Lecture 11: Homogenization II.

Jack Xin*

Abstract

Classnotes on homogenization, references and practice.

1 Examples of Linear Transport Equations

Consider:

$$
\begin{align*}
u_{t} & +\mathbf{a}\left(\frac{x}{\epsilon}\right) \cdot \nabla_{x} u=0, \\
\left.u\right|_{t=0} & =u^{0}\left(x, \frac{x}{\epsilon}\right), \tag{1.1}
\end{align*}
$$

where $\epsilon>0, t \in[0, T], \forall T>0, u^{0}(x, y) \in C_{0}^{1}\left(R^{2} \times T^{2}\right), \mathbf{a}: T^{2} \rightarrow R^{2}$ smooth, diva $=0$, $\mathbf{a} \neq 0$. Here T^{2} denotes the 2-D unit torus, and \mathbf{a} is the transport vector field for u. We are interested in the behavior of u^{ϵ} as $\epsilon \downarrow 0$ and the transport vector field oscillates faster and faster.

The leading order equation from two-scale expansion gives:

$$
\begin{equation*}
\mathbf{a}(y) \cdot \nabla_{y} U=0 \quad y \in T^{2} \tag{1.2}
\end{equation*}
$$

also known as the cell-problem. In general, (1.2) does not have a unique solution (unique up to a multiplicative function of (x, t)). Its uniqueness depends on the ergodicity of the flows defined by:

$$
\begin{equation*}
\frac{d y}{d t}=\mathbf{a}(y) \quad y \in T^{2} . \tag{1.3}
\end{equation*}
$$

The ergodicity is equivalent to saying that $U=$ constant (in y) is the only solution of (1.2) on T^{2}. In this case, two-scale expansion gives the homogenized equation:

$$
\begin{equation*}
\bar{u}_{t}+<\mathbf{a}>\cdot \nabla \bar{u}=0 . \tag{1.4}
\end{equation*}
$$

[^0]
2 A Two-scale Convergence Framework

We first introduce some notations.
$C_{p}\left(R^{n}\right)$: the space of continuous unit periodic functions on R^{n}.
$L_{K_{0}}\left(R^{n}\right)$: the space of all functions in $L^{2}\left(R^{n}\right)$ having compact support in K_{0}, where K_{0} is a fixed compact set in R^{n}.
$L_{p}^{2}\left(R^{n}\right)$: the space of unit periodic functions in $L_{\text {loc }}^{2}\left(R^{n}\right)$ equipped with norm: $\|w\|_{L^{2}}=$ $\left(\int_{Y} w^{2} d y\right)^{1 / 2}$, where Y is the unit lattice in R^{n}.
$L^{2}\left(R^{n} ; L_{p}^{2}\right)$: the space of measurable functions $u(x, y)$ on $R^{n} \times R^{n}$, such that for almost all x, the function $y \rightarrow u(x, y)$ is in $L_{p}^{2}\left(R^{n}\right)$ and

$$
\int_{R^{n} \times Y}|u|^{2}(x, y) d x d y<+\infty
$$

We define the norm for this space:

$$
\|u\|_{L^{2}\left(R^{n} \times Y\right)}=\left(\int_{R^{n} \times Y}|u(x, y)|^{2} d x d y\right)^{1 / 2}
$$

$K\left(R^{n} ; C_{p}\right)$: space of continuous functions on R^{n} with values in $C_{p}\left(R^{n}\right)$ and compact supports.

The following convergence theorem is due to Nguetseng [1]:
Theorem 2.1 Let $u^{\epsilon}(x) \in L_{K_{0}}^{2}\left(R^{n}\right)$, where K_{0} is independent of $\epsilon, \epsilon>0$. Suppose that $\left\|u^{\epsilon}\right\|_{L^{2}} \leq C$, for some constant $C>0$ independent of ϵ. Then there exist a subsequence from ϵ, still denoted by ϵ, and a function $U \in L^{2}\left(R^{n} ; L_{p}^{2}\right)$ such that as $\epsilon \downarrow 0$:

$$
\int_{R^{n}} u^{\epsilon} \psi\left(x, \epsilon^{-1} x\right) d x \rightarrow \int_{R^{n} \times Y} U(x, y) \psi(x, y) d x d y
$$

