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Review 

By considering discrete masses on springs in a crystalline solid, we have derived wave dispersion 

(𝜔 𝑣𝑠 𝐾) relations.  There are two general types of phonons: acoustic and optical.  The former have zero 

frequency at k=0 and are associated with propagation of sound waves in a solid, and the latter have 

non-zero frequency at k=0 and can couple to light. 

 

In 3 dimensions, each branch has one longitudinal mode (displacements parallel to wave propagation) 

and two transverse modes (displacement perpendicular to wave propagation).  Optical modes can only 

occur if there is more than one atom per basis.  

We have spent the previous three lectures building up the formalism of waves in solids.  It turns out that 

just like light waves sometimes behave like particles instead, elastic waves in solids also have a 

wave/particle duality.   

A quantum of crystal lattice vibration is called a phonon.  Generally, the suffix –on in physics connotes 

something that behaves as a discrete particle.  Crystalline solids support many different types of 

‘quasiparticles’—particle-like excitations which are the result of many-body interactions in a crystal and 

do not exist outside a crystalline solid. 



Going back to the definition of a quantum harmonic oscillator, the energy of an elastic mode of angular 

frequency 𝜔 is: 

𝐸 = (𝑛 +
1

2
) ℏ𝜔 

1

2
ℏ𝜔 is the zero point energy of the mode, and when 𝑛 > 0  it means that the mode is occupied by n 

phonons.  Phonons are bosonic particles so each mode (defined by its angular frequency 𝜔) can be 

occupied by more than one particle. 

The particle nature of lattice vibrations in solids will become more evident in this chapter when we use it 

to explain various thermal properties of materials. 

Also, because of boundary conditions, the wavevector or momentum, k, is also quantized.  For a 1D 

chain, we assume that there are N atoms and periodic boundary conditions such that the 0-th atom is 

mapped onto the N-th atom. 

Plugging this into the wave-like solution, we get: 

𝑒𝑖(𝑘𝑁𝑎−𝜔𝑡) = 𝑒𝑖(0−𝜔𝑡) 

𝑒𝑖𝑘𝑁𝑎 = 1 

𝑘𝑁𝑎 = 2𝜋𝑛 (where n is an integer) 

𝑘 =
2𝜋𝑛

𝑎𝑁
 

Thus, k is not a continuous variable, but it only takes on quantized solutions.  However, for large N, the 

spacing between adjacent values is very small.  Note that since the maximum unique values that k can 

take on are ±
𝜋

𝑎
, there are N distinct values that k can take on.  Another way to say this is that there are 

N ‘modes’ in this branch, or N available quantum states. 

 

Quantum harmonic oscillator: measuring occupation of normal modes 

A quantum harmonic oscillator has energy eigenvalues  

𝐸𝑛 = (𝑛 +
1

2
) ℏ𝜔 

The partition function for a discrete ensemble is defined as: 

𝑍 ≡ ∑ 𝑒−𝐸𝑛𝛽

𝑛

 

It is a sum over all available states which have a characteristic energy, and each term in the sum 

describes the probability of a given state being occupied at a given energy based on the temperature. 

𝛽 = 1/𝑘𝐵𝑇  𝑘𝐵 is the Boltzmann constant which converts temperature (in Kelvin) to units of energy 

(usually in Joules).  The derivatives of Z are involved in all thermodynamic quantities.  For a quantum 

harmonic oscillator, the partition function is given by: 



𝑍𝑄𝐻𝑂 = ∑ 𝑒
−(𝑛+

1
2

)ℏ𝜔𝛽

𝑛

 

= 𝑒−ℏ𝜔𝛽/2 ∑ 𝑒−𝑛ℏ𝜔𝛽
∞

𝑛=0
 

This is a geometric series of the form ∑ 𝑥𝑛
𝑛 =

1

1−𝑥
  if |x|<1 

𝑍𝑄𝐻𝑂 =
𝑒−ℏ𝜔𝛽/2

1 − 𝑒−ℏ𝜔𝛽
 

The average energy is given by: 

〈𝐸〉 = −
𝜕𝑙𝑜𝑔𝑍𝑄𝐻𝑂

𝜕𝛽
=

𝜕

𝜕𝛽
(

ℏ𝜔𝛽

2
+ log(1 − 𝑒−ℏ𝜔𝛽)) 

