
Lecture 11: Homogenization II.

Jack Xin∗

Abstract

Classnotes on homogenization, references and practice.

1 Examples of Linear Transport Equations

Consider:

ut + a(
x

ε
) · ∇xu = 0,

u|t=0 = u0(x,
x

ε
), (1.1)

where ε > 0, t ∈ [0, T ], ∀T > 0, u0(x, y) ∈ C1
0 (R2 × T 2), a : T 2 → R2 smooth, diva = 0,

a 6= 0. Here T 2 denotes the 2-D unit torus, and a is the transport vector field for u. We

are interested in the behavior of uε as ε ↓ 0 and the transport vector field oscillates faster

and faster.

The leading order equation from two-scale expansion gives:

a(y) · ∇yU = 0 y ∈ T 2 , (1.2)

also known as the cell-problem. In general, (1.2) does not have a unique solution (unique

up to a multiplicative function of (x,t)). Its uniqueness depends on the ergodicity of the

flows defined by:
dy

dt
= a(y) y ∈ T 2 . (1.3)

The ergodicity is equivalent to saying that U = constant (in y) is the only solution of (1.2)

on T 2. In this case, two-scale expansion gives the homogenized equation:

ūt+ < a > ·∇ū = 0. (1.4)
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2 A Two-scale Convergence Framework

We first introduce some notations.

Cp(R
n): the space of continuous unit periodic functions on Rn.

LK0(R
n): the space of all functions in L2(Rn) having compact support in K0, where K0

is a fixed compact set in Rn.

L2
p(R

n): the space of unit periodic functions in L2
loc(R

n) equipped with norm: ‖w‖L2 =

(
∫
Y w2dy)1/2, where Y is the unit lattice in Rn.

L2(Rn; L2
p): the space of measurable functions u(x, y) on Rn×Rn, such that for almost

all x, the function y → u(x, y) is in L2
p(R

n) and∫
Rn×Y

|u|2(x, y)dxdy < +∞ .

We define the norm for this space:

‖u‖L2(Rn×Y ) = (
∫

Rn×Y
|u(x, y)|2dxdy)1/2 .

K(Rn; Cp): space of continuous functions on Rn with values in Cp(R
n) and compact

supports.

The following convergence theorem is due to Nguetseng [1] :

Theorem 2.1 Let uε(x) ∈ L2
K0

(Rn), where K0 is independent of ε, ε > 0. Suppose that

‖uε‖L2 ≤ C, for some constant C > 0 independent of ε. Then there exist a subsequence

from ε, still denoted by ε, and a function U ∈ L2(Rn; L2
p) such that as ε ↓ 0:∫

Rn
uεψ(x, ε−1x)dx→

∫
Rn×Y

U(x, y)ψ(x, y)dxdy

for all ψ ∈ K(Rn; Cp).

We will use this theorem to derive the homogenized equations in two sample cases.

From equation (1.1), we see that due to the finite speed of propagation and u0 being

compactly supported, uε is supported in some compact set K0 in R2×[0, T ], for any T > 0.

Multiplying u and integration by parts give:

1/2∂t

∫
R2

u2dx + 1/2
∫

R2
a · ∇xu

2dx = 0 , (2.5)

and

1/2∂t

∫
R2

u2dx− 1/2
∫

R2
(diva)u2dx = 1/2∂t

∫
R2

u2dx = 0 . (2.6)
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Thus ∫
R2

u2dx =
∫

R2
(u0)2dx < C < +∞ ,

∫ T

0

∫
R2

u2dxdt ≤ CT .

Therefore uε(x, t) satisfies the conditions in the above theorem, and there exists U =

U(x, t, y, τ) such that as ε ↓ 0:∫
R2×[0,T ]

uε(x, t)ψ(x, t, ε−1x,
t

ε
)dxdt→ (2.7)∫

R2×[0,T ]×T 2×[0,1]
U(x, t, y, τ)ψ(x, t, y, τ)dxdtdydτ

for any ψ ∈ K(R2 × [0, T ]; Cp). If ψ = ψ(x, t, ε−1x), then∫
R2×[0,T ]

uε(x, t)ψdxdt→
∫

R2×[0,T ]×T 2
U(x, t, y)ψ(x, t, y)dxdtdy (2.8)

where U(x, t, y) =
∫ 1
0 U(x, t, y, τ)dτ .

