Question 2

Calculate the minimum variance portfolio. What are its expected return
and its volatility?
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Variations on the efficient frontier

We solve the γ-problem with γ = 0. The minimum variance portfolio is
then x?1 = 72.74%, x?2 = 49.46%, x?3 = −20.45% and x?4 = −1.75%. We
deduce that µ (x?) = 4.86% and σ (x?) = 12.00%.
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Variations on the efficient frontier

Question 3

Calculate the optimal portfolio which has an ex-ante volatility σ? equal to
10%. Same question if σ? = 15% and σ? = 20%.
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There is no solution when the target volatility σ? is equal to 10% because
the minimum variance portfolio has a volatility larger than 10%. Finding
the optimized portfolio for σ? = 15% or σ? = 20% is equivalent to solving
a σ-problem. If σ? = 15% (resp. σ? = 20%), we obtain an implied value
of γ equal to 0.48 (resp. 0.85). Results are given in the following Table:

σ? 15.00 20.00
x?1 62.52 54.57
x?2 15.58 −10.75
x?3 58.92 120.58
x?4 −37.01 −64.41

µ (x?) 6.55 7.87
γ 0.48 0.85
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Question 4

We note x (1) the minimum variance portfolio and x (2) the optimal
portfolio with σ? = 20%. We consider the set of portfolios x (α) defined by
the relationship:

x (α) = (1− α) x (1) + αx (2)

In the previous efficient frontier, place the portfolios x (α) when α is equal
to −0.5, −0.25, 0, 0.1, 0.2, 0.5, 0.7 and 1. What do you observe?
Comment on this result.
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Variations on the efficient frontier

Let x (α) be the portfolio defined by the relationship
x (α) = (1− α) x (1) + αx (2) where x (1) is the minium variance portfolio and
x (2) is the optimized portfolio with a 20% ex-ante volatility. We obtain the
following results:

α σ
(
x (α)

)
µ
(
x (α)

)
−0.50 14.42 3.36
−0.25 12.64 4.11

0.00 12.00 4.86
0.10 12.10 5.16
0.20 12.41 5.46
0.50 14.42 6.36
0.70 16.41 6.97
1.00 20.00 7.87

We have reported these portfolios in Figure 17. We notice that they are
located on the efficient frontier. This is perfectly normal because we know
that a combination of two optimal portfolios corresponds to another
optimal portfolio.
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Figure 17: Mean-variance diagram of portfolios x (α)
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Question 5

Repeat Questions 3 and 4 by considering the constraint 0 ≤ xi ≤ 1.
Explain why we do not retrieve the same observation.
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If we consider the constraint 0 ≤ xi ≤ 1, the γ-formulation of the
Markowitz problem becomes:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c.

{
1>n x = 1
0n ≤ x ≤ 1n
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We obtain the following results:

σ? MV 12.00 15.00 20.00
x?1 65.49 X 45.59 24.88
x?2 34.51 X 24.74 4.96
x?3 0.00 X 29.67 70.15
x?4 0.00 X 0.00 0.00

µ (x?) 5.35 X 6.14 7.15
σ (x?) 12.56 X 15.00 20.00
γ 0.00 X 0.62 1.10

We observe that we cannot target a volatility σ? = 10%. Moreover, the
expected return µ (x?) of the optimal portfolios are reduced due to the
additional constraints.
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Question 6

We now include in the investment universe a fifth asset corresponding to
the risk-free asset. Its return is equal to 3%.
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Question 6.a

Define the expected return vector and the covariance matrix of asset
returns.
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We have:

µ =


5.0
6.0
8.0
6.0
3.0

× 10−2

and:

Σ =


2.250 0.300 1.500 2.250 0.000
0.300 4.000 3.500 2.400 0.000
1.500 3.500 6.250 6.000 0.000
2.250 2.400 6.000 9.000 0.000
0.000 0.000 0.000 0.000 0.000

× 10−2
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Question 6.b

Deduce the efficient frontier by solving directly the quadratic problem.
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We solve the γ-problem and obtain the efficient frontier given in Figure 18.
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Figure 18: Efficient frontier when the risk-free asset is introduced
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Question 6.c

What is the shape of the efficient frontier? Comment on this result.
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This efficient frontier is a straight line. This line passes through the
risk-free asset and is tangent to the efficient frontier of Figure 16. This
question is a direct application of the Separation Theorem of Tobin.
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Question 6.d

