Lecture 10
 Polynomial regression

BIOST 515

February 5, 2004

Polynomial regression models

$$
y=X \beta+\epsilon
$$

is a general linear regression model for fitting any relationship that is linear in the unknown parameters, β. For example, the following polynomial

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\beta_{3} x_{1}^{3}+\beta_{4} x_{2}+\beta_{5} x_{2}^{2}+\epsilon
$$

is a linear regression model because y is a linear function of β.

Polynomial models in one variable

A k th order polynomial in one variable is defined as

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{k} x^{k}+\epsilon
$$

Polynomial models are useful

- in situations where the analyst knows that curvilinear effects are present in the true response function
- as approximating functions to unknown and possibly very complex nonlinear relationships.

We can think of the polynomial model as the Taylor series expansion of the unknown function.

Important considerations

- Order of the model
- Model building strategy
- Extrapolation
- III-conditioning
- Hierarchy

Piecewise polynomials

A low-order polynomial may provide a poor fit to the data, and increasing the order of the polynomial may not help. Transformations of x or y may solve this problem, but sometimes we may prefer to use more flexible approaches. One such approach is to use splines.

- piecewise polynomials used in curve fitting
- polynomials within intervals of x that are connected acoress different intervals of x

The piecewise linear spline function is given by

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2}(x-a)_{+}+\beta_{3}(x-b)_{+}+\beta_{4}(x-c)_{+},
$$

where

$$
(u)_{+}= \begin{cases}u, & u>0 \\ 0, & u \leq 0\end{cases}
$$

and a, b and c are referred to as knots.

Example of piecewise linear spline with knots at 2,5 and 8.

As we increase the number of knots, the piecewise linear polynomial more closely resembles a continuous line.

6 knots

9 knots

25 knots

Cubic splines

Although, linear splines may work well, they are not smooth and will not fit highly curved functions well (unless many knots are used - which requires a lot of data).

It is more common for cubic splines to be used in practice.
A cubic spline function with k knots is given by

$$
f(x)=\sum_{j=0}^{3} \beta_{0 j} x^{j}+\sum_{l=1}^{k} \beta_{i}\left(x-t_{l}\right)_{+}^{3},
$$

where $t_{l}, l=1, \ldots, k$ are the k knots. We relate x to the outcome as

$$
y_{i}=f\left(x_{i}\right)+\epsilon_{i} .
$$

3 knots

9 knots

6 knots

25 knots

For estimation purposes, we assume that both the locations and the number of knots are fixed. Although there are methods that allow the number and/or position of the knots to be random; these models are too complex to be fit using least squares.

The piecewise cubic splines may give us a more flexible model, but they still may be discontinuous at the knots.

Continuous cubic splines

Cubic B splines

- Given k knots at t_{1}, \ldots, t_{k}, a cubic B spline function is a cubic polynomial on the interval $\left[t_{j}, t_{j+1}\right]$,
- It has continuous first and second derivatives, imposing 3 conditions at each knot.
- With k knots, $k+1$ parameters are needed to represent the cubic spline.

A cubic B-spline function with k knots is given by

$$
f(x)=\sum_{i=1}^{k+4} \beta_{k} B_{k}(x)
$$

where $B_{k}(x)$ is the k th B -spline basis function.

2 knots

3 knots

Example

Venables and Ripley provide a data set, GAGurine, in the MASS library. It is described as follows:

Data were collected on the concentration of a chemical GAG in the urine of 314 children aged from zero to seventeen years. The aim of the study was to produce a chart to help a paediatrican to assess if a child's GAG concentration is "normal".

lmbs1=lm(GAG~bs(Age, $\mathrm{df}=5$), data=GAGurine)
plot(GAGurine\$Age, GAGurine\$GAG, col="gray", ylab="GAG", xlab="Age")
lines(GAGurine\$Age,fitted(lmbs1), lwd=2)

Choosing the number and position of knots

- Knots are usually placed at quantiles of the data or at regularly spaced intervals.
- Choosing the number, rather than the placement, seems to be more crucial to the fit.
- Therefore choose a number of knots that represents the curvature you believe to be present in the data. This comes with experience.
- You may also want to place knots at points in the data where you expect significant changes in the relationship between the predictor and the outcome to occur.