〈𝐸〉 =
ℏ𝜔

2
−

ℏ𝜔𝑒−ℏ𝜔𝛽

1 − 𝑒−ℏ𝜔𝛽
= ℏ𝜔(

1

2
+

1

𝑒ℏ𝜔𝛽 − 1
) 

This corresponds to an average occupation value 

〈𝑛〉𝑄𝐻𝑂 =
1

𝑒ℏ𝜔𝛽 − 1
=

1

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
 

This is also known as the planck distribution, used to derive blackbody radiation in the context of 

photons.  Like photons, phonons are bosons, and many can occupy a given quantum state.  We will need 

this later.  Unlike photons, there are three polarizations for each propagation direction (not two), and k 

cannot take on arbitrary values—it can only take on values in the first Brillouin zone. 

 

Phonon heat capacity 

Heat capacity is a materials property which converts absorbed energy into an increase in temperature. 

Knowing the heat capacity of a material can help you answer questions like 

 If I shine a laser of known power and frequency onto a given crystalline solid (and I know the 

optical absorptivity of that material for that frequency of light), how much will the region 

exposed to the laser beam heat up? 

 If I put a copper pan on a hot plate (powered by known voltage and current) what is the 

maximum temperature it can reach in 5 minutes? 

In this derivation, we will consider the heat capacity at constant volume, defined as 𝑐𝑉 = (
𝜕𝑈

𝜕𝑇
)

𝑉
 

Where U is the internal energy and T is the temperature. 

There is also heat capacity at constant pressure (𝑐𝑃) which is given by the temperature derivative of the 

enthalpy (𝐻 = 𝑈 + 𝑃𝑉).  The two types of heat capacity are related to each other by the 

thermodynamic relation 𝑐𝑃 − 𝑐𝑉 = 9𝛼2𝐵𝑉𝑇 where 𝛼 is the coefficient of linear thermal expansion 



(thermal expansion will be discussed later in chapter 5), V is the volume, and B is the bulk modulus 

(derived in chapter 3). 

The total energy (U) of phonons at a given temperature is given by: 

∑ ∑ < 𝑛𝐾,𝑝 > ℏ𝜔𝐾,𝑝

𝑝𝐾

 

Where: 

 The sum over K is summing up all available momentum states (e.g. momentum is quantized, so 

we consider each discrete value and look at the frequency 𝜔 at that value according to the 

dispersion relation) 

 The sum over p is summing up all ‘polarizations.’  This is another way of saying you are summing 

over all phonon branches (longitudinal acoustic, transverse acoustic, longitudinal optical and 

transverse optical).  For a material which occupies D dimensions and has P atoms per basis, 

there will be a total of DP ‘polarizations’ with D of them being acoustic and D(P-1) of them being 

optical. 

 Each permissible 𝜔𝐾,𝑝 is called a normal mode 

 < 𝑛𝐾,𝑝 > is the number of phonons with momentum K and polarization p which are expected to 

be occupied at a given temperature.  This is the term which allows us to take a temperature 

derivative to derive heat capacity because the other terms are not temperature dependent.  

Some general intuition about this term: 

o At a given temperature, lower frequency modes are more likely to be occupied, unless 

the temperature is really high 

o Every material has a maximum phonon frequency, so at sufficiently high temperature, 

all modes will be equally occupied 

Plug the value value of 〈𝑛〉𝑄𝐻𝑂 found earlier into U: 

𝑈 = ∑ ∑
ℏ𝜔𝐾,𝑝

𝑒ℏ𝜔𝐾,𝑝/𝑘𝐵𝑇 − 1
𝑝𝐾

 

It is convenient to replace the sum over K with an integral, because adjacent values of K are so close 

together that it is almost a continuum. 

𝑈 = ∑ ∫ 𝑑𝜔𝐷𝑝(𝜔)

𝑝

ℏ𝜔

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
 

Where 𝐷𝑝(𝜔) is the density of states—the number of phonon modes between frequency 𝜔 and 𝜔 +

𝑑𝜔 of polarization p.  Densities of states are encountered in various contexts in solid state physics, and 

they are used to enumerate the number of quantum states available to be occupied by various particles.  

