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Lecture 12
Nonparametric Regression

• The goal of a regression analysis is to produce a reasonable analysis 
to the unknown response function f, where for N data points (Xi,Yi), 
the relationship can be modeled as 

- Note: m(.) = E[y|x] if E[ε|x]=0 –i.e., ε ┴ x

• We have different ways to model the conditional expectation 
function (CEF), m(.):

- Parametric approach

- Nonparametric approach

- Semi-parametric approach.
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Non Parametric Regression: Introduction
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• Parametric approach: m(.) is known and smooth. It is fully described 
by a finite set of parameters, to be estimated. Easy interpretation. For 
example, a linear model:

• Nonparametric approach: m(.) is smooth, flexible, but unknown. Let 
the data determine the shape of m(.).  Difficult interpretation.

• Semi-parametric approach: m(.) have some parameters -to be 
estimated-, but some parts are determined by the data.
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Non Parametric Regression: Introduction
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Non Parametric Regression: Introduction
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Regression: Smoothing

• We want to relate y with x, without assuming any functional form. 
First, we consider the one regressor case:

• In the CLM, a linear functional form is assumed: m(xi) = xi’β.  

• In many cases, it is not clear that the relation is linear. 

• Non-parametric models attempt to discover the (approximate) 
relation between yi and xi. Very flexible approach, but we need to 
make some assumptions.

Nixmy iii ,,1,)(  

• The functional form between income and food is not clear  from 
the scatter plot. From Hardle (1990).

Regression: Smoothing
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• A reasonable approximation to the regression curve m(xi) will be the 
mean of  response variables near a point xi.  This local averaging 
procedure can be defined as 

• The averaging will smooth the data. The weights depend on the value 
of  x and on a h. Recall that as h gets smaller, mˆ(x) is less biased but 
also has greater variance.

Note: Every smoothing method to be described follows this form.  
Ideally, we give smaller weights for x’s that are farther from x.

• It is common to call the regression estimator mˆ(x) a smoother and the 
outcome of  the smoothing procedure is called the smooth.
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Regression: Smoothing
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• From Hansen (2013).  To illustrate the concept, suppose we use the 
naive histogram estimator as the basis for the weight function, wi:

• Let x0=2, h=0.5. The estimator (x) at x=2 is the average of  the yi

for the observations such that xi falls in the interval [1.5 ≤ xi ≤ 2.5]. 

• Hansen simulates observations (see next Figure) and calculate mˆ(x)
at x=2, 3, 4, 5 & 6. For example, (x=2) = 5.16, shown in the Figure 
as the first solid square. 

• This process is equivalent to partitioning the support of  xi into the 
regions [1.5,2.5]; [2.5,3,5]; [3.5,4.5]; [4.5,5.5]; & [5.5,6.5]. It produces a 
step function. Reasonable behavior in the bins, but unrealistic jumps.
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Regression: Smoothing – Example 1
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• Figure 11.1 - Simulated data and (x) from Hansen (2013). 

• Obviously, we can calculate (x) at a finer grid for x. It will track the 
data better. But, the unrealistic jumps (discontinuities) will remain.

Regression: Smoothing – Example 1

10

• The source of  the discontinuity is the weights wi are constructed 
from indicator functions, which are themselves discontinuous. 

• If  instead the weights are constructed from continuous functions, 
K(.), (x) will also be continuous in x. It will produce a true smooth! 
For example,

• The bandwidth h determines the degree of  smoothing. A large h
increases the width of  the bins, increasing the smoothness of  (x). A 
small h decreases the width of  the bins, producing a less smooth (x).

Regression: Smoothing – Example 1
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Figure 1. Expenditure of potatoes as a function of net income. 

h = 0.1, 1.0, N = 7125, year = 1973.  Blue line is the smooth. From Hardle (1990).

Regression: Smoothing – Example 2
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Regression: Smoothing - Interpretation

• Suppose the weights add up to 1 for all xi. The (x) is a least squares 
estimates at x since we can write (x) as a solution to

That is, a kernel regression estimator is a local constant regression, since  it 
sets m(x) equal to a constant, θ, in the very small neighborhood of  x0:

Note: The residuals are weighted quadratically =>  weighted LS!

• Since we are in a LS world, outliers can create problems. Robust 
techniques can be better.
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Regression: Smoothing - Issues

• Q: What does smoothing do to the data?

(1) Since averaging is done over neighboring observations, an estimate 
of  m(.) at peaks or bottoms will flatten them. This finite sample bias 
depends on the local curvature of  m(.). Solution: Shrink neighborhood!

(2) At the boundary points, half  the weights are not defined. This also 
creates a bias.

(3) When there are regions of  sparse data, weights can be undefined –
no observations to average. Solution: Define weights with variable 
span.

• Computational efficiency is important.

A naive way to calculate the smooth (x) consists in calculating the
wi(xj)’s for j=1,...,N. This results in O(N2) operations. If we use an
iterative algorithm, calculations can take very long.

Kernel Regression

• Kernel regressions are weighted average estimators that use kernel 
functions as weights. 

• Recall that the kernel K is a continuous, bounded and symmetric real 
function which integrates to 1. The weight is defined by

where                                         , and  Kh(u) = h-1 K(u/h);

• The functional form of the kernel virtually always implies that the 
weights are much larger for the observations where xi is close to x0. 
This makes sense!
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• Standard statistical formulas allow us to calculate E[y|x]:

E[y|x] = m(x) = ∫ y fC(y|x)) dy

where fC is the distribution of y conditional on x. As always, we can 
express this conditional distribution in several ways. In particular:

where the subscripts M and J refer to the marginal and the joint 
distributions, respectively. 

