CS 422/522 Design & Implementation
of Operating Systems

Lecture 11: CPU Scheduling

Zhong Shao
Dept. of Computer Science
Yale University

CPU scheduler

+ Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of
them.

¢ CPU scheduling decisions may take place when a
process:

1. switches from running to waiting state.
2. switches from running to ready state.
3. switches from waiting to ready.
4. terminates.
¢ Scheduling under 1 and 4 is nonpreemptive.

o All other scheduling is preemptive.

10/1/20

Main points

¢ Scheduling policy: what to do next, when there are
multiple threads ready to run
- Or multiple packets to send, or web requests to serve, or ...
+ Definitions
- response time, throughput, predictability
+ Uniprocessor policies
- FIFO, round robin, optimal
- multilevel feedback as approximation of optimal
+ Multiprocessor policies
- Affinity scheduling, gang scheduling
¢ Queueing theory
- Can you predict/improve a system's response time?

Example

+ You manage a web site, that suddenly becomes wildly
popular. Do you?
- Buy more hardware?
- Implement a different scheduling policy?
- Turn away some users? Which ones?

¢ How much worse will performance get if the web site
becomes even more popular?

10/1/20

Definitions

¢ Task/Job

- User request: e.g., mouse click, web request, shell command, ...
¢ Latency/response time

- How long does a task take to complete?
¢ Throughput

- How many tasks can be done per unit of time?
+ Overhead

- How much extra work is done by the scheduler?
+ Fairness

- How equal is the performance received by different users?
¢ Predictability

- How consistent is the performance over time?

More definitions

+ Workload
- Set of tasks for system to perform
+ Preemptive scheduler
- If we can take resources away from a running task
+ Work-conserving
- Resource is used whenever there is a task to run
- For non-preemptive schedulers, work-conserving is not always
better
Scheduling algorithm
- takes a workload as input
- decides which tasks to do first
- Performance metric (throughput, latency) as output
- Only preemptive, work-conserving schedulers fo be considered

10/1/20

Scheduling policy goals

+ minimize response time : elapsed time o do an
operation (or job)
- Response time is what the user sees: elapsed time to
* echo a keystroke in editor
* compile a program
* run a large scientific problem

* maximize throughput : operations (jobs) per second

- two parts tfo maximizing throughput
* minimize overhead (for example, context switching)
* efficient use of system resources (hot only CPU, but disk, memory, etc.)

& fair: share CPU among users in some equitable way

First In First Out (FIFO)

& Schedule tasks in the order they arrive

- Continue running them until they complete or give up the
processor

+ Example: memcached
- Facebook cache of friend lists, ...

¢ On what workloads is FIFO particularly bad?

10/1/20

FIFO scheduling

* Example:

& Suppose that the processes arrive in the order: 7y,
The Gantt Chart for the schedule is:

Process

Burst Time

24

Pz.Ps

P4

P2

Ps3

0

24

& Waiting time for #; = 0; P, = 24; P3= 27
& Average waiting time: (0 + 24 +27)/3=17

27

30

FIFO scheduling (cont’ d)

Suppose that the processes arrive in the order

P>, Ps;,Pr.

o The Gantt chart for the schedule is:

P2

Ps

P

0

- Waiting time for P1=6,P>=0.P3=3
- Average waiting time:
- Much better than previous case.

3

6

(6+0+3)/3=3

FIFO Pros: simple; Cons: short jobs get stuck behind long jobs

10

10/1/20

Shortest-Job-First (SJF) scheduling

+ Associate with each process the length of its next CPU
burst. Use these lengths o schedule the process with
the shortest time.

¢ Two schemes:

- nonpreemptive - once given CPU it cannot be preempted until
completes its CPU burst.