Choose two arbitrary portfolios x (1) and x (2) of this efficient frontier.
Deduce the Sharpe ratio of the tangency portfolio.
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We consider two optimized portfolios of this efficient frontier. They
corresponds to γ = 0.25 and γ = 0.50. We obtain the following results:

γ 0.25 0.50
x?1 18.23 36.46
x?2 −1.63 −3.26
x?3 34.71 69.42
x?4 −18.93 −37.86
x?5 67.62 35.24

µ (x?) 4.48 5.97
σ (x?) 6.09 12.18
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The first portfolio has an expected return equal to 4.48% and a volatility
equal to 6.09%. The weight of the risk-free asset is 67.62%. This explains
the low volatility of this portfolio. For the second portfolio, the weight of
the risk-free asset is lower and equal to 35.24%. The expected return and
the volatility are then equal to 5.97% and 12.18%. We note x (1) and x (2)

these two portfolios. By definition, the Sharpe ratio of the market portfolio
x? is the tangency of the line. We deduce that:

SR (x? | r) =
µ
(
x (2)
)
− µ

(
x (1)
)

σ
(
x (2)
)
− σ

(
x (1)
)

=
5.97− 4.48

12.18− 6.09
= 0.2436

The Sharpe ratio of the market portfolio x? is then equal to 0.2436.
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Question 6.e

Calculate then the composition of the tangency portfolio from x (1) and
x (2).
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By construction, every portfolio x (α) which belongs to the tangency line is
a linear combination of two portfolios x (1) and x (2) of this efficient frontier:

x (α) = (1− α) x (1) + αx (2)

The market portfolio x? is the portfolio x (α) which has a zero weight in
the risk-free asset. We deduce that the value α? which corresponds to the
market portfolio satisfies the following relationship:

(1− α?) x
(1)
5 + α?x

(2)
5 = 0

because the risk-free asset is the fifth asset of the portfolio.
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It follows that:

α? =
x

(1)
5

x
(1)
5 − x

(2)
5

=
67.62

67.62− 35.24
= 2.09

We deduce that the market portfolio is:

x? = (1− 2.09) ·


18.23
−1.63
34.71
−18.93

67.62

+ 2.09 ·


36.46
−3.26
69.42
−37.86

35.24

 =


56.30
−5.04
107.21
−58.46

0.00


We check that the Sharpe ratio of this portfolio is 0.2436.
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Question 7

We consider the general framework with n risky assets whose vector of
expected returns is µ and the covariance matrix of asset returns is Σ while
the return of the risk-free asset is r . We note x̃ the portfolio invested in
the n + 1 assets. We have:

x̃ =

(
x
xr

)
with x the weight vector of risky assets and xr the weight of the risk-free
asset. We impose the following constraint:

n∑
i=1

x̃i =
n∑

i=1

xi = 1
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Question 7.a

Define µ̃ and Σ̃ the vector of expected returns and the covariance matrix
of asset returns associated with the n + 1 assets.
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We have:

µ̃ =

(
µ
r

)
and:

Σ̃ =

(
Σ 0n

0>n 0

)
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Question 7.b

By using the Markowitz φ-problem, retrieve the Separation Theorem of
Tobin.
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If we include the risk-free asset, the Markowitz φ-problem becomes:

x̃? (φ) = arg max x̃>µ̃− φ

2
x̃>Σ̃x̃

u.c. 1>n x̃ = 1

We note that the objective function can be written as follows:

f (x̃) = x̃>µ̃− φ

2
x̃>Σ̃x̃

= x>µ+ xr r −
φ

2
x>Σx

= g (x , xr )

The constraint becomes 1>n x + xr = 1. We deduce that the Lagrange
function is:

L (x , xr ;λ0) = x>µ+ xr r −
φ

2
x>Σx − λ0

(
1>n x + xr − 1

)
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The first-order conditions are: ∂x L (x , xr ;λ0) = µ− φΣx − λ01n = 0n

∂xr L (x , xr ;λ0) = r − λ0 = 0
∂λ0 L (x , xr ;λ0) = 1>n x + xr − 1 = 0

The solution of the optimization problem is then: x? = φ−1Σ−1 (µ− r1n)
λ?0 = r
x?r = 1− φ−11>n Σ−1 (µ− r1n)

Let x?0 be the following portfolio:

x?0 =
Σ−1 (µ− r1n)

1>n Σ−1 (µ− r1n)
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We can then write the solution of the optimization problem in the
following way: 

x? = αx?0
λ?0 = r
x?r = 1− α
α = φ−11>n Σ−1 (µ− r1n)