• Q: How can we estimate m(x) using these formulas? 

- First, consider first fM(x). This is just the density of x. Estimate this 
using the density estimation results. For a given value of x (say, x0) as:
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Kernel Regression

- First, consider first fM(x):

- Second, consider        ∫ fJ(y,x0) dy =

which suggests ∫ y fJ(y,x0) dy =

• Plugging these two kernel estimates of the terms in the numerator 
and the denominator of the expression for m(x) gives the Nadaraya-
Watson (NW) kernel estimator:
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Kernel Regression : Nadaraya-Watson estimator
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• The shape of the kernel weights is determined by K and the size of 
the weights is parameterized by h (h plays the usual smoothing role).

• The normalization of the weights                                      

is called the Rosenblatt-Parzen kernel density estimator. It makes sure that 
the weights add up to 1.

•  Two important constants associated with a kernel function K(.) are 
its variance σ2

K=dK and roughness ck,(also denoted RK), which are 
defined as:
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Kernel Regression: NW estimator - Different K(.)
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• Many K(.) are possible. Practical and theoretical considerations limit 
the choices. Usual choices: Epanechnikov, Gaussian, Quartic
(biweight), and Tricube (triweight).

• Figure 11.1 shows the NW estimator with Epanechnikov kernel and 
h=0.5 with the dashed line. (The full line uses a uniform kernel.)

• Recall that the Epanechnikov kernel enjoys optimal properties. 

Kernel Regression: NW estimator - Different K(.)
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Figure 3. The effective kernel weights for the food/ income data: At 
x=1 and x=2.5 for h =0.1 (label 1, blue), h =0.2 (label 2, green), h = 
0.3 (label 3, red) with Epanechnikov kernel. From Hardle (1990). 

Kernel Regression: Epanechnikov kernel.

• The smaller h, the more concentrated the wi’s. In sparse regions, say 
x=2.5 (low marginal pdf), it gives more weight to observations around 
x.

• The NW estimator is defined by

• Similar situation as in KDE: No finite sample distribution theory for 
(x). All statistical properties are based on asymptotic theory. 

• Details. One regressor (d=1), but straightforward to generalize.
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Kernel Regression: NW estimator - Properties
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• It follows that

(1) 2(x). 

- Mean. Since E[εi|xi]=0 => E[ 2(x)]=0. 

- Variance.  

(by conditioning), and then

Change of variables, (z-x)/h=u, and assume σ2(x) and f(x) are smooth:

Kernel Regression: NW estimator - Properties
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• We can apply the CLT to obtain that as h→ 0, and  Nh → ∞

(1) 1(x).

- Mean. 

Expand m(x+hu) and f(x+hu) into (2nd- and 1st-order, respectively) 
Taylor expansions around x: Up to o(h2) we get:

Kernel Regression: NW estimator - Properties
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• Then, we get

- Variance. A similar expansion shows that var[mˆ1(x)] is O(h2/Nh), 
which is of smaller order than O(1/Nh).

• Thus, as h→ 0, and  Nh → ∞,

and since (x) f(x)     =>

Kernel Regression: NW estimator - Properties
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• This bias is of size O(h2). Intuitively, the bias is larger the “curvier” 
m(x0) is -i.e.,the larger m′(x0) and m′′(x0) are.

• The kernel regression estimator, (x), is consistent. But, convergence 
is at the rate sqrt(Nh), not the usual sqrt(N).

• Applying the CLT, we get under general assumptions, asymptotically 
normality:

• The MSE = variance + bias2. Given our asymptotic results, we can 
get the AMSE[m^(x)]: 

where  dK=σ2
K and ck is the roughness. 
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Kernel Regression: NW estimator - Properties
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• Notes about asymptotic distribution:

- The asymptotic distribution depends on the kernel through ck –the 
roughness- and dk –the 2nd moment of z. 

- The optimal kernel minimizes ck; the same as for density estimation. 
Therefore, the Epanechnikov family is optimal for regression.

- The optimal h depends on the first and second derivatives of m(x), 
not on f(x).

- Rules of thumb for h designed for f(x) have no justification.

Kernel Regression: NW estimator - Properties

• Given the asymptotic normality, it is easy to construct C.I.’s. 

Usual steps: 

1) Compute (x), and, using kernel density estimation, fˆ(x).

2) Estimate σ2(x). ck, the roughness, can be obtained from Tables.  

3) Select α% level and use usual formula. 

• Note that we are not estimating the bias: 

• It is complicated, since it needs estimates of derivatives. In general, 
it adds noise to the C.I. That is, we do not estimate an asymptotic 
exact C.I.

Kernel Regression: NW estimator – C.I.’s
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• C.I.’s tend to be wider at the boundaries and when the data is 
sparse.

• Even if we compute the bias, asymptotic C.I.’s are an 
approximation. A bootstrap may work better.

Kernel Regression: NW estimator - Properties

(1) Applied to truly linear data, the NW estimator can be poor.

- Let d=1 and the true conditional mean is linear y=α+ βx, with no 
error. The behavior of the NW estimator depends on the marginal 
distribution of X. 

- If they are not spaced at uniform distances, then m^(x)≠ m(x). The 
NW estimator applied to purely linear data yields a nonlinear output.

