Lecture 11: Graph algorithms

Claudia Hauff (Web Information Systems) ti2736b-ewi@tudelft.nl

neurn

- Introduction
- Data streams 1 \& 2
- The MapReduce paradigm
- Looking behind the scenes of MapReduce: HDFS \& Scheduling
- Algorithm design for MapReduce
- A high-level language for MapReduce: Pig Latin 1 \& 2
- MapReduce is not a database, but HBase nearly is
- Lets iterate a bit: Graph algorithms \& Giraph
- How does all of this work together? ZooKeeper/Yarn

Learning objectives

- Give examples of real-world problems that can be solved with graph algorithms
- Explain the major differences between BFS on a single machine (Dijkstra) and in a MapReduce framework
- Explain the main ideas behind PageRank
- Implement iterative graph algorithms in Hadoop

Graphs

Graphs

- Ubiquitous in modern society
- Hyperlink structure of the Web
- Social networks
- Email flow
- Friend patterns
- Transportation networks
- Nodes and links can be annotated with metadata
- Social network nodes: age, gender, interests
- Social network edges: relationship type (friend, spouse, foe, etc.), relationship importance (weights)

Real-world problems to

solve

- Graph search
- Friend recommend. in social networks
- Expert finding in social networks
- Path planning
- Route of network packets
- Route of delivery trucks
- Graph clustering
- Subcommunities in large graphs

Real-world problems to
 solve

- Minimum spanning tree: a tree that contains all vertices of a graph and the cheapest edges
- Laying optical fiber to span a number of destinations at the lowest possible cost

- Bipartite graph matching: two disjoint vertex sets
- Job seekers looking for employment
- Singles looking for dates

Real-world problems to
 solve

- Identification of special nodes
- Special based on various metrics (in-degree, average distance to other nodes, relationship to the cluster structure, ...)
- Maximum flow
- Compute traffic that can be sent from source to sink given various flow capacity constraints

Real-world problems to solve

- Identification of special nodes

A common feature: millions or billions of nodes \& millions or billions of edges.

Real-world graphs are often sparse: the number of actual edges is far smaller than the number of possible edges.

How capactiy constraints
Question: a friendship graph with n nodes has how many possible edges?

A bit of graph theory

Connected components

- Strongly connected component (SCC): directed graph with a path from each node to every other node

A cannot reach C B cannot reach A

- Weakly connected component (WCC): directed graph with a path in the underlying undirected graph from each node to every other node

2 weakly connected components

Connected components

- Strongly connected component (SCC): directed graph with a path from each node to every other node

$$
\begin{aligned}
& G=(V, E) \text { graph } \\
& V=\{A, B, C, D\} \quad \text { nodes } \\
& E=\{(A, D),(B, C),(C, A),(C, B),(C, D),(D, B)\} \\
& d(A, B)=2, d(C, B)=1, d(A, C)=3
\end{aligned}
$$

Connected components

$$
G=(V, E)
$$

$$
V=\{A, B, C, D, G, H\}
$$

$$
E=\{\{A, C\},\{A, D\},\{B, C\},\{B, D\},\{C, D\},\{G, H\}\}
$$

$$
d(A, B)=2, d(C, B)=1, d(A, C)=1, d(A, G)=\infty
$$

- Weakly connected component (WCC): directed graph with a path in the underlying undirected graph from each node to every other node

Graph diameter

Definition: longest shortest path in the graph

$$
\max _{x, y \in V} d(x, y)
$$

diameter: 3

diameter: 2

Breadth-first search

http://joseph-harrington.com/2012/02/breadth-first-search-visual/

find the shortest path between two nodes in a graph

Graph representations

Adjacency matrices

A graph with n nodes can be represented by an $n \times n$ square matrix M.

Matrix element $c_{i j}>0$ indicates an edge from node n_{i} to n_{j}.

- Edges in unweighted graphs: 1 (edge exists), 0 (no edge exists)
- Edges in weighted graphs: matrix contains edge weights
- Undirected graphs use half the matrix
- Advantage: mathematically easy manipulation
- Disadvantage: space requirements

Adjacency matrices

A graph with n nodes can be represented by an $n \times n$ square matrix M.

Matrix element $c_{i j}>0$ indicates an edge from node n_{i} to n_{j}.

