Lecture 11: Graph algorithms

Claudia Hauff (Web Information Systems) <u>ti2736b-ewi@tudelft.nl</u>

Course content

- Introduction
- Data streams 1 & 2
- The MapReduce paradigm
- Looking behind the scenes of MapReduce: HDFS & Scheduling
- Algorithm design for MapReduce
- A high-level language for MapReduce: Pig Latin 1 & 2
- MapReduce is not a database, but HBase nearly is
- Lets iterate a bit: Graph algorithms & Giraph
- How does all of this work together? ZooKeeper/Yarn

Learning objectives

- Give examples of real-world problems that can be solved with graph algorithms
- Explain the major differences between BFS on a single machine (Dijkstra) and in a MapReduce framework
- Explain the main ideas behind PageRank
- Implement iterative graph algorithms in Hadoop

Graphs

Graphs

- Ubiquitous in modern society
 - Hyperlink structure of the Web
 - Social networks
 - Email flow
 - Friend patterns
 - Transportation networks
- Nodes and links can be annotated with metadata
 - Social network nodes: age, gender, interests
 - Social network edges: relationship type (friend, spouse, foe, etc.), relationship importance (weights)

Real-world problems to Solve

- Graph search
 - Friend recommend. in social networks
 - Expert finding in social networks
- Path planning
 - Route of network packets
 - Route of delivery trucks
- Graph clustering
 - Subcommunities in large graphs

Real-world problems to solve

- Minimum spanning tree: a tree that contains all vertices of a graph and the cheapest edges
 - Laying optical fiber to span a number of destinations at the lowest possible cost

- Bipartite graph matching: two disjoint vertex sets
 - Job seekers looking for employment
 - Singles looking for dates

Real-world problems to solve

- Identification of special nodes
 - Special based on various metrics (in-degree, average distance to other nodes, relationship to the cluster structure, ...)
- Maximum flow
 - Compute traffic that can be sent from source to sink given various flow capacity constraints

Real-world problems to solve

Identification of special nodes

A common feature: millions or billions of nodes & millions or billions of edges.

Real-world graphs are often **sparse**: the number of actual edges is far smaller than the number of possible edges.

now capacity constraints

Question: a friendship graph with n nodes has how many possible edges?

A bit of graph theory

Connected components

 Strongly connected component (SCC): directed graph with a path from each node to every other

strongly connected

Η

G

• Weakly connected component (WCC): directed graph with a path in the underlying undirected graph from each node to every other node

11

2 weakly connected components

node

Connected components

• **Strongly** connected component (SCC): directed graph with a path from each node to every other

node

$$\begin{array}{ll} G = (V, E) & \mbox{graph} \\ V = \{A, B, C, D\} & \mbox{nodes} & \mbox{directed edges} \\ E = \{(A, D), (B, C), (C, A), (C, B), (C, D), (D, B)\} \\ d(A, B) = 2, d(C, B) = 1, d(A, C) = 3 \end{array}$$

shortest distance between 2 nodes

Connected components

$$\begin{split} G &= (V, E) \\ V &= \{A, B, C, D, G, H\} \\ E &= \{\{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\}, \{G, H\}\} \\ d(A, B) &= 2, d(C, B) = 1, d(A, C) = 1, d(A, G) = \infty \end{split}$$

infinite distance

Н

G

 Weakly connected component (WCC): directed graph with a path in the underlying undirected graph from each node to every other node

13

Graph diameter

Definition: longest shortest path in the graph $max_{x,y\in V}d(x,y)$

Breadth-first search

http://joseph-harrington.com/2012/02/breadth-first-

search-visual/

find the shortest path between two nodes in a graph

Graph representations

Adjacency matrices

A graph with n nodes can be represented by an $n \times n$ square matrix M.

Matrix element $c_{ij} > 0$ indicates an edge from node n_i to n_j .

- Edges in **unweighted** graphs: 1 (edge exists), 0 (no edge exists)
- Edges in **weighted** graphs: matrix contains edge weights
- Undirected graphs use half the matrix
- Advantage: mathematically easy manipulation
- **Disadvantage**: space requirements

Adjacency matrices

A graph with n nodes can be represented by an $n \times n$ square matrix M.

Matrix element $c_{ij} > 0$ indicates an edge from node n_i to n_j .