- The choice of h may not help. As h increases, the estimator becomes 
a constant, not a linear function. 

•(2) Poor behavior at the boundaries of X. Suppose m(x) is positively 
sloped, at the right boundary, the NW estimator will be upward 
biased. In fact, the estimator is inconsistent at the boundary. 

- This restricts application of the NW estimator to interior points.

Kernel Regression: NW estimator - Limitations
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• The same principles behind kernel estimation can be used to 
estimates the derivatives of the regression function. These derivatives 
can be used to estimate partial effects.  

• If the weights are sufficiently smooth and h is properly chosen, the 
derivative estimator is consistent.

• Taking the k-th derivative of (x):

• The kernel estimate of the k-th derivative is also a local average.

Kernel Estimators of Derivatives
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• We motivated the NW estimator at x as an average of the yi’s for 
observations in a neighborhood of x: A local constant approximation. 

• Instead, we can do OLS in the same neighborhood. If we use a 
weighting function, this is called the local linear (LL) estimator. 

• The idea is to fit the local model 

• We use (Xi –x) rather than Xi to have m(x) = E[yi|Xi =x] = α.

• We do OLS with observations such that |Xi –x| ≤h. That is, 

Kernel Regression: Local Linear Estimator
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• We have a weighted LS problem, which can be generalized to:

• Then, settting Zi = [1  (Xi –x)]’ delivers:

the second line is valid for any (multivariate) kernel funtion. This is a 
(locally) weighted regression of yi on Xi. 

• LL estimator preserves linear data and behaves better at the 
boundaries.  
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Kernel Regression: Local Linear (LL) Estimator

32

• Figure 11.1 - Simulated data and (x) from Hansen (2013). 

• mˆ(x) estimated under NW (dashed line) and LL (points). Overall, 
very similar smooths.

Regression: LL Smoothing – Example 1
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• A popular local regression estimator is locally weighted scatterplot 
smoothing (lowess), introduced by Cleveland (1979). 

• It uses a variable h, determined by the distance from x0 to its k-th 
NN, and it uses a tricubic kernel:

K(z) = (70/81)(1 - |z|3)3  I[|z| < 1].

•  In principle, we can add higher order polynomial terms, which 
would make it easier to take higher order derivatives. 

Kernel Regression: LL Estimator - LOWESS

Kernel Regression: LL Estimator - Application

• Rice expenditures as a total of Log total expenditures.



RS – EC2 - Lecture 11

18

• In contrast to the NW estimator, the LL estimator preserves linearity 
in the data. That is, if the true data is linear, for any sub-sample, a local 
linear regression fits exactly, so m^(x0)= m(x0). 

• As h → ∞, the LL estimator collapses to OLS of of yi on Xi. That is, 
we can think of LL as a nonparametric generalization of OLS. 

• The asymptotic distribution of the LL estimator is similar to that of 
the NW estimator. The bias term is simpler, the m’(x) and f’(x) 
disappear. The asymptotic variance is the same.

Q: If LL improves on NW, why not use a local polynomial of order p? 
It is possible and doable. In practice, when d>1, applying polynomial 
methods is not easy.

Kernel Regression: NW or LL Estimator?

• Strictly speaking, we cannot rank the AMSE of the NW versus the 
LL estimator. 

• The AMSE of the LL estimator only depends on m”(x); while that

of the NW estimator also depends on m’(x). We expect this to 
translate into reduced bias.

• Since both estimators have the same asymptotic variance, the

statistics literature prefers the LL estimator. 

• According to Bruce Hansen (2013), caution is warranted. In simple   
simulations, the LL estimator does not always beat the NW estimator. 

Kernel Regression: NW or LL Estimator?
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• Hansen’s interesting findings: 

- When the regression function m(x) is quite flat, the NW estimator 
does better. When the regression function is steeper and curvier, the 
LL estimator tends to do better. 

- Intuition from above result: In finite samples the NW estimator 
tends to have a smaller variance. An advantage in contexts where 
estimation bias is low (such as when the regression function is flat). 

Note: In many economic contexts, it is believed that the regression 
function may be quite flat with respect to many regressors. In this 
context it may be better to use NW rather than LL.

Kernel Regression: NW or LL Estimator?

• Hall (1999) proposed a weighted NW estimator is defined by

where pi(x) are weights. The weights satisfy: 

pi(x) ≥ 0

Σi pi(x) = 1.

Σi pi(x) K(h-1( xi-x)) ( xi-x) = 1.

• The first two requirements define pi(x) as weights. The third equality 
requires the weights to force the kernel function to satisfy local 
linearity.
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Kernel Regression: Weighted NW estimator
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• The weights are determined by empirical likelihood. Specifically, for 
each x; you maximize Σi ln pi(x) s.t. the above constraints.

• The solutions take the form

where  λ is a LM, found by numerical optimization. 

• The estimator (x) has the same asymptotic distribution as the LL 
estimator. When yi ≥ 0; the standard and weighted NW estimators 
also satisfy (x) ≥ 0. This is good (m(x) is non-negative!). On the 
other side, the LL estimator is not necessarily non-negative.

Kernel Regression: Weighted NW estimator

• When yi ≥ 0; the standard and weighted NW estimators also satisfy 
(x) ≥ 0. This is good (m(x) is non-negative!). On the other side, the 

LL estimator is not necessarily non-negative.