- Edges in unweighted graph
- Edges in weighted graphs: r
- Undirected graphs use half

- Advantage: mathematically easy manipulation
- Disadvantage: space requirements

Adjacency list

- A much more compressed representation
- On sparse graphs
- Only edges that exist are encoded in adjacency lists
- Two options to encode undirected edges:
- Encode each edge twice (the nodes appear in each other's adjacency list)
- Impose an order on nodes and encode edges only on the adjacency list of the node that comes first in the ordering
- Disadvantage: some graph operations are more difficult compared to the matrix representation

Adjacency list

- A much more compressed representation
- On sparse graphs
- Only edges that exist are encoded in adjacency lists
- Two options to encode un
- Encode each edge twic adjacency list)
- Impose an order on noc adjacency list of the no

$$
\begin{aligned}
& \mathbf{n}_{1}\left[n_{2}, n_{4}\right] \\
& \mathbf{n}_{2}\left[n_{3}, n_{5}\right] \\
& \mathbf{n}_{3}\left[n_{4}\right] \\
& \mathbf{n}_{4}\left[n_{5}\right] \\
& \mathbf{n}_{5}\left[n_{1}, n_{2}, n_{3}\right]
\end{aligned}
$$

- Disadvantage: some graph operations are more difficult compared to the matrix representation

Adjacency list

each edge twice

$\mathbf{n}_{\mathbf{1}}\left[n_{2}, n_{4}, n_{5}\right]$
$\mathbf{n}_{2}\left[n_{1}, n_{3}, n_{5}\right]$
$\mathbf{n}_{\mathbf{3}}\left[n_{2}, n_{4}, n_{5}\right]$
$\mathbf{n}_{4}\left[n_{1}, n_{3}, n_{5}\right]$
$\mathbf{n}_{5}\left[n_{1}, n_{2}, n_{3}, n_{4}\right]$

Adjacency list

node ordering
 $\mathbf{n}_{1}\left[n_{2}, n_{4}, n_{5}\right]$
 $\mathbf{n}_{2}\left[n_{3}, n_{5}\right]$
 $\mathbf{n}_{3}\left[n_{4}, n_{5}\right]$
 $\mathbf{n}_{4}\left[n_{5}\right]$
 n_{5} []

Adjacency matrices vs. lists

- A less compressed representation (matrix) makes some computations easier
- Computing inlinks

- Matrix: scan the column and count
- List: difficult, worst case all data needs to be scanned
- Computing outlinks
- Matrix: scan the rows and count
- List: outlinks are natural

Breadth-first search (in detail)

Single-source shortest path Standard solution: Dijkstra's algorithm

Task: find the shortest path from a source node to all other nodes in the graph

In each step, find the minimum edge of a node not yet visited.

6 iterations.

(a)

(d)

(b)

(e)

(c)

(f)

Source: Data-Intensive Text Processing with MapReduce

Single-source shortest path Standard solution: Dijkstra's algorithm

Task: find the shortest path from a source node to all other nodes in the graph

```
DIJKSTRA(G,w,s)
d[s]\leftarrow0 source node
    for all vertex v
    d[v]}\leftarrow
        Q\leftarrow{V} starting distance: infinite for all nodes
        while Q\not=\emptyset do
        u\leftarrow ExtractMin( }Q\mathrm{ )
        Q is a global priority queue
        LNTRACTMNN(Q) sored by current distance
            for all vertex v\inu.ADJACENCYLIST do
                if d[v]>d[u]+w(u,v) then
                d[v]}\leftarrowd[u]+w(u,v
                            adapt distances
```


Single-source shortest path In the MapReduce world: parallel BFS

Task: find the shortest path from a source node to all other nodes in the graph.

- Brute force approach: parallel breadth-first search
- Intuition:
- Distance of all nodes N directly connected to the source is one
- Distance of all nodes directly connected to nodes in N is two
- ...
- Multiple path to a node x : the shortest path must go through one of the nodes having an outgoing edge to x; use the minimum

Single-source shortest path In the MapReduce world: parallel BFS

Task: find the shortest path from a source node to all other nodes in the graph.

