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Course content
• Introduction 

• Data streams 1 & 2 

• The MapReduce paradigm 

• Looking behind the scenes of MapReduce: HDFS & Scheduling 

• Algorithm design for MapReduce 

• A high-level language for MapReduce: Pig Latin 1 & 2 

• MapReduce is not a database, but HBase nearly is 

• Lets iterate a bit: Graph algorithms & Giraph 

• How does all of this work together? ZooKeeper/Yarn
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• Give examples of real-world problems that can be 
solved with graph algorithms 

• Explain the major differences between BFS on a 
single machine (Dijkstra) and in a MapReduce 
framework 

• Explain the main ideas behind PageRank 

• Implement iterative graph algorithms in Hadoop

Learning objectives



Graphs



Graphs
• Ubiquitous in modern society 

• Hyperlink structure of the Web 
• Social networks 

• Email flow 
• Friend patterns 

• Transportation networks 

• Nodes and links can be annotated with metadata 
• Social network nodes: age, gender, interests 
• Social network edges: relationship type (friend, spouse, 

foe, etc.), relationship importance (weights)
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Real-world problems to 
solve
• Graph search 

• Friend recommend. in social networks 
• Expert finding in social networks 

• Path planning 
• Route of network packets 
• Route of delivery trucks 

• Graph clustering 
• Subcommunities in large graphs
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Real-world problems to 
solve
• Minimum spanning tree: a tree that contains all 

vertices of a graph and the cheapest edges 
• Laying optical fiber to span a number of 

destinations at the lowest possible cost 

!

• Bipartite graph matching: two disjoint vertex sets 
• Job seekers looking for employment 
• Singles looking for dates
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Real-world problems to 
solve
• Identification of special nodes 

• Special based on various metrics (in-degree, 
average distance to other nodes, relationship to 
the cluster structure, …) 

• Maximum flow 
• Compute traffic that can be sent          

from source to sink given various                                        
flow capacity constraints
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A common feature: millions or billions of nodes & 
millions or billions of edges.

Real-world graphs are often sparse: the number of 
actual edges is far smaller than the number of possible 
edges.

Question: a friendship graph with n nodes has how 
many possible edges?



A bit of graph theory



Connected components
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• Strongly connected component (SCC): directed 
graph with a path from each node to every other 
node 

!

• Weakly connected component (WCC): directed 
graph with a path in the underlying undirected 
graph from each node to every other node

A

C

B

D
A cannot reach C 
B cannot reach A 
…..

strongly connected

A

C

B

D
G

H

2 weakly connected components



Connected components
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• Strongly connected component (SCC): directed 
graph with a path from each node to every other 
node 

!

• Weakly connected component (WCC): directed 
graph with a path in the underlying undirected 
graph from each node to every other node
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2 weakly connected components

G = (V,E)
V = {A,B,C,D}
E = {(A,D), (B,C), (C,A), (C,B), (C,D), (D,B)}
d(A,B) = 2, d(C,B) = 1, d(A,C) = 3

graph

nodes directed edges

shortest distance between 2 nodes



Connected components
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• Strongly connected component (SCC): directed 
graph with a path from each node to every other 
node 

!

• Weakly connected component (WCC): directed 
graph with a path in the underlying undirected 
graph from each node to every other node
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undirected edges

infinite distance

G = (V,E)
V = {A,B,C,D,G,H}
E = {{A,C}, {A,D}, {B,C}, {B,D}, {C,D}, {G,H}}
d(A,B) = 2, d(C,B) = 1, d(A,C) = 1, d(A,G) = 1



Graph diameter
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Definition: longest shortest path in the graph
max

x,y2V

d(x, y)

A B C D G diameter: 4

A B C D G

A B C D G

diameter: 3

diameter: 2



Breadth-first search
http://joseph-harrington.com/2012/02/breadth-first-
search-visual/
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find the shortest path between two nodes in a graph

http://joseph-harrington.com/2012/02/breadth-first-search-visual/


Graph representations



Adjacency matrices

• Edges in unweighted graphs: 1 (edge exists), 0 (no edge exists) 

• Edges in weighted graphs: matrix contains edge weights 

• Undirected graphs use half the matrix 

• Advantage: mathematically easy manipulation  

• Disadvantage: space requirements
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A graph with n nodes can be represented by

an n⇥ n square matrix M .