The units are (number of states)/energy.   



𝑐𝑣 =
𝜕𝑈

𝜕𝑇
= ∑ ∫ 𝑑𝜔𝐷𝑝(𝜔)

𝑝

(ℏ𝜔)2

𝑘𝐵𝑇2 𝑒ℏ𝜔/𝑘𝐵𝑇

(𝑒
ℏ𝜔

𝑘𝐵𝑇 − 1)

2  

Finding the specific heat amounts to first figuring out the density of states.  We will consider a general 

formulation in 3D followed by two common approximations (of which only one will be covered in this 

lecture). 

Density of states in three dimensions 

Use periodic boundary conditions in all three dimensions, but consider the length in each direction (i.e. 

consider a box of dimensions LxLXL=V 

𝑢(𝑛𝑎) = 𝑢(𝑛𝑎 + 𝐿) 

𝑢0𝑒𝑖(𝐾𝑥𝑛𝑎−𝜔𝑡) = 𝑢0𝑒𝑖(𝐾𝑥𝑛𝑎+𝐾𝐿−𝜔𝑡) 

1 = 𝑒𝑖𝐾𝑥𝐿  

For this equality to hold, K_x can take on: the values 0, ±
2𝜋

𝐿
, ±

4𝜋

𝐿
… ±

𝑁𝜋

𝐿
 

Similar for K_y and K_z 

The interval between k points in each dimension is 

Δ𝐾 = 2𝜋/𝐿 

Thus in three dimensions, there is one mode per box of volume Δ𝐾𝑥Δ𝐾𝑦Δ𝐾𝑧 = (
2𝜋

𝐿
)

3
= 8𝜋3/𝑉 

The total number of modes with wavevector less than K is given by dividing a sphere of radius K by the 

volume of each ‘box’ 

𝑁 =

4
3

𝜋𝐾3

8𝜋3/𝑉
= 𝐾3𝑉/6𝜋2 

We want 
𝑑𝑁

𝑑𝜔
𝑑𝜔 = 𝐷(𝜔)𝑑𝜔 

Use chain rule to express this in terms of K 

𝑑𝑁

𝑑𝜔
=

𝑑𝑁

𝑑𝐾
𝑑𝐾/𝑑𝜔  

𝑑𝑁

𝑑𝐾
= 𝐾2𝑉/2𝜋2 

Thus, we get 𝐷(𝜔) =
𝐾2𝑉

2𝜋2

𝑑𝐾

𝑑𝜔
 

This is the density of states for a particular polarization, and the total density of states is found by 

adding up this expression for all polarizations. 



Thus, if we had a closed-form expression for 𝜔(𝐾), we could invert it to find 𝐾(𝜔) and take the 

derivative to find the density of states. 

For a three dimensional lattice with multiple atoms per basis, we do not necessarily have a closed form 

expression for 𝜔(𝐾), so we consider two approximations to get around this shortcoming. 

Debye model for density of states 

In the Debye model, the velocity of sound (i.e. the wave propagation velocity) is taken as a constant (v) 

for every polarization, as it was in our derivation of elastic waves in a continuous solid (Ch 3).  Clearly, 

this model is meant to only approximate acoustic phonons, not optical ones. 

𝜔 ≡ 𝑣𝐾 

The density of states becomes (using expression above, and substituting 𝐾 = 𝜔/𝑣): 

𝐷(𝜔) =
(

𝜔
𝑣

)
2

𝑉

2𝜋2

𝑑

𝑑𝜔
(

𝜔

𝑣
) 

𝐷(𝜔) =
𝜔2𝑉

2𝜋2𝑣3
 

If there are N primitive cells in the solid, there are N acoustic phonon modes. 

With this information, a ‘cutoff’ frequency can be determined: 

𝑁 =
𝐾3𝑉

6𝜋2
=

𝜔3𝑉

6𝜋2𝑣3
 

Define the ‘cutoff frequency’ as 𝜔𝐷 (D is for debye) and plug in above. 