- Brute force approach: parallel breadth-first search
- Intuition:
- Distance of all nodes N
- Distance of all nodes dir
- ...
- Multiple path to a node > one of the nodes having minimum

Single-source shortest path In the MapReduce world: parallel BFS

```
class MAPPER
    method MAP(nid n, node N
        d\leftarrowN.DISTANCE
        Emit(nid n,N)
class Reducer
method Reduce(nid m,[d},\mp@code{,}\mp@subsup{d}{2}{},\ldots]
        dmin
        M\leftarrow\emptyset
        for all d\in counts [ }\mp@subsup{d}{1}{},\mp@subsup{d}{2}{},\ldots]\mathrm{ do
            if ISNODE (d) then
                M\leftarrowd
            else if d<d min then
            dmin
        M.DISTANCE }\leftarrow\mp@subsup{d}{\mathrm{ min}}{
        Emit(nid m,node M)
```

 Mapper: emit all distances,
 and the graph structure itself

\triangleright Pass along graph structure

```
        for all nodeid m}\in\mathrm{ N.ADJACENCYLIST do
```

 for all nodeid m}\in\mathrm{ N.ADJACENCYLIST do
 Emit(nid m,d+1) \triangleright Emit distances to reachable nodes
    ```
    Reducer: update distances
    and emit the graph structure
    \(\triangleright\) Recover graph structure
\(\triangleright\) Look for shorter distance
\(\triangleright\) Update shortest distance

\section*{Single-source shortest path In the MapReduce world: parallel BFS}
```

class MAPPER
method MAP(nid n, node N)
d\leftarrowN.DISTANCE
Emit(nid n,N)
for all nodeid m}\in\mathrm{ N.ADJACENCYLIST do
EmIT(nid m,d+1) \triangleright Emit distances to reachable nodes
class Reducer
method REDUCE(nid m,[d},\mp@subsup{d}{1}{},\mp@subsup{d}{2}{},···]
dmin
M\leftarrow\emptyset
for all d\in counts [}\mp@subsup{d}{1}{},\mp@subsup{d}{2}{},···]\mathrm{ do
Overloading of value type: distance re
(int) or complex data structure. ce
In practice: wrapper class with ce
indicator variable.

```

\section*{Single-source shortest path \\ In the MapReduce world: parallel BFS}
- Each iteration of the algorithm is one MapReduce job
- A map phase to compute the distances
- A reduce phase to find the current minimum distance
- Iterations
1. All nodes connected to the source are discovered
2. All nodes connected to those discovered in 1. are found 3....
- Between iterations (jobs) the graph structure needs to be passed along
- Reducer output is input for the next iteration (job)

\section*{Single-source shortest path In the MapReduce world: parallel BFS}
- How many iterations are necessary to compute the shortest path to all nodes?
- Diameter of the graph (greatest distance between a pair of nodes)
- Diameter is usually small ("six degrees of separation"- Milgram)
- In practice: iterate until all node distances are less than +infinity
- Assumption: connected graph
- Termination condition checked "outside" of MapReduce job
- Use Counter to count number of nodes with infinite distance
- Emit current shortest paths in the Mapper as well

\section*{Single-source shortest path In the MapReduce world: parallel BFS}


Updated nodes written
Disadvantage: a lot of reading and writing to/from HDFS

\section*{Single-source shortest path In the MapReduce world: parallel BFS}

Task: find the shortest path from a source node to all other nodes when edges have positive distances >1
- Two changes required:
- Update rule, instead of d+1 use d+w
- Termination criterion: no more distance changes (via Counter)
- Num. iterations in the worst case: \#nodes-1


\section*{Single-source shortest path Dijkstra vs. parallel BFS}
- Dijkstra
- Single processor (global data structure)
- Efficient (no recompilation of finalised states)
- Parallel BFS
- Brute force approach
- A lot of unnecessary computations (distances to all nodes recomputed at each iteration)
- No global data structure
in general ...

\section*{Prototypical approach to graph algorithms in MapReduce/Hadoop}
- Node datastructure which contains
- Adjacency list
- Additional node [and possibly edge] information (type, features, distances, weights, etc.)
- MapReduce job maps over the node data structures
- Computation involves a node's internal state and local graph structure
- Result of map phase emitted as values, keyed with node ids of the neighbours; reducer aggregates a node's results
- Graph itself is passed from Mapper to Reducer
- Algorithms are iterative, requiring several Hadoop jobs controlled by the driver code

\section*{The Web graph}

\section*{The Web}
- Vannevar Bush envisioned hypertext in the 1940's
- First hypertext systems were created in the 1970's
- The World Wide Web was formed in the early 1990's
- Creator: Tim Berners-Lee
- Make documents easily available to anyone (Web pages)
- Easy access to such Web pages using a browser
- Early Web years
- Full-text search engines (Altavista, Excite and Infoseek) vs.
- Taxonomies populated with pages in categories (ODP, Yahoo! Directory)