The first equation indicates that the relative proportions of risky assets in
the optimized portfolio remain constant. If φ = φ0 = 1>n Σ−1 (µ− r1n),
then x? = x?0 and x?r = 0. We deduce that x?0 is the tangency portfolio. If
φ 6= φ0, x? is proportional to x?0 and the wealth invested in the risk-free
asset is the complement (1− α) to obtain a total exposure equal to 100%.
We retrieve then the separation theorem:

x̃? = α ·
(

x?0
0

)
︸ ︷︷ ︸

risky assets

+ (1− α) ·
(

0n

1

)
︸ ︷︷ ︸

risk-free asset

Thierry Roncalli Asset Management (Lecture 1) 178 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Beta coefficient

Question 1

We consider an investment universe of n assets with:

R =

 R1

...
Rn

 ∼ N (µ,Σ)

The weights of the market portfolio (or the benchmark) are
b = (b1, . . . , bn).
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Question 1.a

Define the beta βi of asset i with respect to the market portfolio.
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The beta of an asset is the ratio between its covariance with the market
portfolio return and the variance of the market portfolio return. In the
CAPM theory, we have:

E [Ri ] = r + βi (E [R (b)]− r)

where Ri is the return of asset i , R (b) is the return of the market portfolio
and r is the risk-free rate. The beta βi of asset i is:

βi =
cov (Ri ,R (b))

var (R (b))

Let Σ be the covariance matrix of asset returns. We have
cov (R,R (b)) = Σb and var (R (b)) = b>Σb. We deduce that:

βi =
(Σb)i
b>Σb
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Question 1.b

Let X1, X2 and X3 be three random variables. Show that:

cov (c1X1 + c2X2,X3) = c1 cov (X1,X3) + c2 cov (X2,X3)
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We recall that the mathematical operator E is bilinear. Let c be the
covariance cov (c1X1 + c2X2,X3). We then have:

c = E [(c1X1 + c2X2 − E [c1X1 + c2X2]) (X3 − E [X3])]

= E [(c1 (X1 − E [X1]) + c2 (X2 − E [X2])) (X3 − E [X3])]

= c1E [(X1 − E [X1]) (X3 − E [X3])] + c2E [(X2 − E [X2]) (X3 − E [X3])]

= c1 cov (X1,X3) + c2 cov (X2,X3)
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Question 1.c

We consider the asset portfolio x = (x1, . . . , xn) such that
∑n

i=1 xi = 1.
What is the relationship between the beta β (x | b) of the portfolio and the
betas βi of the assets?
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We have:

β (x | b) =
cov (R (x) ,R (b))

var (R (b))
=

cov
(
x>R, b>R

)
var (b>R)

=
x>E

[
(R − µ) (R − µ)>

]
b

b>E
[
(R − µ) (R − µ)>

]
b

=
x>Σb

b>Σb
= x>

Σb

b>Σb
= x>β =

n∑
i=1

xiβi

with β = (β1, . . . , βn). The beta of portfolio x is then the weighted mean
of asset betas. Another way to show this result is to exploit the result of
Question 1.b. We have:

β (x | b) =
cov

(∑n
i=1 xiRi ,R (b)

)
var (R (b))

=
n∑

i=1

xi
cov (Ri ,R (b))

var (R (b))
=

n∑
i=1

xiβi
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Question 1.d

Calculate the beta of the portfolios x (1) and x (2) with the following data:

i 1 2 3 4 5
βi 0.7 0.9 1.1 1.3 1.5

x
(1)
i 0.5 0.5

x
(2)
i 0.25 0.25 0.5 0.5 −0.5
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We obtain β
(
x (1) | b

)
= 0.80 and β

(
x (2) | b

)
= 0.85.
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Question 2

We assume that the market portfolio is the equally weighted portfolioa.

aWe have bi = n−1.
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Question 2.a

Show that
∑n

i=1 βi = n.
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The weights of the market portfolio are then b = n−11n. We have:

β =
cov (R,R (b))

var (R (b))
=

Σb

b>Σb
=

n−1Σ1n

n−2 (1>n Σ1n)
= n

Σ1n

(1>n Σ1n)

We deduce that:

n∑
i=1

βi = 1>n β = 1>n n
Σ1n

(1>n Σ1n)
= n

1>n Σ1n

(1>n Σ1n)
= n
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Question 2.b

We consider the case n = 3. Show that β1 ≥ β2 ≥ β3 implies
σ1 ≥ σ2 ≥ σ3 if ρi,j = 0.
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If ρi,j = 0, we have:

βi = n
σ2
i∑n

j=1 σ
2
j

We deduce that:

β1 ≥ β2 ≥ β3 ⇒ n
σ2

1∑3
j=1 σ

2
j

≥ n
σ2

2∑3
j=1 σ

2
j

≥ n
σ2

3∑3
j=1 σ

2
j

⇒ σ2
1 ≥ σ2

2 ≥ σ2
3

⇒ σ1 ≥ σ2 ≥ σ3
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Question 2.c

What is the result if the correlation is uniform ρi,j = ρ?
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If ρi,j = ρ, it follows that:

βi ∝ σ2
i +

∑
j 6=i

ρσiσj

= σ2
i + ρσi

∑
j 6=i

σj + ρσ2
i − ρσ2

i

= (1− ρ)σ2
i + ρσi

n∑
j=1

σj

= f (σi )

with:

f (z) = (1− ρ) z2 + ρz
n∑

j=1

σj
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The first derivative of f (z) is:

f ′ (z) = 2 (1− ρ) z + ρ
n∑

j=1

σj

If ρ ≥ 0, then f (z) is an increasing function for z ≥ 0 because (1− ρ) ≥ 0
and ρ

∑n
j=1 σj ≥ 0. This explains why the previous result remains valid:

β1 ≥ β2 ≥ β3 ⇒ σ1 ≥ σ2 ≥ σ3 if ρi,j = ρ ≥ 0

If − (n − 1)−1 ≤ ρ < 0, then f ′ is decreasing if

z < −2−1ρ (1− ρ)−1∑n
j=1 σj and increasing otherwise. We then have:

β1 ≥ β2 ≥ β3 ; σ1 ≥ σ2 ≥ σ3 if ρi,j = ρ < 0

In fact, the result remains valid in most cases. To obtain a
counter-example, we must have large differences between the volatilities
and a correlation close to − (n − 1)−1. For example, if σ1 = 5%, σ2 = 6%,
σ3 = 80% and ρ = −49%, we have β1 = −0.100, β2 = −0.115 and
β3 = 3.215.
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Question 2.d

Find a general example such that β1 > β2 > β3 and σ1 < σ2 < σ3.
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We assume that σ1 = 15%, σ2 = 20%, σ3 = 22%, ρ1,2 = 70%,
ρ1,3 = 20% and ρ2,3 = −50%. It follows that β1 = 1.231, β2 = 0.958 and
β3 = 0.811. We thus have found an example such that β1 > β2 > β3 and
σ1 < σ2 < σ3.
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Question 2.e

Do we have
∑n

i=1 βi < n or
∑n

i=1 βi > n if the market portfolio is not
equally weighted?
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There is no reason that we have either
∑n

i=1 βi < n or
∑n

i=1 βi > n. Let
us consider the previous numerical example. If b = (5%, 25%, 70%), we

obtain
∑3

i=1 βi = 1.808 whereas if b = (20%, 40%, 40%), we have∑3
i=1 βi = 3.126.
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Question 3

We search a market portfolio b ∈ Rn such that the betas are the same for
all the assets: βi = βj = β.
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Question 3.a

Show that there is an obvious solution which satisfies β = 1.
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We have:

n∑
i=1

biβi =
n∑

i=1

bi
(Σb)i
b>Σb

= b>
Σb

b>Σb
= 1

If βi = βj = β, then β = 1 is an obvious solution because the previous
relationship is satisfied:

n∑
i=1

biβi =
n∑

i=1

bi = 1
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Question 3.b

Show that this solution is unique and corresponds to the minimum
variance portfolio.
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If βi = βj = β, then we have:

n∑
i=1

biβ = 1⇔ β =
1∑n
i=1 bi

= 1

β can only take one value, the solution is then unique. We know that the
marginal volatilities are the same in the case of the minimum variance
portfolio x (TR-RPB, page 173):

∂ σ (x)

∂ xi
=
∂ σ (x)

∂ xj

with σ (x) =
√
x>Σx the volatility of the portfolio x .
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It follows that:
(Σx)i√
x>Σx

=
(Σx)j√
x>Σx

By dividing the two terms by
√
x>Σx , we obtain:

(Σx)i
x>Σx

=
(Σx)j
x>Σx

The asset betas are then the same in the minimum variance portfolio.
Because we have: {

