
Lecture 11: Graph algorithms!
!

Claudia Hauff (Web Information Systems)!
ti2736b-ewi@tudelft.nl

1

mailto:ti2736b-ewi@tudelft.nl

Course content
• Introduction

• Data streams 1 & 2

• The MapReduce paradigm

• Looking behind the scenes of MapReduce: HDFS & Scheduling

• Algorithm design for MapReduce

• A high-level language for MapReduce: Pig Latin 1 & 2

• MapReduce is not a database, but HBase nearly is

• Lets iterate a bit: Graph algorithms & Giraph

• How does all of this work together? ZooKeeper/Yarn

2

3

• Give examples of real-world problems that can be
solved with graph algorithms

• Explain the major differences between BFS on a
single machine (Dijkstra) and in a MapReduce
framework

• Explain the main ideas behind PageRank

• Implement iterative graph algorithms in Hadoop

Learning objectives

Graphs

Graphs
• Ubiquitous in modern society

• Hyperlink structure of the Web
• Social networks

• Email flow
• Friend patterns

• Transportation networks

• Nodes and links can be annotated with metadata
• Social network nodes: age, gender, interests
• Social network edges: relationship type (friend, spouse,

foe, etc.), relationship importance (weights)

5

Real-world problems to
solve
• Graph search

• Friend recommend. in social networks
• Expert finding in social networks

• Path planning
• Route of network packets
• Route of delivery trucks

• Graph clustering
• Subcommunities in large graphs

6

Real-world problems to
solve
• Minimum spanning tree: a tree that contains all

vertices of a graph and the cheapest edges
• Laying optical fiber to span a number of

destinations at the lowest possible cost

!

• Bipartite graph matching: two disjoint vertex sets
• Job seekers looking for employment
• Singles looking for dates

7

11

1
10

1

2

3

5

Real-world problems to
solve
• Identification of special nodes

• Special based on various metrics (in-degree,
average distance to other nodes, relationship to
the cluster structure, …)

• Maximum flow
• Compute traffic that can be sent

from source to sink given various
flow capacity constraints

8

Real-world problems to
solve
• Identification of special nodes

• Special based on various metrics (in-degree,
average distance to other nodes, relationship to
the cluster structure, …)

• Maximum flow
• Compute traffic that can be sent

from source to sink given various
flow capacity constraints

9

A common feature: millions or billions of nodes &
millions or billions of edges.

Real-world graphs are often sparse: the number of
actual edges is far smaller than the number of possible
edges.

Question: a friendship graph with n nodes has how
many possible edges?

A bit of graph theory

Connected components

11

• Strongly connected component (SCC): directed
graph with a path from each node to every other
node

!

• Weakly connected component (WCC): directed
graph with a path in the underlying undirected
graph from each node to every other node

A

C

B

D
A cannot reach C
B cannot reach A
…..

strongly connected

A

C

B

D
G

H

2 weakly connected components

Connected components

12

• Strongly connected component (SCC): directed
graph with a path from each node to every other
node

!

• Weakly connected component (WCC): directed
graph with a path in the underlying undirected
graph from each node to every other node

A

C

B

D

A

C

B

D
E

F

2 weakly connected components

G = (V,E)
V = {A,B,C,D}
E = {(A,D), (B,C), (C,A), (C,B), (C,D), (D,B)}
d(A,B) = 2, d(C,B) = 1, d(A,C) = 3

graph

nodes directed edges

shortest distance between 2 nodes

Connected components

13

• Strongly connected component (SCC): directed
graph with a path from each node to every other
node

!

• Weakly connected component (WCC): directed
graph with a path in the underlying undirected
graph from each node to every other node

A

C

B

D

A

C

B

D
G

H

undirected edges

infinite distance

G = (V,E)
V = {A,B,C,D,G,H}
E = {{A,C}, {A,D}, {B,C}, {B,D}, {C,D}, {G,H}}
d(A,B) = 2, d(C,B) = 1, d(A,C) = 1, d(A,G) = 1

Graph diameter

14

Definition: longest shortest path in the graph
max

x,y2V

d(x, y)

A B C D G diameter: 4

A B C D G

A B C D G

diameter: 3

diameter: 2

Breadth-first search
http://joseph-harrington.com/2012/02/breadth-first-
search-visual/

15

find the shortest path between two nodes in a graph

http://joseph-harrington.com/2012/02/breadth-first-search-visual/

Graph representations

Adjacency matrices

• Edges in unweighted graphs: 1 (edge exists), 0 (no edge exists)

• Edges in weighted graphs: matrix contains edge weights

• Undirected graphs use half the matrix

• Advantage: mathematically easy manipulation

• Disadvantage: space requirements

17

A graph with n nodes can be represented by

an n⇥ n square matrix M .

