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Exam 1

• In class, next Thursday, Feb 28 

• Covers:

Lectures 1-10

Sipser Ch 0-2

Problem Sets 1-3 + Comments

Exam 1

Note: unlike nearly all other sets we draw in this class, all of these 

sets are finite, and the size represents the relative size.
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Exam 1 Notesheet

• For Exam 1, you may not use 
anything other than 

–Your own brain and body 

–A single page (one side) of notes that 
you create

• You can work with others to create 
your notes page
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Menu

• Are DPDAs 
equivalent 
to NDPDAs?

• Properties of 
CFLs

• Equivalence 
of CFGs and 
NDPDAs
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Language Classes

Regular Languages

Context-Free Languages
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Where are DPDAs?
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Proving Set Equivalence

A = B ⇔ A ⊆ B and B ⊇ A

Sets A and B are equivalent if A is a 
subset of B and B is a subset of A.
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Proving Formalism Equivalence

LR(M) = the set of languages that can be 

recognized by some M

= { l | l ∈ P(Σ*) and there is some m ∈ M

such that L(m) = l }

A = B ⇔ LR(A) ⊆ LR(B) and LR(B) ⊇ LR(A)
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Proving Formalism 
Non-Equivalence

LR(M) = the set of languages that can be 

recognized by some M

= { l | l ∈ P(Σ*) and there is some m ∈ M

such that L(m) = l }

A ≠ B ⇔ There is an l ∈ P(Σ*) that is in

LR(A) but not in LR(B) 

or there is an l in LR(B) but not in LR(A)
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Regular Languages

Context-Free Languages
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Sensible option 1: LR(NDPDA) ⊃⊃⊃⊃ LR(DPDA) ⊃⊃⊃⊃ LR(NFA) = LR(DFA)

Sensible option 2: LR(NDPDA) = LR(DPDA) ⊃⊃⊃⊃ LR(NFA) = LR(DFA)

To eliminate =, we need to find some language L that 
can be recognized by an NDPDA and prove it cannot be 
recognized by a DPDA
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LR(NDPDA) ⊃ LR(DPDA)

A = { 0i1j | i ≥ 0, j = i or j = 2i }

A ∈ LR(NDPDA)

ε, ε→$

0, ε→+

ε, ε→ε

1, +→ε
ε, $ → ε

ε,
 ε

→
ε

1, +→ε

1, ε→ε
ε, $ → ε
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LR(NDPDA) ⊃ LR(DPDA)

A = { 0i1j | i ≥ 0, j = i or j = 2i }

A ∉∉∉∉ LR(DPDA)

Proof by contradiction.
Suppose there is a DPDA P that recognizes A.
It must be in accept states only after processing 0i1i and 0i12i

…0, α→
β 1, α→β

2i transitions, consuming 0i1i

…1, α→
β 1, α→β

i transitions, consuming 1i
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LR(NDPDA) ⊃ LR(DPDA)

A = { 0i1j | i ≥ 0, j = i or j = 2i }

A ∉∉∉∉ LR(DPDA)

Proof by contradiction.
Suppose there is a DPDA P that recognizes A.
It must be in accept states only after processing 0i1i and 0i12i

…0, α→
β 1, α→β

2i transitions, consuming 0i1i

…1, α→
β 1, α→β

i transitions, consuming 2i

2
2

L(P’) = { 0i1i2i | i ≥ 0}
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LR(NDPDA) ⊃ LR(DPDA)

A = { 0i1j | i ≥ 0, j = i or j = 2i }

A ∉∉∉∉ LR(DPDA)

Proof by contradiction. If there is a DPDA P that 

recognizes A, we could construct a DPDA P' that recognizes

A' = L(P') = { 0i1i2i | i ≥ 0} 
But, we know A' is not a CFL!  (Prove using pumping lemma)
So, there is no NDPDA that can recognize A', so there is no 
DPDA that can recognize A', so P' must not exist.  
Hence, P must not exist.  This means there is no DPDA that 
can recognize A.
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Regular Languages

