

Lecture 11 Logic Synthesis, Part 2

Xuan 'Silvia' Zhang Washington University in St. Louis

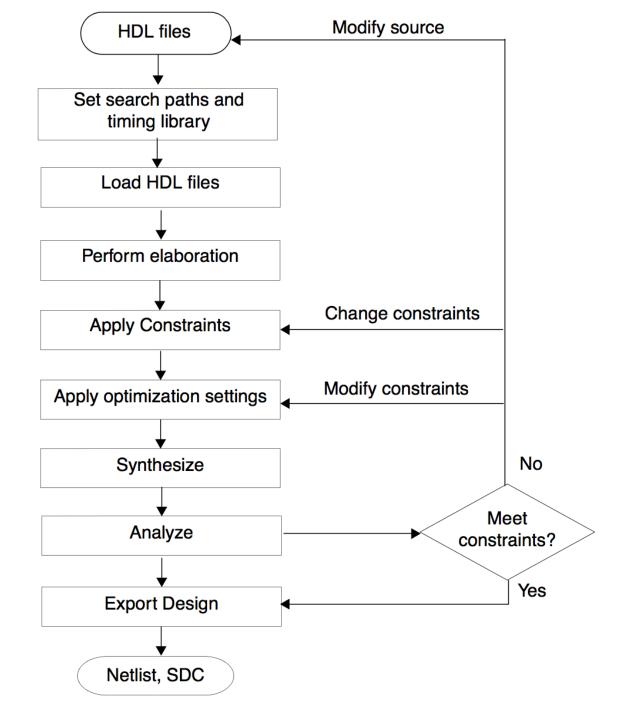
http://classes.engineering.wustl.edu/ese461/

Write Synthesizable Code

- Use meaningful names for signals and variables
- Don't mix level and edge sensitive elements in the same always block
- Avoid mixing positive and negative edge-triggered flip-flops
- Use parentheses to optimize logic structure
- Use continuous assign statements for simple combo logic
- Use nonblocking for sequential and blocking for combo logic
- Don't mix blocking and nonblocking assignments in the same always block (even if Design compiler supports them!!).
- Be careful with multiple assignments to the same variable
- Define if-else or case statements explicitly

Memory Synthesis

- Random logic using flip-flops or latches
 - use large vector or arrays in HDLs
 - inefficient in areas and performance
 - e.g.: a flip-flop takes up to 10 to 20 times area of a 6T
 SRAM cell
- Register files in datapaths
 - synthesized to a datapath component
 - dependent on software tool and technology
- Memory compilers
 - most area-efficient and high-performance solution
 - foundry, tool, or 3rd party provider



Write Synthesizable Code

Write Synthesis Script

- Set search paths and timing library
- Load HDL file
- Perform elaboration
- Apply Constraints
- Apply Optimization settings
- Synthesis
- Analysis for constraints
- Export Design
- Netlist and SDC

- Set search paths
 - search_path
 - This is the search path for source files and also the the technology library files
- Use set command
 - set search_path <path>
 - where <path> is the full path of your target library, script, or HDL file locations.
- analyze
 - Will translates HDL to intermediate format
- read_verilog
 - Will do the job of analyze and elaborate

• Performing Elaboration

- elaborate
- Builds data structures
- Infers registers and latches in the design
- Performs high-level HDL optimization, such as dead code removal
- Checks semantics: meaning of sub blocks

W.SH

- Applying Constraints
- The constraints include
 - Operating conditions
 - Clock waveforms
 - I/O timing
- You can apply constraints in several ways
 - Type them manually in the RTL Compiler shell
 - Include a constraints file
 - Read in SDC constraints
- Two types of constraint
 - Design Rule Check
 - Optimization Constraints

- Applying Optimization Constraints
 - DRC
 - Timing
 - Power
 - Area
- You can perform any of the following optimizations
 - Remove designer-created hierarchies (ungrouping)
 - Create additional hierarchies (grouping)
 - Synthesize a sub-design
 - Create custom cost groups for paths in the design to change the synthesis cost function

- compile _ultra
 - Optimization on full design and complete paths
 - Usually gives best optimization result
 - No iteration required
 - Simpler constraints
 - Simpler data management
 - More processing required
 - More memory required

- Reports
 - Timing: any violation in the timing reports leads to error. Usually solved by operating at lower clock frequencies
 - Area: the rough cell area report before making place and route
 - Power: depends on the operating conditions.
 Some Technology libraries provide WCCOM option for simulating at worst case conditions
 - Design: overview of the whole simulation in DC compiler

Synopsys Design Constraints (SDC)

- Specify the design intent, including the timing, power, and area constraints for a design
- SDC is Tcl based
- Information in the SDC
 - The SDC version (optional)
 - The SDC units (optional)
 - The Design Constraints
 - Comments (optional)

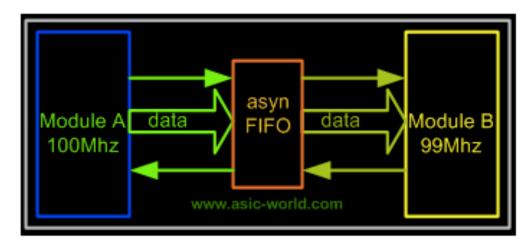
- SDC version:
 - Variable name: sdc_version
 - e.g.: set sdc_version 1.9
- SDC Units
 - Command name: set_units
 - Specify units for capacitance, resistance, time, voltage, current, and power
 - e.g.: set_units -capacitance 1pF
 - e.g.: set_units -time 1ns

Type of information	Commands
Operating conditions	set_operating_conditions
Wire load models	set_wire_load_min_block_size
	set_wire_load_mode
	set_wire_load_model
	set_wire_load_selection_group
System interface	set_drive
	set_driving_cell
	set_fanout_load
	set_input_transition
	set_load
	set_port_fanout_number
Design rule constraints	set_max_capacitance
	set_max_fanout
	set_max_transition
	set_min_capacitance

Timing constraints	create_clock
	create_generated_clock
	group_path
	set_clock_gating_check
	set_clock_groups
	set_clock_latency
	set_clock_sense
	set_clock_transition
	set_clock_uncertainty
	set_data_check
	set_disable_timing
	set_ideal_latency
	set_ideal_network
	set_ideal_transition
	set_input_delay
	set_max_time_borrow
	set_output_delay
	set_propagated_clock
	set_resistance
	set_timing_derate

Timing exceptions	set_false_path
	set_max_delay
	set_min_delay
	set_multicycle_path
Area constraints	set_max_area
Multivoltage and power optimization constraints	create_voltage_area
	set_level_shifter_strategy
	set_level_shifter_threshold
	set_max_dynamic_power
	set_max_leakage_power
Logic assignments	set_case_analysis
	set_logic_dc
	set_logic_one
	set_logic_zero

- create_clock
 - Name
 - Period
 - Waveform
 - [get_ports {}]
 - e.g.: create_clock -name "clk" -add -period 500.0 waveform {0, 250} [get_ports{clk}]


Technology Library files

- db file
 - the actual information about the cells used in the linking
- sdb file
 - information about the symbols used for the cells in the standard cell library
 - used in the process of P&R because we can see the black boxes instead of the gate level logic.
- LEF file
 - related to the P&R tools
 - layout exchange file which has information regarding no of layers of metal used or available for P&R.

Lab #4: Dual-Clock FIFO

- Due 10/19 (Wednesday)
- Cross different clock domains
 - handshake signaling
 - asynchronous first-in-first-out buffer (FIFO)
- FIFO
 - two interfaces
 - two clocks
 - one for write, one for read

Questions?

Comments?

Discussion?