- Edges in **unweighted** graphs
- Edges in weighted graphs: r
- Undirected graphs use half

- Advantage: mathematically easy manipulation
- **Disadvantage**: space requirements

- A much more **compressed** representation
 - On sparse graphs
- Only edges that exist are encoded in adjacency lists
- Two options to encode **undirected** edges:
 - Encode each edge twice (the nodes appear in each other's adjacency list)
 - Impose an order on nodes and encode edges only on the adjacency list of the node that comes first in the ordering
- **Disadvantage**: some graph operations are more difficult compared to the matrix representation

- A much more **compressed** representation
 - On sparse graphs
- Only edges that exist are encoded in adjacency lists
- Two options to encode un
 - Encode each edge twic adjacency list)
 - Impose an order on noc adjacency list of the noc

• **Disadvantage**: some graph operations are more difficult compared to the matrix representation

each edge twice

$$\mathbf{n}_{1} [n_{2}, n_{4}, n_{5}]$$

 $\mathbf{n}_{2} [n_{1}, n_{3}, n_{5}]$
 $\mathbf{n}_{3} [n_{2}, n_{4}, n_{5}]$
 $\mathbf{n}_{4} [n_{1}, n_{3}, n_{5}]$
 $\mathbf{n}_{5} [n_{1}, n_{2}, n_{3}, n_{4}]$

Adjacency matrices vs. lists

> $\mathbf{n}_3 [n_4]$ $\mathbf{n}_4 [n_5]$

 $\mathbf{n}_{5}[n_{1},n_{2},n_{3}]$

- Computing inlinks
 - Matrix: scan the column and count
 - List: difficult, worst case all data needs to be scanned

adiacencv matrix

- Computing **outlinks**
 - Matrix: scan the rows and count
 - List: outlinks are natural

Breadth-first search (in detail)

Single-source shortest path Standard solution: Dijkstra's algorithm

Task: find the shortest path from a **source node** to all other nodes in the graph

In each step, find the minimum edge of a node not yet visited.

6 iterations.

Source: Data-Intensive Text Processing with MapReduce

Single-source shortest path Standard solution: Dijkstra's algorithm

Task: find the shortest path from a **source node** to all other nodes in the graph

1:DIJKSTRA(
$$G, w, s$$
)-directed connected graph in
adjacency list format2: $d[s] \leftarrow 0$ source nodeadjacency list format3:for all vertex $v \in V$ do-edge distances in w 4: $d[v] \leftarrow \infty$ -source s 5: $Q \leftarrow \{V\}$ starting distance: infinite for all nodes6:while $Q \neq \emptyset$ doQ is a global priority queue7: $u \leftarrow \text{EXTRACTMIN}(Q)$ sorted by current distance8:for all vertex $v \in u.\text{ADJACENCYLIST do}$ 9:if $d[v] > d[u] + w(u, v)$ then
 $d[v] \leftarrow d[u] + w(u, v)$ adapt distances

Source: Data-Intensive Text Processing with MapReduce

Task: find the shortest path from a **source node** to all other nodes in the graph.

- Brute force approach: parallel breadth-first search
- Intuition:
 - Distance of all nodes N directly connected to the source is one
 - Distance of all nodes directly connected to nodes in N is two
 - •
 - Multiple path to a node x: the shortest path must go through one of the nodes having an outgoing edge to x; use the minimum

Here: edges have unit weight.

Task: find the shortest path from a **source node** to all other nodes in the graph.

- Brute force approach: parallel breadth-first search
- Intuition:
 - Distance of all nodes N
 - Distance of all nodes dir
 - •
 - Multiple path to a node > one of the nodes having minimum

Here: edges have unit weight.

- 1: class MAPPER **method** MAP(nid n, node N) $d \leftarrow N.DISTANCE$ EMIT(nid n, N) for all nodeid $m \in N.ADJACENCYLIST$ do EMIT(nid m, d+1) 1: **class** Reducer **method** REDUCE(nid $m, [d_1, d_2, \ldots]$) $d_{min} \leftarrow \infty$ $M \leftarrow \emptyset$ for all $d \in \text{counts} [d_1, d_2, \ldots]$ do if ISNODE(d) then $M \leftarrow d$ else if $d < d_{min}$ then
- $d_{min} \leftarrow d$ 9: $M.DISTANCE \leftarrow d_{min}$ 10: EMIT(nid m, node M) 11:

2:

3:

4:

5:

6:

2:

3:

4:

5:

6:

7:

8:

Mapper: emit all distances, and the graph structure itself

- \triangleright Pass along graph structure
- \triangleright Emit distances to reachable nodes

Reducer: update distances and emit the graph structure

> \triangleright Recover graph structure \triangleright Look for shorter distance

 \triangleright Update shortest distance

Source: Data-Intensive Text Processing with MapReduce

Edges have unit weight.

Edges have unit weight.