for all $\psi \in K\left(R^{n} ; C_{p}\right)$.
We will use this theorem to derive the homogenized equations in two sample cases.
From equation (1.1), we see that due to the finite speed of propagation and u^{0} being compactly supported, u^{ϵ} is supported in some compact set K_{0} in $R^{2} \times[0, T]$, for any $T>0$. Multiplying u and integration by parts give:

$$
\begin{equation*}
1 / 2 \partial_{t} \int_{R^{2}} u^{2} d x+1 / 2 \int_{R^{2}} \mathbf{a} \cdot \nabla_{x} u^{2} d x=0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
1 / 2 \partial_{t} \int_{R^{2}} u^{2} d x-1 / 2 \int_{R^{2}}(\text { diva }) u^{2} d x=1 / 2 \partial_{t} \int_{R^{2}} u^{2} d x=0 . \tag{2.6}
\end{equation*}
$$

Thus

$$
\begin{gathered}
\int_{R^{2}} u^{2} d x=\int_{R^{2}}\left(u^{0}\right)^{2} d x<C<+\infty \\
\int_{0}^{T} \int_{R^{2}} u^{2} d x d t \leq C T
\end{gathered}
$$

Therefore $u^{\epsilon}(x, t)$ satisfies the conditions in the above theorem, and there exists $U=$ $U(x, t, y, \tau)$ such that as $\epsilon \downarrow 0$:

$$
\begin{align*}
\int_{R^{2} \times[0, T]} & u^{\epsilon}(x, t) \psi\left(x, t, \epsilon^{-1} x, \frac{t}{\epsilon}\right) d x d t \rightarrow \tag{2.7}\\
& \int_{R^{2} \times[0, T] \times T^{2} \times[0,1]} U(x, t, y, \tau) \psi(x, t, y, \tau) d x d t d y d \tau
\end{align*}
$$

for any $\psi \in K\left(R^{2} \times[0, T] ; C_{p}\right)$. If $\psi=\psi\left(x, t, \epsilon^{-1} x\right)$, then

$$
\begin{equation*}
\int_{R^{2} \times[0, T]} u^{\epsilon}(x, t) \psi d x d t \rightarrow \int_{R^{2} \times[0, T] \times T^{2}} \bar{U}(x, t, y) \psi(x, t, y) d x d t d y \tag{2.8}
\end{equation*}
$$

where $\bar{U}(x, t, y)=\int_{0}^{1} U(x, t, y, \tau) d \tau$.
In what follows, we will neglect the overbar and repeatedly use (2.8). First let $\varphi(x, t) \in$ $C_{0}^{\infty}\left(R^{2} \times[0, T)\right.$), and $\varphi_{0}=\varphi(x, 0)$. We denote $\mathbf{a}\left(\epsilon^{-1} x\right)$ by \mathbf{a}^{ϵ}, and $\mathbf{a}(y)$ by a. Multiplying φ to (1.1) and integrating by parts give:

$$
\begin{equation*}
\int_{R^{2} \times[0, T]}\left\{\varphi u_{t}^{\epsilon}+\varphi \nabla_{x} \cdot\left(\mathbf{a}^{\epsilon} u^{\epsilon}\right)\right\} d x d t=0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\text {supp } \varphi} \varphi_{t} u^{\epsilon} d x d t+\int_{\text {supp } \varphi}\left(\nabla_{x} \varphi \cdot \mathbf{a}^{\epsilon}\right) u^{\epsilon} d x d t+\int_{\text {supp } \varphi_{0}} \varphi_{0} u^{0}\left(x, \epsilon^{-1} x\right) d x=0 \tag{2.10}
\end{equation*}
$$