Matrix element cij > 0 indicates an edge from

node ni to nj .

Adjacency matrices

• Edges in unweighted graphs: 1 (edge exists), 0 (no edge exists)

• Edges in weighted graphs: matrix contains edge weights

• Undirected graphs use half the matrix

• Advantage: mathematically easy manipulation

• Disadvantage: space requirements

18

A graph with n nodes can be represented by

an n⇥ n square matrix M .

Matrix element cij > 0 indicates an edge from

node ni to nj .

Adjacency list
• A much more compressed representation

• On sparse graphs

• Only edges that exist are encoded in adjacency lists

• Two options to encode undirected edges:
• Encode each edge twice (the nodes appear in each other’s

adjacency list)
• Impose an order on nodes and encode edges only on the

adjacency list of the node that comes first in the ordering

• Disadvantage: some graph operations are more difficult
compared to the matrix representation

19

Adjacency list
• A much more compressed representation

• On sparse graphs

• Only edges that exist are encoded in adjacency lists

• Two options to encode undirected edges:
• Encode each edge twice (the nodes appear in each other’s

adjacency list)
• Impose an order on nodes and encode edges only on the

adjacency list of the node that comes first in the ordering

• Disadvantage: some graph operations are more difficult
compared to the matrix representation

20

outlinks

inlinks

n1

n2

n3

n4

n5

Adjacency list

21

each edge twice

Adjacency list

22

n1

n2

n3

n4

n5

node ordering

Adjacency matrices vs. lists
• A less compressed representation (matrix) makes some

computations easier

• Computing inlinks
• Matrix: scan the column and count
• List: difficult, worst case all data needs to be scanned

• Computing outlinks
• Matrix: scan the rows and count
• List: outlinks are natural

23

out

inl

Breadth-first search
(in detail)

Single-source shortest path 
Standard solution: Dijkstra’s algorithm

Task: find the shortest path from a source node to
all other nodes in the graph

In each step,
find the minimum
edge of a node
not yet visited.
!
6 iterations.

Source: Data-Intensive Text Processing with MapReduce

Single-source shortest path 
Standard solution: Dijkstra’s algorithm

26

Task: find the shortest path from a source node to
all other nodes in the graph

Input:
-directed connected graph in
adjacency list format
-edge distances in w
-source s

source node

starting distance: infinite for all nodes

Q is a global priority queue
sorted by current distance

adapt distances

Source: Data-Intensive Text Processing with MapReduce

Single-source shortest path 
In the MapReduce world: parallel BFS

• Brute force approach: parallel breadth-first search

• Intuition:
• Distance of all nodes N directly connected to the source is one
• Distance of all nodes directly connected to nodes in N is two
• …
• Multiple path to a node x: the shortest path must go through

one of the nodes having an outgoing edge to x; use the
minimum

27

Task: find the shortest path from a source node to
all other nodes in the graph.

Here: edges have unit weight.

Single-source shortest path 
In the MapReduce world: parallel BFS

• Brute force approach: parallel breadth-first search

• Intuition:
• Distance of all nodes N directly connected to the source is one
• Distance of all nodes directly connected to nodes in N is two
• …
• Multiple path to a node x: the shortest path must go through

one of the nodes having an outgoing edge to x; use the
minimum

28

Task: find the shortest path from a source node to
all other nodes in the graph.

x

j

k

i

d
x

= min(d
i

+ 1, d
j

+ 1, d
k

+ 1)

didj

dk

Here: edges have unit weight.

Single-source shortest path 
In the MapReduce world: parallel BFS

Edges have unit weight.
29

Mapper: emit all distances,
and the graph structure itself

Reducer: update distances
and emit the graph structure

Source: Data-Intensive Text Processing with MapReduce

Single-source shortest path 
In the MapReduce world: parallel BFS

Edges have unit weight.
30

Mapper: emit all distances,
and the graph structure itself

Reducer: update distances
and emit the graph structure

Overloading of value type: distance
(int) or complex data structure.
!
In practice: wrapper class with
indicator variable.

Source: Data-Intensive Text Processing with MapReduce

Single-source shortest path 
In the MapReduce world: parallel BFS
• Each iteration of the algorithm is one MapReduce job!