- preemptive - if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. A.k.a. Shortest-Remaining-Time-First (SRTF).

o SJF is optimal but unfair

- pros: gives minimum average response time

- cons: long-running jobs may starve if too many short jobs;

- difficult fo implement (how do you know how long it will take)

11
Example of non-preemptive SJF
Process _ Arrival Time Burst Time
Py 0.0 7
P> 2.0 4
P; 40 1
P, 5.0 4
& SJF (non-preemptive)
Py Ps P2 Py
- 1
0 3 7 8 12 16
Average waiting time = (0+ 6 +3+7)/4=4
12

10/1/20

Example of preemptive STF

Process Arrival Time Burst Time
Py 0.0 7
P, 2.0 4
P; 40 1
P, 5.0 4
+ SJF (preemptive)
P+ P> |P3 P> P4 P4
| | | | | | | | |
I I ‘ I I I I I I I
0 5 4 B 7 11 16

Average waiting time = (9+1+0+2)/4 =3

13
FIFO vs. SJF
Tasks FIFO
M | |
@) []
3)
o)
(5)
Tasks SJF
(1 |
@[]
@ []
) []
(5) []
Time
14

10/1/20

Starvation and sample bias

+ Suppose you want to compare two scheduling
algorithms
- Create some infinite sequence of arriving tasks
- Start measuring
- Stop at some point

- Compute average response time as the average for completed
tasks between start and stop

o Is this valid or invalid?

15

Sample bias solutions

Measure for long enough that
- # of completed tasks » # of uncompleted tasks
- For both systems!

¢ Start and stop system in idle periods
- Idle period: no work to do

- If algorithms are work-conserving, both will complete the
same tasks

16

10/1/20

Round Robin (RR)

+ Each process gets a small unit of CPU time (time
guantum). After time slice, it is moved to the end of
the ready queue.

Time Quantum = 10 - 100 milliseconds on most OS
& 1 processes in the ready queue; fime quantum is ¢
- each process gets 1/nof the CPU time in ¢ time units at once.
- no process waits more than (#-1)g time units.
- each job gets equal shot at the CPU
+ Performance
- g¢large = FIFO

- ¢ too small = throughput suffers. Spend all your time context
switching, not getting any real work done

17
Round Robin
Tasks Round Robin (1 ms time slice)
) |:| [Rest of Task 1
@ []
@) []
@ L[]
(s) []
Tasks Round Robin (100 ms time slice)
M| | | Rest of Task 1
@ []
@) []
) L[]
®) []
Time
18

10/1/20

Example: RR with fime quantum = 20

Process Burst Time

P 53
P> 17
Ps 68
Py 24

¢ The Gantt chart is:

Pi | Po| Ps | Ps|Pi|Ps|Ps|Pi|Ps|Pg

0 20 37 57 77 97 117 121 134 154 162

¢ Typically, higher average turnaround than
SJF, but better response.

19

RR vs. FIFO

Assuming zero-cost time slice, is RR always better
than FIFO?

- 10 jobs, each take 100 secs, RR time slice 1 sec

- what would be the average response time under RR and FIFO ?

¢ RR

- jobl: 991s, job2: 992s, ..., job10: 1000s
¢ FIFO

- job 1:100s, job2: 200s, ..., job10: 1000s
+ Comparisons

- RRis much worse for jobs about the same length
- RRis better for short jobs

20

10/1/20

10

RR vs. FIFO (cont'd)

Tasks Round Robin (1 ms time slice)

o] [] [] [] []
@ [[] [] []]
o [L] L] L] L]
@] [] [] [] []
®) [] [] []] []
Tasks FIFO and SJF
o[1]
@ 1]
® [1
@ 1]
o) [1]
Time
21
Mixed workload
Tasks
1/0 Bound |:| |:|
Issues. :I/O Issues. :I/O
1/0 Completes 1/0 Completes
Request Request

[]

Time

22

10/1/20

11

Max-Min Fairness

+ How do we balance a mixture of repeating tasks:
- Some I/0 bound, need only a little CPU
- Some compute bound, can use as much CPU as they are assigned

¢ One approach: maximize the minimum allocation given to a
task

- If any task needs less than an equal share, schedule the smallest
of these first

- Split the remaining time using max-min
- If all remaining tasks need at least equal share, split evenly

+ Approximation: every time the scheduler needs to make a
choice, it chooses the task for the process with the least
accumulated time on the processor

23

Multi-level Feedback Queue (MFQ)

¢ Goals:
- Responsiveness
- Low overhead
Starvation freedom
Some tasks are high/low priority
Fairness (among equal priority tasks)

+ Not perfect at any of them!
- Used in Linux (and probably Windows, MacOS)