\section*{The Web}
- Nearly impossible to discover content without search engines
- Estimating the size of the Web is a research area by itself
- Indexed Web has billions of pages
- Deep Web
- Users view the Web through the lense of the search engine
- Pages not indexed (or ranked at low positions) by search engines are unlikely to be found by users

\section*{Graph structure in the Web Broder et al., 1999}
- Insights important for:
- Crawling strategies
- Understanding the sociology of content creation
- Analyzing the behaviour of algorithms that rely on link information (e.g. HITS, PageRank)
- Predicting the evolution of web structures
- Predicting the emergence of new phenomena in the Web graph
- Data: Altavista crawl from 1999 with 200 million pages and 1.5 billion links

\section*{The Web as a "bow tie" Broder et al., 1999}
- ~200M nodes in total
- >90\% in a single WCC
- Av. connected distance SCC: 28
- Av. connected distance graph: >500
nodes that can reach the SCC; cannot be reached from it (e.g. new nodes)


\title{
The Web as a "bow tie" Broder et al., 1999
}
- ~200M nodes in total
- \(>90 \%\) in a single WCC
nodes that can reach the SCC; cannot be reached from it (e.g. new nodes)

- Av. connected distance SCC: 28
- Av. connected distance graph: >500
- Av. Path length: 16 between any two nodes with existing path
"In a sense the web is much like a complicated organism, in which the local structure at a microscopic scale looks very regular like a biological cell, but the global structure exhibits interesting morphological structure (body and limbs) that are not obviously evident in the local structure."

\section*{PageRank}
- A topic independent approach to page importance
- Computed once per crawl
- Every document of the corpus is assigned an importance score
- In search: re-rank (or filter) results with a low PageRank score
- Simple idea: number of in-link indicates importance
- Page p1 has 10 in-links and one of those is from yahoo.com, page p2 has 50 in-links from obscure pages
- PageRank takes the importance of the page where the link originates into account
"To test the utility of PageRank for search, we built a web

\section*{PageRank}
\[
\text { Page et al., } 1998
\]
- Idea: if page px links to page py, then the creator of px implicitly transfers some importance to page py
- yahoo.com is an important page, many pages point to it
- Pages linked to from yahoo. com are also likely to be important
- A page distributes "importance" through its outlinks
- Simple PageRank (iteratively):
out-degree of node \(u\)
\[
\operatorname{PageRank}_{i+1}(v)=\sum_{u \rightarrow v} \xrightarrow{\operatorname{all} \text { nodes linking to } v}>N_{u}
\]

\section*{PageRank} Simplified formula

initialize PageRank vector \(\vec{R}\)
\(\vec{R}=(R(1), \ldots, R(4))=(0.25,0.25,0.25,0.25)\)
\(W^{1} \times \vec{R}^{\prime}=\left(\begin{array}{l}0.33 \\ 0.46 \\ 0.13 \\ 0.08\end{array}\right)\)
PageRank vector converges eventually
\(W^{2} \times \vec{R}^{\prime}=\left(\begin{array}{l}0.50 \\ 0.29 \\ 0.17 \\ 0.04\end{array}\right)\)
\(W^{3} \times \vec{R}^{\prime}=\left(\begin{array}{l}0.35 \\ 0.35 \\ 0.25 \\ 0.06\end{array}\right)\)
\(W^{16} \times \vec{R}^{\prime}=\left(\begin{array}{l}0.40 \\ 0.33 \\ 0.20 \\ 0.07\end{array}\right)\)
\(W^{17} \times \vec{R}^{\prime}=\left(\begin{array}{l}0.40 \\ 0.34 \\ 0.20 \\ 0.07\end{array}\right)\) Random surfer model:
- Probability that a random surfer starts at a random page and ends at page px
- A random surfer at a page with 3 outlines randomly picks one (1/3 prob.)