Matrix element cij > 0 indicates an edge from

node ni to nj .
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Adjacency list
• A much more compressed representation 

• On sparse graphs 

• Only edges that exist are encoded in adjacency lists 

• Two options to encode undirected edges: 
• Encode each edge twice (the nodes appear in each other’s 

adjacency list) 
• Impose an order on nodes and encode edges only on the 

adjacency list of the node that comes first in the ordering 

• Disadvantage: some graph operations are more difficult 
compared to the matrix representation
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Adjacency list
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Adjacency list
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node ordering



Adjacency matrices vs. lists
• A less compressed representation (matrix) makes some 

computations easier 

• Computing inlinks 
• Matrix: scan the column and count 
• List: difficult, worst case all data needs to be scanned 

• Computing outlinks 
• Matrix: scan the rows and count 
• List: outlinks are natural

23

out

inl



Breadth-first search 
(in detail)



Single-source shortest path 
Standard solution: Dijkstra’s algorithm

Task: find the shortest path from a source node to 
all other nodes in the graph

In each step, 
find the minimum 
edge of a node 
not yet visited. 
!
6 iterations.

Source: Data-Intensive Text Processing with MapReduce



Single-source shortest path 
Standard solution: Dijkstra’s algorithm
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Task: find the shortest path from a source node to 
all other nodes in the graph

Input: 
-directed connected graph in 
adjacency list format 
-edge distances in w 
-source s

source node

starting distance: infinite for all nodes

Q is a global priority queue 
sorted by current distance

adapt distances

Source: Data-Intensive Text Processing with MapReduce



Single-source shortest path 
In the MapReduce world: parallel BFS

• Brute force approach: parallel breadth-first search 

• Intuition: 
• Distance of all nodes N directly connected to the source is one 
• Distance of all nodes directly connected to nodes in N is two 
• … 
• Multiple path to a node x: the shortest path must go through 

one of the nodes having an outgoing edge to x; use the 
minimum
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Task: find the shortest path from a source node to 
all other nodes in the graph.

Here: edges have unit weight.
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Task: find the shortest path from a source node to 
all other nodes in the graph.

x
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Here: edges have unit weight.



Single-source shortest path 
In the MapReduce world: parallel BFS

Edges have unit weight.
29

Mapper: emit all distances, 
and the graph structure itself

Reducer: update distances 
and emit the graph structure

Source: Data-Intensive Text Processing with MapReduce



Single-source shortest path 
In the MapReduce world: parallel BFS

Edges have unit weight.
30

Mapper: emit all distances, 
and the graph structure itself

Reducer: update distances 
and emit the graph structure

Overloading of value type: distance 
(int) or complex data structure. 
!
In practice: wrapper class with 
indicator variable.

Source: Data-Intensive Text Processing with MapReduce



Single-source shortest path 
In the MapReduce world: parallel BFS
• Each iteration of the algorithm is one MapReduce job!

• A map phase to compute the distances 
• A reduce phase to find the current minimum distance 

• Iterations 
1. All nodes connected to the source are discovered 
2. All nodes connected to those discovered in 1. are found 
3.… 

• Between iterations (jobs) the graph structure needs to be 
passed along!
• Reducer output is input for the next iteration (job)

31 Edges have unit weight.



Single-source shortest path 
In the MapReduce world: parallel BFS
• How many iterations are necessary to compute the shortest path to 

all nodes? 
• Diameter of the graph (greatest distance between a pair of 

nodes) 
• Diameter is usually small (“six degrees of separation”- Milgram) 

