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Lecture Outline

� MOS Transistors (4.3 – 4.6)
– I-V curve (Square-Law Model)

– Small Signal Model (Linear Model)
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Observed Behavior:  ID-VGS

� Current zero for negative gate voltage
� Current in transistor is very low until the gate 

voltage crosses the threshold voltage of device 
(same threshold voltage as MOS capacitor)

� Current increases rapidly at first and then it finally 
reaches a point where it simply increases linearly
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Observed Behavior:  ID-VDS

� For low values of drain voltage, the device is like a resistor

� As the voltage is increases, the resistance behaves non-linearly 
and the rate of increase of current slows

� Eventually the current stops growing and remains essentially 
constant (current source)
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“Linear” Region Current

� If the gate is biased above threshold, the surface is 
inverted

� This inverted region forms a channel that connects 
the drain and gate

� If a drain voltage is applied positive, electrons will 
flow from source to drain
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MOSFET:  Variable Resistor

� Notice that in the linear region, the current is 
proportional to the voltage

� Can define a voltage-dependent resistor

� This is a nice variable resistor, electronically 
tunable!
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Finding ID = f (VGS, VDS)

� Approximate inversion charge QN(y):  drain is 
higher than the source � less charge at drain end 
of channel
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Inversion Charge at Source/Drain
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Average Inversion Charge

� Charge at drain end is lower since field is lower 

� Simple approximation:  In reality we should 
integrate the total charge minus the bulk depletion 
charge across the channel
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Drift Velocity and Drain Current

“Long-channel” assumption:  use mobility to find v
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Square-Law Characteristics

Boundary:  what is ID,SAT?
TRIODE REGION

SATURATION REGION
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The Saturation Region

When VDS > VGS – VTn, there isn’t any inversion
charge at the drain … according to our simplistic model

Why do curves
flatten out?
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Square-Law Current in Saturation

Current stays at maximum (where VDS = VGS – VTn = VDS,SAT)

Measurement:  ID increases slightly with increasing VDS

model with linear “fudge factor”
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Pinching the MOS Transistors

� When VDS > VDS,sat, the channel is “pinched” off at drain end (hence the 
name “pinch-off region”)

� Drain mobile charge goes to zero (region is depleted), the remaining elecric
field is dropped across this high-field depletion region

� As the drain voltage is increases further, the pinch off point moves back 
towards source 

� Channel Length Modulation:  The effective channel length is thus reduced 
� higher IDS
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Linear MOSFET Model

Channel (inversion) charge:  neglect reduction at drain

Velocity saturation defines VDS,SAT = Esat L = constant

- vsat / µnDrain current:

)],()[(, TnGSoxsatNSATD VVCvWWvQI −−−=−=

|Esat| = 104 V/cm, L = 0.12 µm � VDS,SAT =  0.12 V!
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Why Find an Incremental Model?

� Signals of interest in analog ICs are often of the 
form:

Direct substitution into iD = f(vGS, vDS) is 
tedious AND doesn’t include charge-storage 
effects … pretty rough approximation
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Which Operating Region?

3VGSV =

3VDSV =
TRIODE

SAT

OFF
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Changing One Variable at a Time

Assumption:  VDS > VDS,SAT = VGS – VTn (square law)
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Slope of Tangent:  Incremental current increase
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The Transconductance gm

Defined as the change in drain current due to a change in the 
gate-source voltage, with everything else constant
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Output Resistance ro

Defined as the inverse of the change in drain current due
to a change in the drain-source voltage, with everything
else constant

Non-Zero Slope

DSVδ

DSIδ
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Evaluating ro
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Total Small Signal Current
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Putting Together a Circuit Model
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Role of the Substrate Potential

Need not be the source potential, but VB < VS

Effect:  changes threshold voltage, which 
changes the drain current … substrate acts 
like a “backgate”
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Backgate Transconductance

Result:
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Four-Terminal Small-Signal Model
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MOSFET Capacitances in Saturation

Gate-source capacitance:  channel charge is not 
controlled by drain in saturation.
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Gate-Source Capacitance Cgs

Wedge-shaped charge in saturation � effective area is (2/3)WL
(see H&S 4.5.4 for details)

ovoxgs CWLCC += )3/2(

Overlap capacitance along source edge of gate �

oxDov WCLC =

(Underestimate due to fringing fields)
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Gate-Drain Capacitance Cgd

Not due to change in inversion charge in channel

Overlap capacitance Cov between drain and source
is Cgd
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Junction Capacitances

Drain and source diffusions have (different) junction
capacitances since VSB and VDB = VSB + VDS aren’t 
the same

Complete model (without interconnects)
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P-Channel MOSFET

Measurement of –IDp versus VSD, with VSG as a parameter:
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Square-Law PMOS Characteristics
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Small-Signal PMOS Model
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MOSFET SPICE Model

Many “levels” … we will use the square-law 
“Level 1” model

See H&S 4.6 + Spice refs. on reserve for details.