24

10/1/20

12

MFQ

+ Set of Round Robin queues
- Each queue has a separate priority
¢ High priority queues have short time slices
- Low priority queues have long time slices
Scheduler picks first thread in highest priority queue
+ Tasks start in highest priority queue
- If time slice expires, task drops one level

25
Priority Time Slice (ms) Round Robin Queues
New or 1/0
1 10 T “"" Bound Task
| Time Slice
2 20 T “"™" Expiration
3 40 R —
4 80 G
26

10/1/20

13

Uniprocessor summary (1)

¢ FIFO is simple and minimizes overhead.

o If tasks are variable in size, then FIFO can have very
poor average response time.

o If tasks are equal in size, FIFO is optimal in terms of
average response time.

Considering only the processor, SJF is optimal in terms
of average response time.

o SJF is pessimal in ferms of variance in response time.

27

Uniprocessor summary (2)

¢ If tasks are variable in size, Round Robin
approximates SJF.

+ If tasks are equal in size, Round Robin will have very
poor average response time.

Tasks that intermix processor and I/O benefit from
SJF and can do poorly under Round Robin.

28

10/1/20

14

Uniprocessor summary (3)

¢ Max-Min fairness can improve response time for I/0-
bound tasks.

+ Round Robin and Max-Min fairness both avoid
starvation.

+ By manipulating the assignment of tasks to priority
queues, an MFQ scheduler can achieve a balance
between responsiveness, low overhead, and fairness.

29

Multiprocessor scheduling

+ What would happen if we used MFQ on a
multiprocessor?

- Contention for scheduler spinlock

- Cache slowdown due to ready list data structure pinging from
one CPU to another

- Limited cache reuse: thread's data from last time it ran is
often still in its old cache

30

10/1/20

15

Per-processor affinity scheduling

+ Each processor has its own ready list
- Protected by a per-processor spinlock

¢ Put threads back on the ready list where it had most
recently run

- Ex: when I/0 completes, or on Condition->signal

+ Idle processors can steal work from other processors

31

Per-processor Multi-level Feedback
with affinity scheduling

Processor 1 Processor 2 Processor 3
......... S S S
LTI et TTT e LTIT .
JTTT e ol [TTT e TTT -
((................................. (

32

10/1/20

16

Scheduling parallel programs

¢ What happens if one thread gets time-sliced while
other threads from the same program are still
running?
- Assuming program uses locks and condition variables, it will
still be correct
- What about performance?

33

Bulk synchronous parallelism

+ Loop at each processor:
- Compute on local data (in parallel)
- Barrier
- Send (selected) data to other processors (in parallel)
- Barrier
+ Examples:
- MapReduce
- Fluid flow over a wing

- Most parallel algorithms can be recast in BSP
* Sacrificing a small constant factor in performance

34

10/1/20

17

Tail latency

Processor 1

|

Processor 2

It

Local Computation

Processor 3

Processor 4

Time

Communication

o

"y o "

Barrier

|

It

Local Computation

Barrier

35
Scheduling parallel programs
Oblivious: each processor time-slices its ready list
independently of the other processors
Processor 1 Processor 2 Processor 3
pl.4 pl.2
o ¢ o
) p2.3 pi.3
E P % P
p3.1 p2.2
o & P
px.y = Thread y in process x
36

10/1/20

18

Gang scheduling
Processor 1 Processor 2 Processor 3
5 pi.1 5 pl.2 5 p1.3
Q p2.1 p2.2 p2.3
E S S S
p3.1 p3.2 p3.3

o o

px.y = Thread y in process x

o

37
Parallel program speedup
Perfectly Parallel
o
£
'_
v Diminishing Returns
c c
© 5
£ o
S &
< o
& &
g Limited Parallelism
£
Number of Processors
38

10/1/20

19

10/1/20

Space sharing

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5 Processor 6

o o o o o o

Time

Process 1 Process 2

Scheduler activations: kernel tells each application its # of
processors with upcalls every time the assignment changes

39

Queueing theory

+ Can we predict what will happen to user performance:
- If aservice becomes more popular?
- If we buy more hardware?
- If we change the implementation to provide more features?