• Disadvantage:  More computationally intensive than the LL 
estimator. The EL weights must be found separately for each x0 at 
which (x0) is calculated.

Kernel Regression: Weighted NW estimator
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• We are used to use the fitted residuals to construct GOF measures. 
The residuals are defined as usual:

• Problem: In general, but especially when h is small, it is hard to view 
ei as a GOF measure. As h→ 0, (.) → yi (and ei→0). This indicates 
overfitting as the true error is not zero. 

•Solution: Measure the fit of the regression at x = xi by re-estimating 
the model excluding the i-th observation (notation: “-i,” the i-th 
observation excluded). We call this leave-one-out estimation For NW 
regression, we get:

Kernel Regression: Residuals, Fit & CV
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• Now, the leave-one-out residuals are defined as:

• e-i is not a function of yi; there is no tendency to overfit for small h:

• The mean squared leave-one-out residual is

• This function of h is known as the cross-validation criterion. This 
criterion can be used to select the bandwith.

• The CV bandwidth hCV is the value that minimizes CV(h). Usually, 
the restriction hCV ≥ hLB is imposed, where hLB is a lower bound for 
hCV, to make sure the bandwith is not too small.

Kernel Regression: Residuals, Fit & CV
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• The  CV bandwidth hCV is calculated numerically. 

• A grid search is popular. Plots of CV(h) against h are also used.

• It turns out that CV(h) is an estimator of the mean-squared forecast 
error (MSFE). That is,

E[CV(h)] = MSFEN-1(h) = MISEN-1(h) + σ2

Kernel Regression: Residuals, Fit & CV

• Plots of CV(h) against h for Hansen’s simulated data for the NW 
and Local Linear estimators (withEpanechinikov kernel). From 
Hansen (2013).

Kernel Regression: Residuals, Fit & CV
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• The NW estimator is defined by

• The last expression simply shows that this estimator can be thought 
of as a weighted average of the observations of y. In matrix notation, 
we can write Ŷ = M(h) Y, with
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Kernel Regression: NW estimator - Multivariate

• Kernel regression predictions: Ŷ = M(h) Y

• Liner regression predictions: Ŷ = Px Y.

• A multivariate kernel is constructed, row by row, by computing the 
product of marginal densities for each variable in the matrix of 
regressors X. That is,

• Usually, we use leave-one-out kernels. That is, the current observation 
is excluded in the kernel construction to avoid overfitting — the

principal diagonal in M (h) is zeroes.

Kernel Regression: NW estimator - Multivariate
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• Mean (uniform) smoother

• Kernel smoother

where K( ) is Gaussian.

Comparison: Mean vs Kernel Smoother
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Comparison: Mean vs Kernel Smoother

k-Nearest Neighbor Estimates

• k-NN methods are more commonly used for regression than for 
density estimation. The classic k-NN smoother is defined as

This is the average value of yi among the observations which are the k
nearest neighbors of x0. (dK is the distance between x and x0.)

• A smooth k-NN estimator is: 

a weighted average of the k nearest neighbors.
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k-Nearest Neighbor Estimates

• Example: 

Suppose we have the {X,Y}={(1,5),(7,12),(3,1),(4,0),(5,4)}. Set k=3. 
We want to calculate m^(x=4) for the classic k-NN estimator, using 
Euclidian distance. Then, Neighborhoodx=4={3,4,5}. 

The weights are

{Wk=3,i(x=4)}= {0, 0, 1/3, 1/3, 1/3}

Note: If the X-variable is chosen from an equidistant grid, the k-NN
weight are equivalent to kernel weights.

• If Epanechnikov weights are used, when observations get thin, the 
k-NN weights spread out more. See the food/income example, when 
x=2.5. (Very different weights from previous (fixed) case.)

3/53/)401(]1)4(||4[(||)4(ˆ
1 3

1    
 N

i ikik YdxIkxm

Figure 4. The effective k-NN weights for the food versus net income data set. 
At x=1 and x=2.5 for k =100 (label 1), k =200 (label 2), k =300 
(label 3) with Epanechnikov kernel. From Hardle (1990).

k-Nearest Neighbor Estimates
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• The smoothing parameter k regulates the degree of smoothness of 
the estimated curve. It plays a role similar to h for kernel smoothers. 

• The influence of varying k on qualitative features of the estimated 
curve is similar to that observed for kernel estimation with a uniform 
kernel. 

• When k > N, the k-NN smoother is equal to the average of the 
response variables. When k = 1, the observations are reproduced at 
Xi, and for an x between two adjacent predictor variables a step 
function is obtained with a jump in the middle between the two 
observations.

• When X is a vector, scaling matters. Then, always scale X.

k-Nearest Neighbor Estimates

• For the one regressor case, we have similar asymptotic results as in 
the univariate density case. 

• Let N→∞, k→ 0, and Nk → ∞.  Bias and variance of the k-NN 
estimate with uniform weights are given by

Note: The optimal trade-off between bias2 and variance is thus 
achieved in an asymptotic sense by setting k ~ N4/(4+q), (q=dimension 
of X). => when q=1, k ~ N4/5.

• If k=2Nh f(x) we have exactly the same MSE at x for both kernel 
and k-NN estimators.
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k-Nearest Neighbor Estimates
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k-Nearest Neighbor Estimates

• For the multivariate case, the asymptotic analysis is the same as for 
density estimation. 

• Conditional on dk(x) ; the bias and variance are approximately as for 
NW regression. The conditional bias is proportional to dk(x) and the 
variance to 1/[N dk(x)q] (q=dimension of vector X).