βi = βj∑n
i=1 xiβi = 1

we deduce that:
βi = 1
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Question 4

We assume that b ∈ [0, 1]n.
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Question 4.a

Show that if one asset has a beta greater than one, there exists another
asset which has a beta smaller than one.
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We have:

n∑
i=1

biβi = 1

⇔
n∑

i=1

biβi =
n∑

i=1

bi

⇔
n∑

i=1

biβi −
n∑

i=1

bi = 0

⇔
n∑

i=1

bi (βi − 1) = 0
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We obtain the following system of equations:{ ∑n
i=1 bi (βi − 1) = 0

bi ≥ 0

Let us assume that the asset j has a beta greater than 1. We then have:{
bj (βj − 1) +

∑
i 6=j bi (βi − 1) = 0

bi ≥ 0

It follows that bj (βj − 1) > 0 because bj > 0 (otherwise the beta is zero).
We must therefore have

∑
i 6=j xi (βi − 1) < 0. Because bi ≥ 0, it is

necessary that at least one asset has a beta smaller than 1.
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Question 4.b

We consider the case n = 3. Find a covariance matrix Σ and a market
portfolio b such that one asset has a negative beta.
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We use standard notations to represent Σ. We seek a portfolio such that
β1 > 0, β2 > 0 and β3 < 0. To simplify this problem, we assume that the
three assets have the same volatility. We also obtain the following system
of inequalities:  b1 + b2ρ1,2 + b3ρ1,3 > 0

b1ρ1,2 + b2 + b3ρ2,3 > 0
b1ρ1,3 + b2ρ2,3 + b3 < 0

It is sufficient that b1ρ1,3 + b2ρ2,3 is negative and b3 is small. For example,
we may consider b1 = 50%, b2 = 45%, b3 = 5%, ρ1,2 = 50%, ρ1,3 = 0%
and ρ2,3 = −50%. We obtain β1 = 1.10, β2 = 1.03 and β3 = −0.27.

Thierry Roncalli Asset Management (Lecture 1) 211 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Beta coefficient

Question 5

We report the return Ri,t and Rt (b) of asset i and market portfolio b at
different dates:

t 1 2 3 4 5 6
Ri,t −22 −11 −10 −8 13 11

Rt (b) −26 −9 −10 −10 16 14
t 7 8 9 10 11 12

Ri,t 21 13 −30 −6 −5 −5
Rt (b) 14 15 −22 −7 −11 2

t 13 14 15 16 17 18
Ri,t 19 −17 2 −24 25 −7

Rt (b) 15 −15 −1 −23 15 −6
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Question 5.a

Estimate the beta of the asset.
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We perform the linear regression Ri,t = αi + βiRt (b) + εi,t and we obtain

β̂i = 1.06.
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Question 5.b

What is the proportion of the asset volatility explained by the market?
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We deduce that the contribution ci of the market factor is (TR-RPB, page
16):

ci =
β2
i var (R (b))

var (Ri )
= 90.62%
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Exercise

We consider a universe of three assets. Their volatilities are 20%, 20% and
15%. The correlation matrix of asset returns is:

ρ =

 1.00
0.50 1.00
0.20 0.60 1.00


We would like to implement a trend-following strategy. For that, we
estimate the trend of each asset and the volatility of the trend. We obtain
the following results:

Asset 1 2 3
µ̂ 10% −5% 15%

σ (µ̂) 4% 2% 10%

We assume that the neutral portfolio is the equally weighted portfolio.
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Question 1

Find the optimal portfolio if the constraint of the tracking error volatility is
set to 1%, 2%, 3%, 4% and 5%.
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We consider the portfolio optimization problem in the presence of a
benchmark (TR-RPB, page 17). We obtain the following results
(expressed in %):

σ (x? | b) 1.00 2.00 3.00 4.00 5.00
x?1 35.15 36.97 38.78 40.60 42.42
x?2 26.32 19.30 12.28 5.26 −1.76
x?3 38.53 43.74 48.94 54.14 59.34

µ (x? | b) 1.31 2.63 3.94 5.25 6.56
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Question 2

In order to tilt the neutral portfolio, we now consider the Black-Litterman
model. The risk-free rate is set to 0.
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Question 2.a

Find the implied risk premium of the assets if we target a Sharpe ratio
equal to 0.50. What is the value of φ?
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Let b be the benchmark (that is the equally weighted portfolio). We recall
that the implied risk aversion parameter is:

φ =
SR (b | r)√

b>Σb

and the implied risk premium is:

µ̃ = r + SR (b | r)
Σb√
b>Σb

We obtain φ = 3.4367 and:

µ̃ =

 µ̃1

µ̃2

µ̃3

 =

 7.56%
8.94%
5.33%
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Question 2.b

How does one incorporate a trend-following strategy in the
Black-Litterman model? Give the P, Q and Ω matrices.