40

20

Queueing model

Arrivals Departures
(Throughput)

Queue Server

Assumption: average performance in a stable system,
where the arrival rate (X) matches the departure rate (u)

41

Definitions

+ Queueing delay (W): wait time
- Number of tasks queued (Q)
Service time (S): time to service the request
+ Response time (R) = queueing delay + service time

o Utilization (U): fraction of time the server is busy
- Service time * arrival rate (X)

& Throughput (X): rate of task completions
- If no overload, throughput = arrival rate

42

10/1/20

21

Little's law

N=X*R
N: number of tasks in the system

Applies to any stable system - where arrivals match
departures.

43

Question

Suppose a system has throughput (X) = 100 tasks/s,
average response time (R) = 50 ms/task

+ How many tasks are in the system on average?

o If the server takes 5 ms/task, what is its utilization?
+ What is the average wait time?

What is the average number of queued tasks?

44

10/1/20

22

Question

¢ From example:
X =100 task/sec
R = 50 ms/task
S = 5 ms/task
W = 45 ms/task
Q =45 tasks

¢ Why is W =45 ms and not 4.5 * 5 = 22.5 ms?
- Hint: what if S=10ms? S = lms?

45

Queueing

¢ What is the best case scenario for minimizing queueing
delay?

- Keeping arrival rate, service time constant

¢ What is the worst case scenario?

46

10/1/20

23

Best case: evenly spaced arrivals
/N , /N
& [=
(] | :
E A<u | A>p 3 ! Max throughput
Q no queuing growing queues 5
5 R=S ! R undefined 3
o I <
£ s ; -
u M
Arrival Rate () Arrival Rate (\)
47
Response time: best vs. worst case
/N '
A<pu | A>u
queuing ' growing queues
depends on R undefined
e burstiness I
v |
€
= |
(]
b |
o bursty arrivals |
D
o |
S evenly spaced arrivals
N

v
Arrivals Per Second (A)

48

10/1/20

24

Queueing: average case?

¢ What is average?
- Gaussian: Arrivals are spread out, around a mean
value
- Exponential: arrivals are memoryless
- Heavy-tailed: arrivals are bursty

& Can have randomness in both arrivals and
service times

49
Exponential distribution

&

2 Exponential Distribution
= fx) = Ae™

0

3

9o

a

X
50

10/1/20

25

Exponential distribution

A A)y A A
N N N N Y

K. K~ R~ R~ R~

Permits closed form solution to state probabilities,
as function of arrival rate and service rate

51
Response time vs. utilization
100 S
80S
[a's)
£
= 60 S
(O]
é 408
§ R=5/(1-U)
20S
1]
0 0.2 0.4 0.6 0.8 1.0
Utilization U
52

10/1/20

26

Question

+ Exponential arrivals: R = S/(1-V)

o If system is 20% utilized, and load increases by 5%,
how much does response time increase?

o If system is 90% utilized, and load increases by 5%,
how much does response time increase?

53

Variance in response time

+ Exponential arrivals
- Variance inR = S/(1-U)"2

¢ What if less bursty than exponential?

¢ What if more bursty than exponential?

54

10/1/20

27

What if multiple resources?

¢ Response time =
Sumoverall i
Service time for resource i /
(1 - Utilization of resource i)
+ Implication

- If you fix one bottleneck, the next highest utilized resource
will limit performance

55

Overload management

o What if arrivals occur faster than service can handle
them
- If do nothing, response time will become infinite

+ Turn users away?

- Which ones? Average response time is best if furn away users
that have the highest service demand

- Example: Highway congestion
+ Degrade service?
- Compute result with fewer resources
- Example: CNN static front page on 9/11

56

10/1/20

28

Highway congestion (measured)

Real Traffic

PRRCTNE SN TOON NN TN O N T N T O SO T O | 1t

UL T | — T
— = .
s_‘ =
~ 2000 .
o
o : o,:."{’,;l :\.’ i
5 1500 '-,:'~'i?_35‘..""~--‘ .
Q. o '%
2 1o000f LR
2 : =%,
2, r
2 500}
o B
= I
0 i 1 1 | ' | '
0 20 40 60

occupancy [%]

(o]
o

57

10/1/20

29