• The optimal k ~N 4/(4+q) and the optimal convergence rate is the 
same as for NW estimation.

k-Nearest Neighbor Estimates - Computations

• A great advantage of the k-NN smoother is computational.

• Calculations can be easily updated. The algorithm requires O(N) 
operations to compute the smooth at all xi’s. Compare this to O(N2h ) 
calculations for the kernel estimator. 

• Cross-validation is used to set k, using leave-one-out errors:
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• Suppose we have the following DGP: 

yi = mz(xi) + xi’ β + εi

E[i|Xi,Zi] = 0

i
2 = σ2(xi) + ηi, E[ηi|Xi] = 0

- σ2(x) is the regression function of i
2 on xi. We want to estimate it.

• Problem: If i
2 were observed => NW or LL regression.

• Solution: Use the nonparametric residual ei:

• Then, we can use the NW estimator:

Nonparametric Variance Estimation
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• We have a two-step estimator. Similar situation if we use the LL 
estimator. The bandwidths h are not the same as for estimation of 
m^(x); although we use the same notation.

Note: the LL estimator is not guarenteed to be non-negative, while the

NW (or weighted NW) estimator is always non-negative (if non-
negative kernels are used).

• Fan and Yao (1998) derive the surprising result that the asymptotic 
distribution of this two-step estimator is identical to that of the one-
step idealized estimator –i.e., using ei.

Nonparametric Variance Estimation
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Series Estimation

• Series estimation is the other nonparametric regression method.  

• Series methods approximate an unknown function, m(x), with a 
flexible parametric function, with the number of parameters treated 
similarly to the bandwidth in kernel regression.

• A series approximation to m(x) takes the general form: 

mK(x) = mK(x,β), 

where mK(x,β) is a known parametric family and β is a vector of k
unknowns. 

• A linear series approximation takes the form:
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Series Estimation: Splines

• A linear series approximation takes the form:

where zjK(x) are (nonlinear) functions of x; known as basis functions. 

• Several candidates to use for series approximation

(1) Power series. We can use a p-th order polynomial –i.e., zjK(x) = xj.

It works well for low p’s. But, they tend to be unstable for large p.

(2) Trigonometric series 

It produces bounded functions. It can produce wiggly, wild estimates.

(3) Splines. A continuous piecewise polynomial function. Splines can 
have any polynomial order (linear, quadratic, cubic, etc.). But, it is 
common to use a cubic.  It is common to constrain the spline function to 
have continuous derivatives up to the order of the spline.
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Series Estimation: Splines

• There is more than one way to define a spline series expansion. All are 
based on the number of knots –the points between the segments.

Examples: A piecewise linear function, with 2 segments and a knot at t:

The function mK(x) is continuous if β00=β10. Enforcing this (and 
transforming the coefficients), we get:

Note: This function has K=3 coefficients --as a quadratic polynomial.

• Following the above process, a piecewise quadratic function, with one 
knot and a continuous 1st derivative has K=4.
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Series Estimation: Splines

• Similarly,  a piecewise cubic function, with one knot and a continuous 
2nd derivative has K=5. The function mK(x) is 

Note: The polynomial order p is selected to control the smoothness of 
the spline, as mK(x) has continuous derivatives up to p-1.

• The approximation improves as the number of knots increases. For 
example, for a cubic spline with two knots t1 & t2 (t1<t2). The form is:

• Then, a p-th-order spline with N knots at t1, t2,.., tN (t1<t2<..< tN) is

which has K = N + p + 1 coefficients.
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Series Estimation: Splines

• In spline approximations, the usual approach is to treat p as fixed, and

select N to determine the complexity of the approximation. 

• The tk’s are typically treated as fixed. It is common to set evenly spaced 
tk’s. When this happens, the knot sequence is called uniform.

Note: For a given set of knots, the function mK(x) is linear in the 
parameters => LS estimation is possible!

• Another popular class of series approximation are called B-splines. (“B” 
for basis). They are basis functions which are bounded, integrable and 
density-shaped. They can be constructed from a variety of basic shapes, 
usually polynomials.

Series Estimation: B-Splines

• Let XЄ[0; 1] and use uniform knots, that is, equal subintervals, with 
knots tj = j/J; j = 0; 1, ...., J. We also need knots outside of [0; 1]. Then, 
let tj = j/m for all integers j.

• An r-th order B-spline is a piecewise (r- 1)-order polynomial. For 
example, a quadratic (r=3) B-spline base function is piecewise quadratic 
over three subintervals:

• The B-spline for an r-th order:
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Series Estimation: B-Splines

• The B-spline is a linear combination of these basis functions:

where z=z(x) is the vector of the basic functions. 

• The number of basis functions, K, equals sum of the degree of the B-
spline basis functions and the number of interior knots plus one.

=> Dim(θ)=K=J+r+1.

• It is not easy to choose the optimal number of knots and their
locations, which is an infinite dimensional optimization problem.
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Series Estimation: Uniform Approximations

• A good series approximation mK(x) will have the property that it gets 
close to the true m(x) as K increases. 

• The Stone-Weierstrass theorem, (Weierstrass (1885), Stone (1937, 1948) 
states that any continuous function can be arbitrarily uniformly well 
approximated by a polynomial of sufficiently high order:

supxЄχ| mK(x) - m(x) |≤ ε

for any ε>0.