• A map phase to compute the distances
• A reduce phase to find the current minimum distance

• Iterations
1. All nodes connected to the source are discovered
2. All nodes connected to those discovered in 1. are found
3.…

• Between iterations (jobs) the graph structure needs to be
passed along!
• Reducer output is input for the next iteration (job)

31 Edges have unit weight.

Single-source shortest path 
In the MapReduce world: parallel BFS
• How many iterations are necessary to compute the shortest path to

all nodes?
• Diameter of the graph (greatest distance between a pair of

nodes)
• Diameter is usually small (“six degrees of separation”- Milgram)

• In practice: iterate until all node distances are less than +infinity
• Assumption: connected graph

• Termination condition checked “outside” of MapReduce job
• Use Counter to count number of nodes with infinite distance

• Emit current shortest paths in the Mapper as well

32 Edges have unit weight.

Single-source shortest path 
In the MapReduce world: parallel BFS

33

MAP

REDUCE

HDFS

Local disk

Nodes (adjacency lists)

Updated nodes written

Driver

Counter updates

(Re)start job

Disadvantage: a lot of reading and
writing to/from HDFS

Local disk

Single-source shortest path 
In the MapReduce world: parallel BFS

• Two changes required:
• Update rule, instead of d+1 use d+w
• Termination criterion: no more distance changes

(via Counter)

• Num. iterations in the worst case: #nodes-1

34

Task: find the shortest path from a source node to all
other nodes when edges have positive distances > 1

1
11

1

1

1

1

1

10

source

Single-source shortest path  
Dijkstra vs. parallel BFS
• Dijkstra!

• Single processor (global data structure)
• Efficient (no recompilation of finalised states)

• Parallel BFS!
• Brute force approach
• A lot of unnecessary computations (distances to

all nodes recomputed at each iteration)
• No global data structure

35

in general …

Prototypical approach to graph
algorithms in MapReduce/Hadoop
• Node datastructure which contains

• Adjacency list!
• Additional node [and possibly edge] information (type, features,

distances, weights, etc.)

• MapReduce job maps over the node data structures!
• Computation involves a node’s internal state and local graph structure
• Result of map phase emitted as values, keyed with node ids of the

neighbours; reducer aggregates a node’s results

• Graph itself is passed from Mapper to Reducer!

• Algorithms are iterative, requiring several Hadoop jobs controlled by the
driver code

37

The Web graph

The Web
• Vannevar Bush envisioned hypertext in the 1940’s

• First hypertext systems were created in the 1970’s

• The World Wide Web was formed in the early 1990’s
• Creator: Tim Berners-Lee
• Make documents easily available to anyone (Web pages)
• Easy access to such Web pages using a browser

• Early Web years
• Full-text search engines (Altavista, Excite and Infoseek) vs.
• Taxonomies populated with pages in categories (ODP, Yahoo!

Directory)

39

Open Directory Project:
5,007,664 sites
94,441 editors

over 1,010,258 categories

The Web
• Nearly impossible to discover content without search

engines
• Estimating the size of the Web is a research area by

itself
• Indexed Web has billions of pages
• Deep Web!

• Users view the Web through the lense of the search
engine

• Pages not indexed (or ranked at low positions) by search
engines are unlikely to be found by users

40

Graph structure in the Web
• Insights important for:

• Crawling strategies!
• Understanding the sociology of content creation
• Analyzing the behaviour of algorithms that rely on link

information (e.g. HITS, PageRank)
• Predicting the evolution of web structures
• Predicting the emergence of new phenomena in the

Web graph

• Data: Altavista crawl from 1999 with 200 million pages
and 1.5 billion links

41

Broder et al., 1999

The Web as a “bow tie”

42

Broder et al., 1999

OUT
!
43M

IN
!
43M

SCC:
strongly

connected
component

56M

tubes
disconnected
components (17M)

tendrils (44M)
(cannot reach SCC)

• ~200M nodes in total
• >90% in a single WCC
• Av. connected distance SCC: 28
• Av. connected distance graph: >500
• Av. Path length: 16 between any

two nodes with existing path

nodes that can
reach the SCC;
cannot be
reached from it
(e.g. new nodes)

nodes that can reach
be reached from the
SCC but do not link
back (e.g. corporate
nodes)

The Web as a “bow tie”

43

Broder et al., 1999

OUT
!
43M

IN
!
43M

SCC:
strongly

connected
component

56M

tubes
disconnected
components (17M)

tendrils (44M)
(cannot reach SCC)

• ~200M nodes in total
• >90% in a single WCC
• Av. connected distance SCC: 28
• Av. connected distance graph: >500
• Av. Path length: 16 between any

two nodes with existing path

nodes that can
reach the SCC;
cannot be
reached from it
(e.g. new nodes)

nodes that can reach
be reached from the
SCC but do not link
back (e.g. corporate
nodes)

“In a sense the web is much like a complicated organism, in which the local
structure at a microscopic scale looks very regular like a biological cell, but
the global structure exhibits interesting morphological structure (body and
limbs) that are not obviously evident in the local structure.”