\section*{PageRank} Reality

disconnected components
initialize PageRank vector \(\vec{R}\)
\[
\vec{R}=(R(1), \ldots, R(4))=(0.25,0.25,0.25,0.25)
\]
\[
W^{1} \times \vec{R}^{\prime}=\left(\begin{array}{l}
0.00 \\
0.63 \\
0.00 \\
0.13
\end{array}\right)
\]

\section*{Include a decay ("damping") factor \\ Include a decay ("damping") factor}
\[
\left.\begin{array}{rl}
W^{2} \times \vec{R}^{\prime} & =\left(\begin{array}{c}
0.00 \\
0.13 \\
0.00 \\
0.00
\end{array}\right) \\
0.00
\end{array}\right) \quad \operatorname{PageRank}_{i+1}(v)=\alpha\left(\frac{1}{|G|}\right)+(1-\alpha) \sum_{u \rightarrow v} \frac{\operatorname{PageRank}_{i}(u)}{N_{u}}
\]
\[
W^{3} \times \vec{R}^{\prime}=\left(\begin{array}{l}
0.00 \\
0.00 \\
0.00 \\
0.00
\end{array}\right)
\]
probability that the random surfer "teleports" and not uses the outlinks

\section*{PageRank in MapReduce}

\section*{An informal sketch}
- At each iteration:
- [MAPPER] a node passes its PageRank "contributions" to the nodes it is connected to
- [REDUCER] each node sums up all PageRank contributions that have been passed to it and updates its PageRank score

\section*{PageRank in MapReduce}

\section*{An informal sketch}
\[
\alpha=0, \sum_{i=1}^{5} n_{i}=1
\]


Solicce: Data-Intensive Text Processing with MapReduce

\section*{PageRank in MapReduce Pseudocode: simplified PageRank}
```

class Mapper
method MAP(nid n, node N)
$p \leftarrow N$.PageRank $/|N . A D J A C E N C Y L I S T|$
$\operatorname{Emit}($ nid $n, N) \quad \triangleright$ Pass along graph structure
for all nodeid $m \in N$.AdJacencyList do
Emit(nid m, p) \triangleright Pass PageRank mass to neighbors
class Reducer
method Reduce(nid $m,\left[p_{1}, p_{2}, \ldots\right]$)
$M \leftarrow \emptyset$
for all $p \in$ counts $\left[p_{1}, p_{2}, \ldots\right]$ do
if $\operatorname{IsNode}(p)$ then
$M \leftarrow p \quad \triangleright$ Recover graph structure
else
$s \leftarrow s+p$
\triangleright Sum incoming PageRank contributions
M.PAGERANK $\leftarrow s$
Emit(nid m, node M)

```

\section*{PageRank in MapReduce} Jump factor and "dangling" nodes
- Dangling nodes: nodes without outgoing edges
- Simplified PR cannot conserve total PageRank mass (black holes for PR scores)
- Solution: "lost" PR scores are redistributed evenly across all nodes in the graph
- Use Counters to keep track of lost mass
- Reserve a special key for PR mass from dangling nodes
- Redistribution of lost mass and jump factor after each PR iteration in another job (MAP phase only job)

One iteration of PageRank requires two MR jobs!

\section*{PageRank in MapReduce}

Possible stopping criteria
- PageRank is iterated until convergence (scores at nodes no longer change)
- PageRank is run for a fixed number of iterations
- PageRank is run until the ranking of the nodes according to their PR score no longer changes
- Original PageRank paper: 52 iterations until convergence on a graph with more than 300M edges

\section*{Graph processing notes}
- In dense graphs, MR running time would be dominated by the shuffling of the intermediate data across the network
- Worst case: \(O\left(\mathrm{n}^{2}\right)\)
- Impractical for MR (commodity hardware)
- Often, combiners and in-mapper combining patterns can be used to speed up the process
- Data localization can be difficult
- Combiners are only useful if there is something to aggregate (e.g. for PR several nodes pointing to the same target in a single MAPPER)
- Heuristics: e.g. pages from the same domain to the same MAPPER

\section*{Graph processing in Hadoop}
- Disadvantage: iterative algorithms are slow
- Lots of reading/writing to and from disk
- Advantage: no additional libraries needed
- Enter Giraph: an open-source implementation of yet another Google framework (Pregel)
- Specifically created for iterative granh computations
- More details in the next lecture


\section*{Summary}
- Graph problems in the real world
- A bit of graph theory
- Adjacency matrices vs. adjacency lists
- Breadth-first search
- PageRank

\section*{References}
- Data-Intensive Text Processing with MapReduce by Jimmy Lin and Chris Dyer. Chapter 5.
- Graph structure in the Web. Broder et al. 1999.
- The PageRank Citation Ranking: Bringing Order to the Web. Page et al. 1999.

\section*{THE END}```