Thierry Roncalli Asset Management (Lecture 1) 223 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Black-Litterman model

In this case, the views of the portfolio manager corresponds to the trends
observed in the market. We then have2:

P = I3

Q = µ̂

Ω = diag
(
σ2 (µ̂1) , . . . , σ2 (µ̂n)

)
The views Pµ = Q + ε become:

µ = µ̂+ ε

with ε ∼ N (03,Ω).

2If we suppose that the trends are not correlated.
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Question 2.c

Calculate the conditional expectation µ̄ = E [µ | Pµ = Q + ε] if we
assume that Γ = τΣ and τ = 0.01.
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We have (TR-RPB, page 25):

µ̄ = E [µ | Pµ = Q + ε]

= µ̃+ ΓP>
(
PΓP> + Ω

)−1
(Q − Pµ̃)

= µ̃+ τΣ (τΣ + Ω)−1 (µ̂− µ̃)

We obtain:

µ̄ =

 µ̄1

µ̄2

µ̄3

 =

 5.16%
2.38%
2.47%
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Question 2.d

Find the Black-Litterman optimized portfolio.
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We optimize the quadratic utility function with φ = 3.4367. The
Black-Litterman portfolio is then:

x? =

 x?1
x?2
x?3

 =

 56.81%
−23.61%

66.80%


Its volatility tracking error is σ (x? | b) = 8.02% and its alpha is
µ (x? | b) = 10.21%.
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Question 3

We would like to compute the Black-Litterman optimized portfolio,
corresponding to a 3% tracking error volatility.
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Question 3.a

What is the Black-Litterman portfolio when τ = 0 and τ = +∞?
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If τ = 0, µ̄ = µ̃. The BL portfolio x is then equal to the neutral
portfolio b.

We also have:

lim
τ→∞

µ̄ = µ̃+ lim
τ→∞

τΣ> (τΣ + Ω)−1 (µ̂− µ̃)

= µ̃+ (µ̂− µ̃)

= µ̂

In this case, µ̄ is independent from the implied risk premium µ̂ and is
exactly equal to the estimated trends µ̂. The BL portfolio x is then
the Markowitz optimized portfolio with the given value of φ.
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Question 3.b

Using the previous results, apply the bisection algorithm and find the
Black-Litterman optimized portfolio, which corresponds to a 3% tracking
error volatility.
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We would like to find the BL portfolio such that σ (x | b) = 3%. We know
that σ (x | b) = 0 if τ = 0. Thanks to Question 2.d, we also know that
σ (x | b) = 8.02% if τ = 1%. It implies that the optimal portfolio
corresponds to a specific value of τ which is between 0 and 1%. If we
apply the bi-section algorithm, we find that:

τ? = 0.242%

. The composition of the optimal portfolio is then

x? =

 x?1
x?2
x?3

 =

 41.18%
11.96%
46.85%


We obtain an alpha equal to 3.88%, which is a little bit smaller than the
alpha of 3.94% obtained for the TE portfolio.
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Question 3.c

Compare the relationship between σ (x | b) and µ (x | b) of the
Black-Litterman model with the one of the tracking error model.
Comment on these results.
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We have reported the relationship between σ (x | b) and µ (x | b) in Figure
19. We notice that the information ratio of BL portfolios is very close to
the information ratio of TE portfolios. We may explain that because of the
homogeneity of the estimated trends µ̂i and the volatilities σ (µ̂i ). If we
suppose that σ (µ̂1) = 1%, σ (µ̂2) = 5% and σ (µ̂3) = 15%, we obtain the
relationship #2. In this case, the BL model produces a smaller information
ratio than the TE model. We explain this because µ̄ is the right measure
of expected return for the BL model whereas it is µ̂ for the TE model. We
deduce that the ratios µ̄i/µ̂i are more volatile for the parameter set #2, in
particular when τ is small.

Thierry Roncalli Asset Management (Lecture 1) 235 / 240



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Black-Litterman model

Figure 19: Efficient frontier of TE and BL portfolios
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