• That is,  m(x) can be aribitrarily well approximately by selecting a 
suitable polynomial.
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Series Estimation: Uniform Approximations

• The above result can be strengthened. If the s-th derivative of m(x) is 
continuous, then the uniform approximation error, rKi, satisfies

supxЄχ|rKi = mK(x) - m(x)|=O(K-α)

as K→∞ where  α=s/d. (dim(X)=Nxd)

• Useful result: It gives a rate at which the approximation mK(x)
approaches m(x) as K increases.

• Intuitively, the number of derivatives s indexes the smoothness of 
m(x). The best rate at which a polynomial (or spline) approximates m(x) 
depends on the underlying smoothness of m(x).

• Both results hold for spline approximations.

Series Estimation: Uniform Approximations

• m(x) can be aribitrarily well approximately by selecting a suitable 
polynomial. We plot approximations of m(x) = x1/4(1-x)1/2 on [0,1].

Note: The approximation 
with K = 3 is fairly crude, 
but improves with K = 4 
and it is very good with 
K = 6.
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Series Estimation: Runge’s Phenomenon

• Despite the excellent approximation implied by the Stone-Weierstrass 
theorem, polynomials have the troubling disadvantage that they are very 
poor at simple interpolation. 

• The problem is known as Runge’s phenomenon.

• In contrast, splines do not show Runge’s phenomenon. (See next 
Figure.) While the fitted spline displays some oscillation relative to m(x), 
but they are relatively small.

• Because of Runge’s phenomenon, high-order polynomials are not used 
for interpolation, and are not popular choices for high-order series 
approximations. Instead, splines are widely used.

• We plot approximations of m(x) = (1+x2)-1 on [-5,5], with K=11. Using 
a 10-th order polynomial. The discrepancy increases to infinity with K.

Note: The approximation 
is not accurate and far 
from the smoother true 
m(x).

Series Estimation: Runge’s Phenomenon
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Series Estimation: Regression

• We have observations on (Y, X). Steps:

(1) For each i, construct the regressor vector zKi = zK(xi), using the 
series transformations.

(2) Stack the observations in the matrices y and ZK.

(3) Do OLS => b = (ZK′ ZK)-1 ZK′y

(4) Compute the LS regression function:

(5) Compute estimated errors

Note: We estimate one error, εKi, but we have two errors: the usual 
model error, εi, and the approximation error, rK(xi)=rKi. That is, 

εKi = rKi + εi

• To assess the fit of the regression, we can calculate the R2 as usual.
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Series Estimation: Regression - K
• βk is a function of K. This reflect the goal to be flexible to incorporate 
greater complexity when the data are sufficiently informative. That is, K
will typically be increasing with sample size N.

• K plays the role of h in kernel estimation. Larger K implies smaller 
approximation error but increased estimation variance.

• The number of series terms, K, can be determined through CV.

• Under certain assumption (compact set, smoothness of m(x), bounded 
error variance, non singularities in zK, bounded E[zKi’zKi], K is chosen 
appropriately –i.e, a function of N and grows slower than N, etc.), the 
LS estimator bk converges to βk in mean squared distance.
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Series Estimation: Regression - Asymptotics

• Convergence

Under certain assumptions (compact set, smoothness of m(x), bounded 
error variance, non singularities in zK, bounded E[zKi’zKi], K is chosen 
appropriately –i.e, a function of N and grows slower than N, etc.), the 
LS estimator bk converges to βk in m.s. distance. See Newey (1997).

• Asymptotic normality

Even though we are in a situation similar to parametric estimation, the 
fact that K can grow and the finite sample bias due to the approximation 
error, a new theory needs to be developed.

It turns out that under the same assumptions needed for convergence  
and imposing some mild restrictions on K and the bias, the estimator is 
asymptotically normal. See Newey (1997).

Series Estimation: Regression - Asymptotics

• The estimator has the asymptotic bias component rK(x), due to the 
finite order series as approximation to the unknown m(x). The 
asymptotic distribution shows that the bias term is negligible if K
diverges fast enough so that NK-2α→0. (In practical terms, this means 
that K is larger than optimal.)

• Asymptotic standard errors for the m(x) can be estimated with:

where

• See Newey (1997) for details.
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Spline Smoothing

• Determination of K is not easy. A perfect fit can be achieved by giving 
a lot of local flexibility to m^(x). The result of this flexibility will be a 
jerky, difficult to interpret m^(x). 

• Spline smoothing quantifies the competition between two goals:

- producing a good fit to the data –traditionally measured as SSR

- producing a good curve –i.e., without too much rapid local variation. 

• The regression curve            is obtained by minimizing the penalized 
sum of squares

where m is twice-differentiable function on [a,b], and λ represents the 
rate of exchange between residual error and roughness of the curve m.
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• The second term,                   , represents a roughness penalty.

• The minimization problem over the class of all twice differentiable 
functions on [a,b] has a unique solution         , which is defined as the 
cubic spline. 

• is a cubic polynomial between two successive X-values.

• At the xi , and its first two derivatives are continuous. At the 
boundary points x(1) and x(N), the second derivative is zero. 

• This properties follow from the choice of penalty for roughness. A 
different penalty produces different solutions.
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Spline Smoothing
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Figure 5. A spline smooth (Motorcycle data set). From Hardle (1990).

Spline Smoothing: Example

• Q: What is the spline doing to the data?