- Each iteration of the algorithm is one MapReduce job
 - A **map** phase to compute the distances
 - A **reduce** phase to find the current minimum distance
- Iterations
 - 1. All nodes connected to the source are discovered
 - All nodes connected to those discovered in 1. are found

- Between iterations (jobs) the graph structure needs to be passed along
 - Reducer output is input for the next iteration (job)

- How many iterations are necessary to compute the shortest path to all nodes?
 - **Diameter** of the graph (greatest distance between a pair of nodes)
 - Diameter is **usually small** ("six degrees of separation"- Milgram)
- In **practice**: iterate until all node distances are less than +infinity
 - Assumption: connected graph
- Termination condition checked "outside" of MapReduce job
 - Use **Counter** to count number of nodes with infinite distance
- Emit current shortest paths in the Mapper as well

Task: find the shortest path from a source node to all other nodes when edges **have positive distances > 1**

Two changes required:

- Update rule, instead of d+1 use d+w
- Termination criterion: no more distance changes (via Counter)
- Num. iterations in the worst case: #nodes-1

Single-source shortest path Dijkstra vs. parallel BFS

· Dijkstra

- Single processor (global data structure)
- Efficient (no recompilation of finalised states)

· Parallel BFS

- Brute force approach
- A lot of unnecessary computations (distances to all nodes recomputed at each iteration)
- No global data structure

in general ...

Prototypical approach to graph algorithms in MapReduce/Hadoop

- Node datastructure which contains
 - · Adjacency list
 - Additional node [and possibly edge] information (type, features, distances, weights, etc.)
- MapReduce job maps over the node data structures
 - Computation involves a node's internal state and local graph structure
 - Result of map phase emitted as values, keyed with node ids of the neighbours; reducer aggregates a node's results
- Graph itself is passed from Mapper to Reducer
- Algorithms are iterative, requiring several Hadoop jobs controlled by the driver code

The Web graph

The Web

- Vannevar Bush envisioned hypertext in the 1940's
- First hypertext systems were created in the 1970's
- The World Wide Web was formed in the early 1990's
 - Creator: Tim Berners-Lee
 - Make documents easily available to anyone (Web pages)
 - Easy access to such Web pages using a browser
- Early Web years
 - Full-text search engines (Altavista, Excite and Infoseek) vs.
 - Taxonomies populated with pages in categories (ODP, Yahoo! Directory)

The Web

- Nearly impossible to discover content without search engines
 - Estimating the size of the Web is a research area by itself
 - Indexed Web has billions of pages
 - Deep Web
- Users view the Web through the lense of the search engine
- Pages not indexed (or ranked at low positions) by search engines are unlikely to be found by users

Graph structure in the Web Broder et al., 1999

- Insights important for:
 - Crawling strategies
 - Understanding the sociology of content creation
 - **Analyzing** the behaviour of algorithms that rely on link information (e.g. HITS, PageRank)
 - Predicting the **evolution** of web structures
 - Predicting the emergence of new phenomena in the Web graph
- Data: Altavista crawl from 1999 with 200 million pages and 1.5 billion links

The Web as a "bow tie" Broder et al., 1999

The Web as a "bow tie" Broder et al., 1999

"In a sense the web is much like a complicated organism, in which the local structure at a microscopic scale looks very regular like a biological cell, but the global structure exhibits interesting morphological structure (body and limbs) that are not obviously evident in the local structure."

PageRank

Page et al., 1998

- A topic independent approach to page importance
 - Computed once per crawl
- Every document of the corpus is assigned an importance score
 - In search: re-rank (or filter) results with a low PageRank score
- Simple idea: number of in-link indicates importance
 - Page p1 has 10 in-links and one of those is from yahoo.com, page p2 has 50 in-links from obscure pages
- PageRank takes the importance of the page where the link originates into account

"To test the utility of PageRank for search, we built a web search engine called Google."

PageRank

Page et al., 1998

out-degree of node *u*

 $u \rightarrow v$

A $PageRank_i(u)$ N

- Idea: if page px links to page py, then the creator of px implicitly transfers some importance to page py
 - yahoo.com is an important page, many pages point to it
 - Pages linked to from yahoo.com are also likely to be important
- A page **distributes** "importance" through its outlinks

 $PageRank_{i+1}(v) =$

all nodes linking to v

• Simple PageRank (iteratively):

PageRank Simplified formula

initialize PageRank vector \vec{R} $R = (R(1), \dots, R(4)) = (0.25, 0.25, 0.25, 0.25)$ $W^1 \times \vec{R}' = \begin{vmatrix} 0.46 \\ 0.13 \end{vmatrix}$ 0.50 0.40 $W^{16} \times \vec{R}' = \begin{vmatrix} 0.33 \\ 0.20 \end{vmatrix}$ $W^2 \times \vec{R}' = \begin{bmatrix} 0.29\\ 0.17 \end{bmatrix}$ 0.35 0.40 $W^3 \times \vec{R}' = \begin{vmatrix} 0.35 \\ 0.25 \end{vmatrix}$ 0.34 $W^{17} \times \vec{R}' =$ 0.20 0.07