Letting ϵ go to zero, and using (2.8), we have:

$$
\begin{aligned}
\int_{\text {supp } \varphi} \varphi_{t}\left(\int_{T^{2}} U(x, t, y) d y\right) d x d t & +\int_{\operatorname{supp} \varphi}\left(\int_{T^{2}}\left(\nabla_{x} \varphi \cdot \mathbf{a}\right) U(x, t, y) d y\right) d x d t \\
& +\int_{\operatorname{supp} \varphi_{0}} \varphi_{0}\left(\int_{T^{2}} u^{0}(x, y) d y\right) d x=0,
\end{aligned}
$$

or

$$
\begin{align*}
\int_{\text {supp } \varphi} & \varphi_{t}\left(\int_{T^{2}} U(x, t, y) d y\right) d x d t+\int_{\text {supp } \varphi} \nabla_{x} \varphi \cdot\left(\int_{T^{2}} U(x, t, y) \mathbf{a} d y\right) d x d t \\
& +\int_{\text {supp } \varphi_{0}} \varphi_{0}\left(\int_{T^{2}} u^{0}(x, y) d y\right) d x=0 \tag{2.11}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\left(\int_{T^{2}} U(x, t, y) d y\right)_{t}+\nabla_{x} \cdot\left(\int_{T^{2}} U(x, t, y) \mathbf{a}(y) d y\right)=0 \tag{2.12}
\end{equation*}
$$

for any $t>0$ in the weak L^{2} sense, and

$$
\begin{equation*}
\int_{T^{2}} U(x, 0, y) d y=\int_{T^{2}} u^{0}(x, y) d y \tag{2.13}
\end{equation*}
$$

where $U(x, 0, y)$ is $\lim _{t \downarrow 0^{+}} U(x, t, y)$, and it is always understood as such in what follows.
As we see, equation (2.12) itself is not enough to determine the weak limit of u^{ϵ}. This is due to the fact that the test fuction we used in obtaining (2.12) does not contain any information of the oscillatory component of u^{ϵ}. To identify $U(x, t, y)$, we propose to use a complete set of oscillatory test functions $\varphi e^{2 \pi i k \cdot \epsilon^{-1} x}$, where $\varphi=\varphi(x, t)$ belongs to $C_{0}^{\infty}\left(R^{2} \times[0, T)\right)$. It follows from (2.10) with the above chosen test function replacing φ :

$$
\begin{align*}
\int_{R^{2} \times[0, T]}\left(\varphi_{t} e^{2 \pi i k \cdot \epsilon^{-1} x} u^{\epsilon}\right. & \left.+\left(\nabla_{x} \varphi \cdot \mathbf{a}^{\epsilon}\right) e^{2 \pi i k \cdot \epsilon^{-1} x} u^{\epsilon}+\frac{2 \pi i\left(k \cdot \mathbf{a}^{\epsilon}\right)}{\epsilon} \varphi e^{2 \pi i k \cdot \epsilon^{-1} x} u^{\epsilon}\right) d x d t \\
& +\int_{R^{2}} \varphi_{0} e^{2 \pi i k \cdot \epsilon^{-1} x} u^{0}\left(x, \epsilon^{-1} x\right) d x=0 \tag{2.14}
\end{align*}
$$

Multiplying ϵ and letting $\epsilon \downarrow 0$, we get:

$$
\begin{equation*}
\int_{R^{2} \times[0, T] \times T^{2}}(k \cdot \mathbf{a}) \varphi(x, t) e^{2 \pi i k \cdot y} U(x, t, y) d x d t d y=0 \tag{2.15}
\end{equation*}
$$

thus for any $(x, t), t>0$:

$$
\begin{equation*}
\int_{T^{2}}(k \cdot \mathbf{a}) e^{2 \pi i k \cdot y} U(x, t, y) d y=0 \tag{2.16}
\end{equation*}
$$

We recognize from (2.16) that U is a weak solution of

$$
\operatorname{div}_{y}(U \mathbf{a}(y))=0 .
$$

In case that $\mathbf{a}(y)$ generates an ergodic flow [2], $U=U(x, t)$ is the only solution of the above equation. Let

$$
\bar{u}=\int_{T^{2}} U(x, t, y) d y
$$

the weak limit of u^{ϵ}, then by (2.12), \bar{u} satisfies:

$$
\begin{equation*}
\bar{u}_{t}+\overline{\mathbf{a}} \cdot \nabla_{x} \bar{u}=0 \tag{2.17}
\end{equation*}
$$

where $\overline{\mathbf{a}}=\int_{T^{2}} \mathbf{a}(y) d y$, and $\left.\bar{u}\right|_{t=0}=\int_{T^{2}} u^{0}(x, y) d y$.