It can be shown that the spline is linear in the yi observations, and 
there exists weights that 

• Silverman (1984) showed for large N, small λ, and xi‘s not too close 
to the boundary, 

where the local bandwith h(Xi) satisfies

• That is, the weight function looks like a kernel.
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Spline Smoothing
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Figure 6. The asymptotic spline kernel function. From Hardle (1990). 
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Spline Smoothing: Weight Function - Example

• A variation to compute splines is to solve the equivalent problem

• The parameters λ and Δ have similar meanings, and are connected 
by the relationship

where

and              solves the above problem.
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Spline Smoothing
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Table 1. Bias and variance of kernel and k-NN smoother

kernel k-NN

bias

variance
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Comparison: Kernel, k-NN and Spline Smoothers

Figure 7. Hardle (1990). A simulated data set. The raw data N=100 were 
constructed from                                                                  and)1,0(~),1,0(~,)( UXNXmY iiiii 

2)2/1(2001)(  xexxm

Note: Noisy Data.

Comparison: Kernel, k-NN and Spline Smoothers
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Figure 8. A kernel smooth of the simulated data set. The black line 
(label 1) denotes the underlying regression curve                                        
The green line (label 2) is the Gaussian kernel smooth                           . 

2)2/1(2001)(  xexxm
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Note: As expected, 
kernel goes through the 
data.

Check smoother at  
boundaries (inaccurate 
at left).

Comparison: Kernel, k-NN and Spline Smoothers

Figure 9. Hardle (1990). A k-NN kernel smooth of the simulated data 
set. The black line (label 1) denotes the underlying regression curve. 
The green line (label 2) is the k-NN smoother.                     .11),(ˆ kxmk

Note: Rougher curve..

Check smoother at  
boundaries (more 
points averaged).

Comparison: Kernel, k-NN and Spline Smoothers
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Figure 10. Hardle (1990). A spline smooth of the simulated data set. The black 
line (label 1) denotes the underlying regression curve. The green line (label 2) 
is the spline smoother                           .75),(ˆ  xm

Comparison: Kernel, k-NN and Spline Smoothers

Note: As expected, very 
good track of  
observations.

Negative smooth 
(possible, even when all 
observations positive, 
check weights).

Figure 11. Hardle (1990). Residual plot of  k-NN, kernel and spline 
smoother for the simulated data set. 

Comparison: kernel, k-NN and Spline smoothers

Note: Similar overall 
pattern. Artificial bump 
at x≈0.2.
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• A model is called semiparametric if it is described by θ and τ, where θ is 
finite-dimensional (parametric) and τ is infinite-dimensional 
(nonparametric). 

• All moment condition models are semiparametric in the sense that 
the distribution of the data (τ) is unspecified and infinite dimensional. 
But the settings more typically called semiparametric are those where 
there is explicit estimation of τ.

• In many contexts the nonparametric part τ is a conditional mean, 
variance, density or distribution function.

• Often θ is the parameter of interest, and  is a nuisance parameter, but 
this is not necessarily the case.

Semiparametric Methods (SPM)

Example: Feasible Nonparametric GLS 

DGP: y =  X θ +  (dim(X )= Nxq)

E[|X] = 0

E[i
2|X] = σ2(Xi) (τ(Xi)= σ2(Xi)) 

where the variance function σ2(Xi) is unknown but smooth in X.

We want to estimate θ. GLS is the efficient method, but it is not 
feasible. 

Feasible GLS is possible. Replace σ2(Xi) using a nonparametric 
estimator (a kernel or a k-NN estimator). 

Q: What is the asymptotic distribution of the GLS estimator?  

Semiparametric Methods – Example 1
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Example: Generated Regressors

DGP: yi =  θ τ(xi)+ i

E[|X] = 0
θ is finite dimensional and τ is an unknown function.

•Suppose τ is identified by another equation. We have consistent 
estimate,  τ^(x). (Imagine a non-parametric Heckman estimator).

•Then, OLS is possible to estimate θ. This problem is called generated 
regressors, as the regressor is a (consistent) estimate of an infeasible 
regressor.

•Q: In general, the OLS estimator is consistent. But what is its 
distribution?

Semiparametric Methods – Example 2

• Based on Andrew’s (1994) MINPIN paper.

Setting: θ^ MINimizes a criterion function, QN (θ, τ^), which depends 
on a Preliminary Infinite dimensional Nuisance parameter estimator.

=> θ^ is a two-step estimator

• The usual derivation of asymptotic distributions expands the f.o.c. 
m(θ,τ)=0, We can do this for θ, but not for τ (it is infinite dimensional). 

• To proceed, Andrews uses a stochastic equicontinuity assumption. 
Now, we work with the population version of m(θ,τ)= E[mi(θ,τ)] and 
study the convergence of 

SPM – Asymptotic Distribution
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• Under a lot of assumptions: θ^ and τ^(x) →p to θ0 and τ0; f.o.c. equal 
to 0 at (θ0 ,τ0) –i.e., identification condition-, convergence of f.o.c.; 
smoothness of underlying functions; and existence of moments), 

sqrt(N) (θ^ - θ0 ) →d N(0, V),

where

• The theorem says that θ ^ has the same asymptotic distribution as 
the idealized estimator obtained by replacing the nonparametric 
estimate τ^ with the true function τ0.

=> the estimator is adaptive. 

SPM – Asymptotic Distribution

• But the assumptions are not trivial. The convergence in probability 
assumptions need to be verified. The key assumption is 

m((θ0,τ0) = δQN(θ,τ)/δθ|(θ=θ0,τ=τ0) = 0. 