 $PageRank_i = W \times PageRank_{i-1}$

PageRank vector converges eventually

46

Random surfer model:

- Probability that a random surfer starts at a random page and ends at page px
- A random surfer at a page with 3 outlines randomly picks one (1/3 prob.)

initialize PageRank vector \vec{R} $R = (R(1), \dots, R(4)) = (0.25, 0.25, 0.25, 0.25)$

disconnected components

nodes without outgoing edges lead to problems (rank sink)

 $W^2 \times \vec{R}' = \begin{pmatrix} 0.00 \\ 0.13 \\ 0.00 \\ 0.00 \\ 0.01 \end{pmatrix}$ $W^3 \times \vec{R}' = \begin{vmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{vmatrix}$

$W^{1} \times \vec{R}' = \begin{vmatrix} 0.00 \\ 0.63 \\ 0.00 \\ 0.12 \end{vmatrix}$ Include a decay ("damping") factor

$$PageRank_{i+1}(v) = \alpha \left(\frac{1}{|G|}\right) + (1 - \alpha) \sum_{u \to v} \frac{PageRank_i(u)}{N_u}$$

probability that the random surfer
"teleports" and not uses the outlinks

An informal sketch

- At each iteration:
 - [MAPPER] a node passes its PageRank
 "contributions" to the nodes it is connected to
 - [REDUCER] each node sums up all PageRank contributions that have been passed to it and updates its PageRank score

An informal sketch

Source: Data-Intensive Text Processing with MapReduce

i=1

Pseudocode: simplified PageRank

EMIT(nid m, node M)

10:

1: **class** MAPPER method MAP(nid n, node N) 2: $p \leftarrow N.PAGERANK/|N.ADJACENCYLIST|$ 3: EMIT(nid n, N) \triangleright Pass along graph structure 4: for all nodeid $m \in N.ADJACENCYLIST$ do 5: $E_{MIT}(nid m, p)$ \triangleright Pass PageRank mass to neighbors 6: 1: **class** Reducer **method** REDUCE(nid $m, [p_1, p_2, \ldots]$) 2: $M \leftarrow \emptyset$ 3: for all $p \in \text{counts} [p_1, p_2, \ldots]$ do 4: if ISNODE(p) then 5: $M \leftarrow p$ \triangleright Recover graph structure 6: else 7: ▷ Sum incoming PageRank contributions $s \leftarrow s + p$ 8: $M.PAGERANK \leftarrow s$ 9:

Source: Data-Intensive Text Processing with MapReduce

Jump factor and "dangling" nodes

- **Dangling nodes**: nodes without outgoing edges
 - Simplified PR cannot conserve total PageRank mass (black holes for PR scores)
 - Solution: "lost" PR scores are **redistributed** evenly across all nodes in the graph
 - Use Counters to keep track of lost mass
 - Reserve a special key for PR mass from dangling nodes
- Redistribution of lost mass and jump factor after each PR iteration in another job (MAP phase only job)

One iteration of PageRank requires two MR jobs!

PageRank in MapReduce Possible stopping criteria

- PageRank is iterated until convergence (scores at nodes no longer change)
- PageRank is run for a fixed number of iterations
- PageRank is run until the ranking of the nodes according to their PR score no longer changes
- Original PageRank paper: 52 iterations until convergence on a graph with more than 300M edges

Warning: on today's Web, PageRank requires additional modifications (spam, spam, spam)

Graph processing notes

- In dense graphs, MR running time would be dominated by the shuffling of the intermediate data across the network
 - Worst case: O(n²)
 - **Impractical** for MR (commodity hardware)
- Often, combiners and in-mapper combining patterns can be used to speed up the process

• Data localization can be difficult

- Combiners are only useful if there is something to aggregate (e.g. for PR several nodes pointing to the same target in a single MAPPER)
- Heuristics: e.g. pages from the same domain to the same MAPPER

Graph processing in Hadoop

- Disadvantage: iterative algorithms are slow
 - Lots of reading/writing to and from disk
- Advantage: no additional libraries needed
- Enter **Giraph**: an open-source implementation of yet another Google framework (Pregel)
 - Specifically created for iterative granh computations
 - More details in the next lecture

Summary

- Graph problems in the real world
- A bit of graph theory
- Adjacency matrices vs. adjacency lists
- Breadth-first search
- PageRank

References

- Data-Intensive Text Processing with MapReduce by Jimmy Lin and Chris Dyer. Chapter 5.
- Graph structure in the Web. Broder et al. 1999.
- The PageRank Citation Ranking: Bringing Order to the Web. Page et al. 1999.

THE END