Let us consider the case of $\mathbf{a}=\mathbf{a}(y)$ so that we can solve for $U(x, t, y)$ from (2.14) and (2.16) , but not from (2.16) alone. Assume that:

$$
\begin{equation*}
\mathbf{a}(y)=\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)=(m \rho(y), n \rho(y)) \tag{2.18}
\end{equation*}
$$

where $\rho=g\left(-n y_{1}+m y_{2}\right), g$ is a smooth positive 1-periodic function, $(m, n) \in Z^{2}, m^{2}+n^{2} \neq$ 0 . It is easy to check that all the conditions on $\mathbf{a}(y)$ are satisfied. Define:

$$
\begin{equation*}
L=L_{(m, n)}=\left\{k \in Z^{2} \mid k \cdot(m, n)=0\right\} . \tag{2.19}
\end{equation*}
$$

Then, if $k \notin L$, (2.16) shows:

$$
\int_{T^{2}} \rho(y) e^{2 \pi i k \cdot y} U(x, t, y) d y=0 \quad t>0
$$

which implies:

$$
\begin{align*}
\rho(y) U(x, t, y) & =\sum_{l \in L} e^{2 \pi i l \cdot y} b_{l}(x, t) \\
U(x, t, y) & =\sum_{l \in L} e^{2 \pi i l \cdot y} \rho^{-1}(y) b_{l}(x, t) \quad t>0 . \tag{2.20}
\end{align*}
$$

On the other hand, if $k \in L$, then (2.14) shows that

$$
\begin{align*}
\int_{R^{2} \times[0, T]}\left(\varphi_{t} e^{2 \pi i k \cdot \epsilon^{-1} x} u^{\epsilon}\right. & \left.+\left(\nabla_{x} \varphi \cdot \mathbf{a}^{\epsilon}\right) e^{2 \pi i k \cdot y} u^{\epsilon}\right) d x d t \\
& +\int_{R^{2}} \varphi_{0} u^{0}\left(x, \epsilon^{-1} x\right) e^{2 \pi i k \cdot \epsilon^{-1} x} d x=0 \tag{2.21}
\end{align*}
$$

Letting $\epsilon \downarrow 0$ in (2.21) yields:

$$
\begin{align*}
\int_{R^{2} \times[0, T] \times T^{2}} & \left(\varphi_{t} e^{2 \pi i k \cdot y} U(x, t, y)+\left(\nabla_{x} \varphi \cdot \mathbf{a}\right) e^{2 \pi i k \cdot y} U(x, t, y)\right) d x d t d y \\
& +\int_{R^{2} \times T^{2}} \varphi_{0} u^{0}(x, y) e^{2 \pi i k \cdot y} d x d y=0 \tag{2.22}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\left(\int_{T^{2}} e^{2 \pi i k \cdot y} U(x, t, y) d y\right)_{t}+\nabla_{x} \cdot\left(\int_{T^{2}} e^{2 \pi i k \cdot y} \mathbf{a}(y) U(x, t, y) d y\right)=0 \tag{2.23}
\end{equation*}
$$

for any $t>0$, and

$$
\begin{equation*}
\int_{T^{2}} U(x, 0, y) e^{2 \pi i k \cdot y} d y=\int_{T^{2}} u^{0}(x, y) e^{2 \pi i k \cdot y} d y \tag{2.24}
\end{equation*}
$$

for any $k \in L$. Substituting (2.20) into (2.23), we get

$$
\begin{equation*}
\left(\int_{T^{2}} \sum_{l \in L} b_{l} \frac{e^{2 \pi i(l+k) \cdot y}}{\rho(y)} d y\right)_{t}+\nabla_{x} \cdot\left(\int_{T^{2}} \sum_{l \in L} b_{l} e^{2 \pi i(l+k) \cdot y} \frac{\mathbf{a}}{\rho(y)} d y\right)=0 \tag{2.25}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\sum_{l \in L} b_{l}<\rho^{-1}>_{l+k}\right)_{t}+m\left(b_{-k}\right)_{x_{1}}+n\left(b_{-k}\right)_{x_{2}}=0 \tag{2.26}
\end{equation*}
$$