• In practice: iterate until all node distances are less than +infinity 
• Assumption: connected graph 

•  Termination condition checked “outside” of MapReduce job 
• Use Counter to count number of nodes with infinite distance 

• Emit current shortest paths in the Mapper as well

32 Edges have unit weight.



Single-source shortest path 
In the MapReduce world: parallel BFS
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MAP

REDUCE

HDFS

Local disk

Nodes (adjacency lists) 

Updated nodes written

Driver

Counter updates

(Re)start job

Disadvantage: a lot of reading and 
writing to/from HDFS

Local disk



Single-source shortest path 
In the MapReduce world: parallel BFS

• Two changes required: 
• Update rule, instead of d+1 use d+w 
• Termination criterion: no more distance changes 

(via Counter) 

• Num. iterations in the worst case: #nodes-1
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Task: find the shortest path from a source node to all 
other nodes when edges have positive distances > 1

1
11

1

1

1

1

1
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Single-source shortest path  
Dijkstra vs. parallel BFS
• Dijkstra!

• Single processor (global data structure) 
• Efficient (no recompilation of finalised states) 

• Parallel BFS!
• Brute force approach 
• A lot of unnecessary computations (distances to 

all nodes recomputed at each iteration) 
• No global data structure
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in general …



Prototypical approach to graph 
algorithms in MapReduce/Hadoop
• Node datastructure which contains 

• Adjacency list!
• Additional node [and possibly edge] information (type, features, 

distances, weights, etc.) 

• MapReduce job maps over the node data structures!
• Computation involves a node’s internal state and local graph structure 
• Result of map phase emitted as values, keyed with node ids of the 

neighbours; reducer aggregates a node’s results 

• Graph itself is passed from Mapper to Reducer!

• Algorithms are iterative, requiring several Hadoop jobs controlled by the 
driver code
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The Web graph



The Web
• Vannevar Bush envisioned hypertext in the 1940’s 

• First hypertext systems were created in the 1970’s 

• The World Wide Web was formed in the early 1990’s 
• Creator: Tim Berners-Lee 
• Make documents easily available to anyone (Web pages) 
• Easy access to such Web pages using a browser 

• Early Web years 
• Full-text search engines (Altavista, Excite and Infoseek) vs. 
• Taxonomies populated with pages in categories (ODP, Yahoo! 

Directory)
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Open Directory Project: 
5,007,664 sites  
94,441 editors  

over 1,010,258 categories 



The Web
• Nearly impossible to discover content without search 

engines 
• Estimating the size of the Web is a research area by 

itself  
• Indexed Web has billions of pages 
• Deep Web!

• Users view the Web through the lense of the search 
engine 

• Pages not indexed (or ranked at low positions) by search 
engines are unlikely to be found by users 
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Graph structure in the Web
• Insights important for: 

• Crawling strategies!
• Understanding the sociology of content creation 
• Analyzing the behaviour of algorithms that rely on link 

information (e.g. HITS, PageRank) 
• Predicting the evolution of web structures 
• Predicting the emergence of new phenomena in the 

Web graph 

• Data: Altavista crawl from 1999 with 200 million pages 
and 1.5 billion links

41

Broder et al., 1999



The Web as a “bow tie” 
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Broder et al., 1999
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!
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IN 
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• ~200M nodes in total 
• >90% in a single WCC 
• Av. connected distance SCC: 28 
• Av. connected distance graph: >500 
• Av. Path length: 16 between any 

two nodes with existing path 

nodes that can 
reach the SCC;  
cannot be 
reached from it 
(e.g. new nodes)

nodes that can reach 
be reached from the 
SCC but do not link 
back (e.g. corporate 
nodes)
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“In a sense the web is much like a complicated organism, in which the local 
structure at a microscopic scale looks very regular like a biological cell, but 
the global structure exhibits interesting morphological structure (body and 
limbs) that are not obviously evident in the local structure.”