• This assumption does not always hold. It turns out, it requires a

sort of orthogonality condition between the estimation of θ and τ. 

• It holds for example 1 (FGLS with nonparametric variance), but not 
for Example 2 (generated regressors).

SPM – Asymptotic Distribution
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• It is easy to define a “partially linear” regression model: 
yi = mz(zi) + xi’ β + εi (dim(Z)=Nxq)
E[i|Xi,Zi] = 0
E[i

2|Xi=x, Zi=z] = σ2(x,z)

- The regressors are (X;Z). 
- The conditional mean is linear in Xi, but possibly non-linear in Zi. 
- Dummy variables are usually put in the X vector
- To keep things simple, we assume just one nonlinear variable: q=1.

• Goal: Estimate β and mz(.); and to obtain C.I.

• Issues: Identification, Distribution of estimates.

SPM – Partially Linear Regression Model

• Robinson (Econometrica, 1988) shows we can concentrate out mz(zi) 
by using a genearlization of residual regression. Start with: 

yi = mz(zi) + xi’ β + εi (dim(Z)=Nxq)

Taking conditional expectations n Z:

E[yi|zi] = E[mz(zi)|zi] +E[ xi’ β|zi] = mz(zi) +E[ xi’|zi] β

- Two conditional means:

- my(zi) = E[yi|zi]

- mx(zi) E[ xi’|zi]

- Then, 

my(zi) = mz(zi) + mx(zi)’ β

Subtract from the original equation (mz(zi) disappears):

yi - my(zi) = [xi’ - mx(zi)’] β + εi

SPM – Estimation
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• Rewrite in terms of residuals: yi - my(zi) = [xi’ - mx(zi)’] β + εi

- εyi = yi - my(zi) 

- εxi = [xi’ - mx(zi)’]

- εyi = εxi’β + εi

• That is, β is the coefficient of the regression of εyi on εxi. But, we do 
not observe the errors. It is an unfeasible LS estimator!

• Robinson suggests the following steps: 

1) Estimating my(zi) and mx(zi) by NW regression (different h’s, OK). 

2) Get the residuals, εxi & εyi.

3) Using the residuals, do OLS to estimate β.

Note: We can use in 1) LL or weighted NW.

SPM – Estimation

• The nonparametric regression estimates depend inversely on fz^(z).

• Problem: For values of z where fz(z). is close to 0, fz^(z) is not 
bounded away from 0. The NW estimates at this point can be poor.

• Solution: Trimming. 

Let b> 0 be a trimming constant. The trimmed estimator of β is:

β^ =(Σi εxi εxi’ I[fz^(zi) ≥0])-1 Σi εxi εyi I[fz^(zi) ≥0]

=>This is a trimmed LS residual regression.

• The asymptotic theory requires that b = bN →0, but it is not clear  
how to select b in practice. Often trimming is ignored in applications. 
Suggestion: Estimate model with and without trimming.

SPM – Estimation: Trimming
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• The needed regularity conditions: the data are i.i.d., Zi has a density, 
and the regression functions, density, and conditional variance 
function are sufficiently smooth with respect to their arguments.

• Assume h is the same for all q. The important condition on the h 
sequence is

• Equivalently, what is essential is that the estimators themselves 
converge faster than N-`/4. From the theory for nonparametric 
regression, these rates hold when h’s are picked optimally and q ≤ 3.  

SPM – Asymptotic Distribution

• Theorem (Robinson). Under regularity conditions, including q ≤ 3; 
the trimmed estimator satisfies

• That is, β^ is asymptotically equivalent to the infeasible LS estimator. 

• Estimate the variance matrix V as usual, using residuals.

SPM – Asymptotic Distribution
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• The model: 

yi = mz(zi) + xi’ β + εi (dim(Z)=Nxq)

• We estimated β. Now, we want to estimate mz(zi). It looks like an 
iterative algorithm is needed, but since β converges faster than the 
nonparametric rate, we can pretend it is fixed. Then,

• The bandwidth h = (h1, ...,  hq) is distinct from those for the first-
stage regressions. Standard errors for mz^(zi) ) as usual for standard 
nonparametric regression.

SPM – Estimation of Nonparametric Part
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• In a semiparametric context, it is important to study the effect a 
bandwidth has on the performance of the estimator of interest before 
determining the bandwidth. 

• In many cases, this requires a nonconventional bandwidth rate.

• However, this problem does not occur in partially linear models. The 
first-step bandwidths h used for my^(zi) and mx^(zi) are inputs for 
calculation of β^.  

• h impacts the theory for β^, through the uniform convergence rates 
for my^(zi) and mx^(zi), suggesting that we use conventional bandwidth 
rules, for example CV.

SPM – Bandwidth Choice
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• There are some specification tests that compare non-parametric 
regressions (“unconstrained” model) with parametric regressions 
(“constrained” model). See Blundell and Duncan (1998), Pagan and 
Ullah (1999) and Yatchew (Chapter 6).

• Recent research has focused on correcting for endogeneity (see 
Yatchew) and heteroscedasticity (see Yatchew). In general, the most 
promising approaches are two-step methods. 

(1) Non-parametrically regress endogenous x variables on the IV z, 
and calculate “errors” as the difference between those x variables and 
their (non-parametrically) predicted values. 

(2) Add these errors into the equation of interest.
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