In what follows, we will neglect the overbar and repeatedly use (2.8). First let ϕ(x, t) ∈
C∞0 (R2 × [0, T )), and ϕ0 = ϕ(x, 0). We denote a(ε−1x) by aε, and a(y) by a. Multiplying

ϕ to (1.1) and integrating by parts give:∫
R2×[0,T ]

{ϕuε
t + ϕ∇x · (aεuε)}dxdt = 0 , (2.9)

and ∫
suppϕ

ϕtu
εdxdt +

∫
suppϕ

(∇xϕ · aε)uεdxdt +
∫

suppϕ0

ϕ0u
0(x, ε−1x)dx = 0 . (2.10)

Letting ε go to zero, and using (2.8), we have:∫
suppϕ

ϕt(
∫

T 2
U(x, t, y)dy)dxdt +

∫
suppϕ

(
∫

T 2
(∇xϕ · a)U(x, t, y)dy)dxdt

+
∫

suppϕ0

ϕ0(
∫

T 2
u0(x, y)dy)dx = 0 ,

or ∫
suppϕ

ϕt(
∫

T 2
U(x, t, y)dy)dxdt +

∫
suppϕ

∇xϕ · (
∫

T 2
U(x, t, y)ady)dxdt

+
∫

suppϕ0

ϕ0(
∫

T 2
u0(x, y)dy)dx = 0 . (2.11)
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It follows that

(
∫

T 2
U(x, t, y)dy)t +∇x · (

∫
T 2

U(x, t, y)a(y)dy) = 0 (2.12)

for any t > 0 in the weak L2 sense, and∫
T 2

U(x, 0, y)dy =
∫

T 2
u0(x, y)dy , (2.13)

where U(x, 0, y) is limt↓0+ U(x, t, y), and it is always understood as such in what follows.

As we see, equation (2.12) itself is not enough to determine the weak limit of uε.

This is due to the fact that the test fuction we used in obtaining (2.12) does not contain

any information of the oscillatory component of uε. To identify U(x, t, y), we propose to

use a complete set of oscillatory test functions ϕe2πik·ε−1x, where ϕ = ϕ(x, t) belongs to

C∞0 (R2 × [0, T )). It follows from (2.10) with the above chosen test function replacing ϕ:

∫
R2×[0,T ]

(ϕte
2πik·ε−1xuε + (∇xϕ · aε)e2πik·ε−1xuε +

2πi(k · aε)

ε
ϕe2πik·ε−1xuε)dxdt

+
∫

R2
ϕ0e

2πik·ε−1xu0(x, ε−1x)dx = 0 . (2.14)

Multiplying ε and letting ε ↓ 0, we get:∫
R2×[0,T ]×T 2

(k · a)ϕ(x, t)e2πik·yU(x, t, y)dxdtdy = 0 , (2.15)

thus for any (x, t), t > 0: ∫
T 2

(k · a)e2πik·yU(x, t, y)dy = 0 . (2.16)

We recognize from (2.16) that U is a weak solution of

divy(Ua(y)) = 0.

In case that a(y) generates an ergodic flow [2], U = U(x, t) is the only solution of the above

equation. Let

u =
∫

T 2
U(x, t, y)dy,

the weak limit of uε, then by (2.12), u satisfies:

ut + a · ∇xu = 0, (2.17)

where a =
∫
T 2 a(y)dy, and u|t=0 =

∫
T 2 u0(x, y)dy.
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Let us consider the case of a = a(y) so that we can solve for U(x, t, y) from (2.14) and

(2.16) , but not from (2.16) alone. Assume that:

a(y) = (a1, a2) = (mρ(y), nρ(y)) (2.18)

where ρ = g(−ny1+my2), g is a smooth positive 1-periodic function, (m,n) ∈ Z2, m2+n2 6=
0. It is easy to check that all the conditions on a(y) are satisfied. Define:

L = L(m,n) = {k ∈ Z2 | k · (m,n) = 0} . (2.19)

Then, if k 6∈ L, (2.16) shows:∫
T 2

ρ(y)e2πik·yU(x, t, y)dy = 0 t > 0 ,

which implies:

ρ(y)U(x, t, y) =
∑
l∈L

e2πil·ybl(x, t) ,

U(x, t, y) =
∑
l∈L

e2πil·yρ−1(y)bl(x, t) t > 0 . (2.20)

On the other hand, if k ∈ L, then (2.14) shows that∫
R2×[0,T ]

(ϕte
2πik·ε−1xuε + (∇xϕ · aε)e2πik·yuε)dxdt

+
∫

R2
ϕ0u

0(x, ε−1x)e2πik·ε−1xdx = 0 . (2.21)

Letting ε ↓ 0 in (2.21) yields:∫
R2×[0,T ]×T 2

(ϕte
2πik·yU(x, t, y) + (∇xϕ · a)e2πik·yU(x, t, y))dxdtdy

+
∫

R2×T 2
ϕ0u

0(x, y)e2πik·ydxdy = 0 . (2.22)

It follows that

(
∫

T 2
e2πik·yU(x, t, y)dy)t +∇x · (

∫
T 2

e2πik·ya(y)U(x, t, y)dy) = 0 , (2.23)

for any t > 0, and ∫
T 2

U(x, 0, y)e2πik·ydy =
∫

T 2
u0(x, y)e2πik·ydy , (2.24)

for any k ∈ L. Substituting (2.20) into (2.23), we get

(
∫

T 2

∑
l∈L

bl
e2πi(l+k)·y

ρ(y)
dy)t +∇x · (

∫
T 2

∑
l∈L

ble
2πi(l+k)·y a

ρ(y)
dy) = 0 , (2.25)
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or

(
∑
l∈L

bl < ρ−1 >l+k)t + m(b−k)x1 + n(b−k)x2 = 0 , (2.26)

where < ρ−1 >l+k=
∫
T 2 e2πi(l+k)·yρ−1dy and k ∈ L. Substituting (2.20) into (2.24), we get

∑
l∈L

∫
T 2

ρ−1(y)e2πi(l+k)·ybl(x, 0)dy =
∫

T 2
u0(x, y)e2πik·ydy , (2.27)

for k ∈ L. That is: ∑
l∈L

< ρ−1 >l+k bl(x, 0) =< u0 >k , (2.28)

which is the same as ∑
l∈L

< ρ−1 >l−k bl(x, 0) =< u0 >−k , (2.29)

for all k ∈ L.

Let C = (clk) = (< ρ−1 >l−k) and b = (bl)
T , where k and l are in L. It is easy to check

that due to ρ−1 being positive, C is a bounded positive Hermitian infinite matrix from

l2(C)→ l2(C). That is, there exists a positive constant c0, such that for any x ∈ l2(C)

c0‖x‖l2 ≤ xT Cx ≤ c−1
0 ‖x‖

2
l2 .

Equation (2.26) with k in the place of −k then becomes:

Cbt + mbx1 + nbx2 = 0 . (2.30)

Similarly equation (2.29) can be written as:

Cb|t=0 = (< u0(x, y) >−k)
T
k∈L , (2.31)

which implies:

b|t=0 = C−1(< u0 >−k)
T
k∈L . (2.32)

Equations (2.30) and (2.32) form an initial value problem of an infinite symmetric hyper-

bolic system. In fact, (2.30) and (2.32) can be solved by Fourier transform. Therefore,

uε ⇀ u(x, t) =
∑
l∈L

< ρ−1 >l bl =
∫

T 2
U(x, t, y)dy

where bl’s are given by (2.30) and (2.32).

The reason that we find infinitely many equations indexed by k ∈ L is that the un-

derlying flow on T 2 has infinitely many isolated open channels (or that many ergodic
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components). In general, if the flow on T 2 has islands (area inside closed streamlines)

and open channels, one gets zero homogenized speeds for closed islands and a number of

nonzero speed wave equations for the open channels (same as the number of independent

channels in the flow), see [4].

In summary, strong convergence (or U = U(t, x)) corrersponds to having one ergodic

channel, weak convergence (or U = U(t, x, y)) corresponds to having more than one ergodic

components in the flow on torus T 2.

Practice Problem: Derive the homogenized elliptic equation in Lecture 10 using the

above framework.
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