where $<\rho^{-1}>_{l+k}=\int_{T^{2}} e^{2 \pi i(l+k) \cdot y} \rho^{-1} d y$ and $k \in L$. Substituting (2.20) into (2.24), we get

$$
\begin{equation*}
\sum_{l \in L} \int_{T^{2}} \rho^{-1}(y) e^{2 \pi i(l+k) \cdot y} b_{l}(x, 0) d y=\int_{T^{2}} u^{0}(x, y) e^{2 \pi i k \cdot y} d y \tag{2.27}
\end{equation*}
$$

for $k \in L$. That is:

$$
\begin{equation*}
\sum_{l \in L}<\rho^{-1}>_{l+k} b_{l}(x, 0)=<u^{0}>_{k}, \tag{2.28}
\end{equation*}
$$

which is the same as

$$
\begin{equation*}
\sum_{l \in L}<\rho^{-1}>_{l-k} b_{l}(x, 0)=<u^{0}>_{-k}, \tag{2.29}
\end{equation*}
$$

for all $k \in L$.
Let $C=\left(c_{l k}\right)=\left(<\rho^{-1}>_{l-k}\right)$ and $b=\left(b_{l}\right)^{T}$, where k and l are in L. It is easy to check that due to ρ^{-1} being positive, C is a bounded positive Hermitian infinite matrix from $l^{2}(C) \rightarrow l^{2}(C)$. That is, there exists a positive constant c_{0}, such that for any $x \in l^{2}(C)$

$$
c_{0}\|x\|_{l^{2}} \leq x^{T} C \bar{x} \leq c_{0}^{-1}\|x\|_{l^{2}}^{2} .
$$

Equation (2.26) with k in the place of $-k$ then becomes:

$$
\begin{equation*}
C b_{t}+m b_{x_{1}}+n b_{x_{2}}=0 . \tag{2.30}
\end{equation*}
$$

Similarly equation (2.29) can be written as:

$$
\begin{equation*}
\left.C b\right|_{t=0}=\left(<u^{0}(x, y)>_{-k}\right)_{k \in L}^{T}, \tag{2.31}
\end{equation*}
$$

which implies:

$$
\begin{equation*}
\left.b\right|_{t=0}=C^{-1}\left(<u^{0}>_{-k}\right)_{k \in L}^{T} . \tag{2.32}
\end{equation*}
$$

Equations (2.30) and (2.32) form an initial value problem of an infinite symmetric hyperbolic system. In fact, (2.30) and (2.32) can be solved by Fourier transform. Therefore,

$$
u^{\epsilon} \rightharpoonup \bar{u}(x, t)=\sum_{l \in L}<\rho^{-1}>_{l} b_{l}=\int_{T^{2}} U(x, t, y) d y
$$

where b_{l} 's are given by (2.30) and (2.32).
The reason that we find infinitely many equations indexed by $k \in L$ is that the underlying flow on T^{2} has infinitely many isolated open channels (or that many ergodic
components). In general, if the flow on T^{2} has islands (area inside closed streamlines) and open channels, one gets zero homogenized speeds for closed islands and a number of nonzero speed wave equations for the open channels (same as the number of independent channels in the flow), see [4].

In summary, strong convergence (or $U=U(t, x)$) corrersponds to having one ergodic channel, weak convergence (or $U=U(t, x, y)$) corresponds to having more than one ergodic components in the flow on torus T^{2}.

Practice Problem: Derive the homogenized elliptic equation in Lecture 10 using the above framework.

References

[1] G. Nguetseng, A General Convergence Result for a Functional Related to the Theory of Homogenization. SIAM J. Math. Anal., Vol. 20, No. 3, pp 608-623, May, 1989.
[2] J. G. Sinai, Introduction to Ergodic Theory. Princeton University Press: Princeton. 1976.
[3] T. Hou, J. Xin, Homogenization of Linear Transport Equations with Oscillatory Vector Fields, SIAM Journal Applied Math, Vol. 52, No. 1, pp 34-45, 1992.
[4] W. E, Homogenization of Linear and Nonlinear Transport Equations, Comm Pure Appl Math, XLV, pp 301-326, 1992.

[^0]: *Department of Mathematics and TICAM, University of Texas at Austin, Austin, TX 78712. Email: jxin@math.utexas.edu.

