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Polynomial regression models

y = Xβ + ε

is a general linear regression model for fitting any relationship

that is linear in the unknown parameters, β. For example, the

following polynomial

y = β0 + β1x1 + β2x
2
1 + β3x

3
1 + β4x2 + β5x

2
2 + ε

is a linear regression model because y is a linear function of β.
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Polynomial models in one variable

A kth order polynomial in one variable is defined as

y = β0 + β1x + β2x
2 + · · ·+ βkx

k + ε.

Polynomial models are useful

• in situations where the analyst knows that curvilinear effects

are present in the true response function

• as approximating functions to unknown and possibly very

complex nonlinear relationships.

We can think of the polynomial model as the Taylor series

expansion of the unknown function.
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Important considerations

• Order of the model

• Model building strategy

• Extrapolation

• Ill-conditioning

• Hierarchy
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Piecewise polynomials

A low-order polynomial may provide a poor fit to the data,

and increasing the order of the polynomial may not help. Trans-

formations of x or y may solve this problem, but sometimes we

may prefer to use more flexible approaches. One such approach

is to use splines.

• piecewise polynomials used in curve fitting

• polynomials within intervals of x that are connected acoress

different intervals of x
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The piecewise linear spline function is given by

f(x) = β0 + β1x + β2(x− a)+ + β3(x− b)+ + β4(x− c)+,

where

(u)+ =
{

u, u > 0,

0, u ≤ 0
and a, b and c are referred to as knots.
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Example of piecewise linear spline with knots at 2, 5 and 8.
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As we increase the number of knots, the piecewise lin-

ear polynomial more closely resembles a continuous line.
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Cubic splines

Although, linear splines may work well, they are not smooth

and will not fit highly curved functions well (unless many knots

are used - which requires a lot of data).

It is more common for cubic splines to be used in practice.

A cubic spline function with k knots is given by

f(x) =
3∑

j=0

β0jx
j +

k∑
l=1

βi(x− tl)3+,

where tl, l = 1, . . . , k are the k knots. We relate x to the

outcome as

yi = f(xi) + εi.
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For estimation purposes, we assume that both the locations

and the number of knots are fixed. Although there are methods

that allow the number and/or position of the knots to be

random; these models are too complex to be fit using least

squares.

The piecewise cubic splines may give us a more flexible

model, but they still may be discontinuous at the knots.
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Continuous cubic splines

Cubic B splines

• Given k knots at t1, . . . , tk, a cubic B spline function is a

cubic polynomial on the interval [tj, tj+1],

• It has continuous first and second derivatives, imposing 3

conditions at each knot.

• With k knots, k + 1 parameters are needed to represent the

cubic spline.
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A cubic B-spline function with k knots is given by

f(x) =
k+4∑
i=1

βkBk(x),

where Bk(x) is the kth B-spline basis function.
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Example

Venables and Ripley provide a data set, GAGurine, in the

MASS library. It is described as follows:

Data were collected on the concentration of a chemical

GAG in the urine of 314 children aged from zero to seventeen

years. The aim of the study was to produce a chart to

help a paediatrican to assess if a child’s GAG concentration is

”normal”.
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lmbs1=lm(GAG~bs(Age,df=5),data=GAGurine)
plot(GAGurine$Age,GAGurine$GAG,col="gray",ylab="GAG", xlab="Age")
lines(GAGurine$Age,fitted(lmbs1),lwd=2)
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Choosing the number and position of knots

• Knots are usually placed at quantiles of the data or at

regularly spaced intervals.

• Choosing the number, rather than the placement, seems to

be more crucial to the fit.

• Therefore choose a number of knots that represents the

curvature you believe to be present in the data. This comes

with experience.

• You may also want to place knots at points in the data where

you expect significant changes in the relationship between

the predictor and the outcome to occur.
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