PageRank
• A topic independent approach to page importance 

• Computed once per crawl 

• Every document of the corpus is assigned an importance score 
• In search: re-rank (or filter) results with a low PageRank score 

• Simple idea: number of in-link indicates importance 
• Page p1 has 10 in-links and one of those is from yahoo.com, 

page p2 has 50 in-links from obscure pages 

• PageRank takes the importance of the page where the link 
originates into account
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Page et al., 1998

“To test the utility of PageRank 
for search, we built a web 
search engine called Google.”



PageRank
• Idea: if page px links to page py, then the creator of 
px implicitly transfers some importance to page py 
• yahoo.com is an important page, many pages 

point to it 
• Pages linked to from yahoo.com are also likely to 

be important 

• A page distributes “importance” through its outlinks 

• Simple PageRank (iteratively):
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Page et al., 1998

PageRanki+1(v) =
X

u!v

PageRanki(u)

Nu
all nodes linking to v

out-degree of node u



PageRank

46

Simplified formula

PageRank vector converges eventually
Random surfer model:!
• Probability that a random 
 surfer starts at a random  
 page and ends at page px!

• A random surfer at a page  
 with 3 outlines randomly  
 picks one (1/3 prob.)



PageRank
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Reality

PageRanki+1(v) = ↵

✓
1

|G|

◆
+ (1� ↵)

X

u!v

PageRanki(u)

Nu

Include a decay (“damping”) factor

probability that the random surfer  
“teleports” and not uses the outlinks



PageRank in MapReduce

• At each iteration:  
• [MAPPER] a node passes its PageRank 

“contributions” to the nodes it is connected to 
• [REDUCER] each node sums up all PageRank 

contributions that have been passed to it and 
updates its PageRank score
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An informal sketch



PageRank in MapReduce
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An informal sketch ↵ = 0,
5X

i=1

ni = 1

Source: Data-Intensive Text Processing with MapReduce



PageRank in MapReduce
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Pseudocode: simplified PageRank

Source: Data-Intensive Text Processing with MapReduce



PageRank in MapReduce

• Dangling nodes: nodes without outgoing edges  
• Simplified PR cannot conserve total PageRank mass  

(black holes for PR scores) 
• Solution: “lost” PR scores are redistributed evenly across 

all nodes in the graph 
• Use Counters to keep track of lost mass  
• Reserve a special key for PR mass from dangling nodes 

• Redistribution of lost mass and jump factor after each PR 
iteration in another job (MAP phase only job)
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Jump factor and “dangling” nodes

One iteration of PageRank requires two MR jobs!



PageRank in MapReduce

• PageRank is iterated until convergence (scores at 
nodes no longer change) 

• PageRank is run for a fixed number of iterations 

• PageRank is run until the ranking of the nodes 
according to their PR score no longer changes 

• Original PageRank paper: 52 iterations until 
convergence on a graph with more than 300M edges
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Possible stopping criteria

Warning: on today’s Web, PageRank requires additional modifications (spam, spam, spam)



Graph processing notes
• In dense graphs, MR running time would be dominated by the 

shuffling of the intermediate data across the network 
• Worst case: O(n2) 
• Impractical for MR (commodity hardware) 

• Often, combiners and in-mapper combining patterns can be used 
to speed up the process  

• Data localization can be difficult 
• Combiners are only useful if there is something to aggregate 

(e.g. for PR several nodes pointing to the same target in a single 
MAPPER) 

• Heuristics: e.g. pages from the same domain to the same 
MAPPER
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Graph processing in 
Hadoop
• Disadvantage: iterative algorithms are slow 

• Lots of reading/writing to and from disk 

• Advantage: no additional libraries needed 

• Enter Giraph: an open-source implementation of 
yet another Google framework (Pregel) 
• Specifically created for iterative graph 

computations 
• More details in the next lecture
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Summary
• Graph problems in the real world 

• A bit of graph theory 

• Adjacency matrices vs. adjacency lists 

• Breadth-first search 

• PageRank
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THE END