Context-Free Languages
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LR(NDPDA) ⊃⊃⊃⊃ LR(DPDA) ⊃⊃⊃⊃ LR(NFA) = LR(DFA)

Deterministic Context-Free Languages: recognized by DPDA

A = { 0i1j | i ≥ 0, j = i or j = 2i }
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Closure Properties of RLs
If A and B are regular languages then:

AR is a regular language
Construct the reverse NFA

A* is a regular language

Add a transition from accept states to start 
A is a regular language (complement)

F' = Q – F

A ∪ B is a regular language
Construct an NFA that combines DFAs

A ∩ B is a regular language
Construct an DFA combining DFAs that 
accepts if both accept
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Closure Properties of CFLs
If A and B are context free languages then:

AR is a context-free language ?

A* is a context-free language ?

A is a context-free language (complement)?

A ∪ B is a context-free language ?

A ∩ B is a context-free language ?

Some of these are true.  Some of them are false.
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CFLs Closed Under Reverse

Given a CFL A, is AR a CFL?

Since A is a CFL, there is some CFG G that recognizes A.

Proof-by-construction: 
There is a CFG GR that recognizes AR.

G = (V, Σ, R, S)

GR = (V, Σ, RR, S) 

RR = { A → αR | A → α ∈ R }
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CFLs Closed Under *

Given a CFL A, is A* a CFL?

Since A is a CFL, there is some CFG G that recognizes A.

Proof-by-construction: 
There is a CFG G* that recognizes A*.

G = (V, Σ, R, S)

G* = (V ∪ {S0}, Σ, R*, S0) 

R* = R ∪ { S0 → S } ∪ { S0 → S0S0 } ∪ { S0 → ε }
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Closure Properties of CFLs
If A and B are context free languages then:

AR is a context-free language TRUE

A* is a context-free language TRUE

A is a context-free language (complement)?

A ∪ B is a context-free language ?

A ∩ B is a context-free language ?
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CFLs Closed Under Union

Given two CFLs A and B is A ∪ B a CFL?

Proof-by-construction: 
There is a CFG GAUB that recognizes A ∪ B.
Since A and B are CFLs, there are CFGs GA = (VA, ΣA, RA, SA)

and GB = (VB, ΣB, RB, SB) that generate A and B.

GAUB = (VA ∪ VB, ΣA ∪ ΣB, RAUB, S0) 

RAUB= RA ∪ RB ∪ { S0 → SA } ∪ { S0 → SB }

Assumes VA and VB are disjoint (easy to arrange this
by changing variable names.)

21Lecture 10: NDPDAs/CFGs/PDAs

Closure Properties of CFLs
If A and B are context free languages then:

AR is a context-free language TRUE

A* is a context-free language TRUE

A is a context-free language (complement)?

A ∪ B is a context-free language TRUE

A ∩ B is a context-free language ?
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CFLs Closed Under 
Complement?

• Try to find a counter-example

{0i1i | i ≥ 0 } is a CFL.  

Is its complement?

Yes. We can make a DPDA

that recognizes it: swap 
accepting states of DPDA 
that recognizes 0i1i.

Not a counterexample…but not a proof either.
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Complementing Non-CFLs

{ww | w ∈ Σ* } is not a CFL.  

Is its complement?

Yes. This CFG recognizes is: 

S → 0S0 | 1S1 | 0X1 | 1X0

X → 0X0 | 1X1 | 0X1 | 1X0 | 0 | 1 | ε

So, we have found a pair: P, P where one is a CFL 
and the other is not.  Thus, CFLs are not closed 
under complement.

Opps! As Danni pointed 
out in class, this is 
badly broken. We will 
fix it next class…
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Closure Properties of CFLs
If A and B are context free languages then:
AR is a context-free language TRUE

A* is a context-free language TRUE

A is not necessarily a context-free 
language (complement)

A ∪ B is a context-free language TRUE

A ∩ B is a context-free language ? Left for you to solve 

(possibly on Exam 1)
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Charge

• Thursday and Tuesday: some 
interesting applications of CFGs