PageRank
• A topic independent approach to page importance

• Computed once per crawl

• Every document of the corpus is assigned an importance score
• In search: re-rank (or filter) results with a low PageRank score

• Simple idea: number of in-link indicates importance
• Page p1 has 10 in-links and one of those is from yahoo.com,

page p2 has 50 in-links from obscure pages

• PageRank takes the importance of the page where the link
originates into account

44

Page et al., 1998

“To test the utility of PageRank
for search, we built a web
search engine called Google.”

PageRank
• Idea: if page px links to page py, then the creator of
px implicitly transfers some importance to page py
• yahoo.com is an important page, many pages

point to it
• Pages linked to from yahoo.com are also likely to

be important

• A page distributes “importance” through its outlinks

• Simple PageRank (iteratively):

45

Page et al., 1998

PageRanki+1(v) =
X

u!v

PageRanki(u)

Nu
all nodes linking to v

out-degree of node u

PageRank

46

Simplified formula

PageRank vector converges eventually
Random surfer model:!
• Probability that a random 
 surfer starts at a random  
 page and ends at page px!

• A random surfer at a page  
 with 3 outlines randomly  
 picks one (1/3 prob.)

PageRank

47

Reality

PageRanki+1(v) = ↵

✓
1

|G|

◆
+ (1� ↵)

X

u!v

PageRanki(u)

Nu

Include a decay (“damping”) factor

probability that the random surfer
“teleports” and not uses the outlinks

PageRank in MapReduce

• At each iteration:
• [MAPPER] a node passes its PageRank

“contributions” to the nodes it is connected to
• [REDUCER] each node sums up all PageRank

contributions that have been passed to it and
updates its PageRank score

48

An informal sketch

PageRank in MapReduce

49

An informal sketch ↵ = 0,
5X

i=1

ni = 1

Source: Data-Intensive Text Processing with MapReduce

PageRank in MapReduce

50

Pseudocode: simplified PageRank

Source: Data-Intensive Text Processing with MapReduce

PageRank in MapReduce

• Dangling nodes: nodes without outgoing edges
• Simplified PR cannot conserve total PageRank mass  

(black holes for PR scores)
• Solution: “lost” PR scores are redistributed evenly across

all nodes in the graph
• Use Counters to keep track of lost mass
• Reserve a special key for PR mass from dangling nodes

• Redistribution of lost mass and jump factor after each PR
iteration in another job (MAP phase only job)

51

Jump factor and “dangling” nodes

One iteration of PageRank requires two MR jobs!

PageRank in MapReduce

• PageRank is iterated until convergence (scores at
nodes no longer change)

• PageRank is run for a fixed number of iterations

• PageRank is run until the ranking of the nodes
according to their PR score no longer changes

• Original PageRank paper: 52 iterations until
convergence on a graph with more than 300M edges

52

Possible stopping criteria

Warning: on today’s Web, PageRank requires additional modifications (spam, spam, spam)

Graph processing notes
• In dense graphs, MR running time would be dominated by the

shuffling of the intermediate data across the network
• Worst case: O(n2)
• Impractical for MR (commodity hardware)

• Often, combiners and in-mapper combining patterns can be used
to speed up the process

• Data localization can be difficult
• Combiners are only useful if there is something to aggregate

(e.g. for PR several nodes pointing to the same target in a single
MAPPER)

• Heuristics: e.g. pages from the same domain to the same
MAPPER

53

Graph processing in
Hadoop
• Disadvantage: iterative algorithms are slow

• Lots of reading/writing to and from disk

• Advantage: no additional libraries needed

• Enter Giraph: an open-source implementation of
yet another Google framework (Pregel)
• Specifically created for iterative graph

computations
• More details in the next lecture

54

Summary
• Graph problems in the real world

• A bit of graph theory

• Adjacency matrices vs. adjacency lists

• Breadth-first search

• PageRank

55

References

• Data-Intensive Text Processing with MapReduce
by Jimmy Lin and Chris Dyer. Chapter 5.

• Graph structure in the Web. Broder et al. 1999.

• The PageRank Citation Ranking: Bringing Order
to the Web. Page et al. 1999.

56

THE END