𝜔𝐷
3 =

6𝜋2𝑣3𝑁

𝑉
 

Because 𝜔 is a function of K, this also defines a cutoff wavevector 𝐾𝐷: 

𝐾𝐷 =
𝜔𝐷

𝑣
= (

6𝜋2𝑁

𝑉
)

1/3

 

The internal energy as a function of temperature is given by (counting only one polarization type; we are 

only considering acoustic branches so there will be three polarization types): 

𝑈 = ∫ 𝑑𝜔𝐷(𝜔)
ℏ𝜔

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
= ∫ 𝑑𝜔

𝜔𝐷

0

(
𝜔2𝑉

2𝜋2𝑣3
)

ℏ𝜔

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
 

(assume speed of sound is the same for all polarization types and multiply by 3) 

𝑈 =
3𝑉ℏ

2𝜋2𝑣3
∫ 𝑑𝜔

𝜔𝐷

0

𝜔3

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
 

Make substitution: 𝑥 ≡
ℏ𝜔

𝑘𝐵𝑇
 



𝜔 = 𝑥𝑘𝐵𝑇/ℏ 

𝑑𝜔 =
𝑘𝐵𝑇

ℏ
𝑑𝑥 

𝑥𝐷 ≡ ℏ𝜔𝐷/𝑘𝐵𝑇 ≡ 𝜃/𝑇 

𝜃 is defined as the debye temperature (the temperature equivalent of the debye temperature).  It is 

given by: 

𝜃 =
ℏ𝑣

𝑘𝐵
(

6𝜋2𝑁

𝑉
)

1/3

 

𝜃3 = (
ℏ𝑣

𝑘𝐵
)

3 6𝜋2𝑁

𝑉
 

(
𝑇

𝜃
)

3

=
𝑇3𝑘𝐵

3𝑉

6𝜋2ℏ3𝑣3𝑁
 

Plug all this into expression for U: 

𝑈 =
3𝑉ℏ

2𝜋2𝑣3
(

𝑘𝐵𝑇

ℏ
)

3 𝑘𝐵𝑇

ℏ
∫ 𝑑𝑥

𝑥3

𝑒𝑥 − 1

𝑥𝐷

0

 

𝑈 = 9𝑁𝑘𝐵𝑇 (
𝑇

𝜃
)

3

∫ 𝑑𝑥
𝑥3

𝑒𝑥 − 1

𝑥𝐷

0

 

The heat capacity is found by differentiating with respect to temperature.  It is easier to do this back 

when U was in terms of 𝜔 

𝐶𝑉 =
𝜕𝑈

𝜕𝑇
=

𝜕

𝜕𝑇
(

3𝑉ℏ

2𝜋2𝑣3
∫ 𝑑𝜔

𝜔𝐷

0

𝜔3

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
) 

𝐶𝑉 =
3𝑉ℏ

2𝜋2𝑣3

ℏ

𝑘𝐵𝑇2
∫ 𝑑𝜔

𝜔𝐷

0

𝜔4𝑒ℏ𝜔/𝑘𝐵𝑇

(𝑒ℏ𝜔/𝑘𝐵𝑇 − 1)2  
 

Re-express in terms of x 

𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃
)

3

∫ 𝑑𝑥
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2

𝑥𝐷

0

 

The integral can be solved numerically, and approximations can be made in limits of low and high 

temperature. 

Low temperature limit:  

In the low temperature limit, we let the upper bound of the integral go to infinity.  We will solve the 

integral for the energy U and differentiate afterwards. 

∫ 𝑑𝑥
𝑥3

𝑒𝑥 − 1
= ∫ 𝑑𝑥 𝑥3 ∑ 𝑒−𝑠𝑥

∞

𝑠=1

∞

0

= 6 ∑ 1/𝑠4

∞

𝑠=1

= 𝜋4/15
∞

0

 



The second to last step comes from multiple applications of integration-by-parts and the last step is 

from a standard table. 

Thus, in the limit of very low temperature, 𝑈 ≈ 3𝜋4𝑁𝑘𝐵𝑇4/5𝜃3 

And 𝐶𝑉 ≈
12𝜋4

5
𝑁𝑘𝐵 (

𝑇

𝜃
)

3
 

Thus, in the limit of low temperature, the lattice specific heat is proportional to 𝑇3, which is verified by 

experiments. 

High temperature limit: 

In the high temperature limit 𝑥 → 0 and we can taylor expand all of the exponential terms to first order 

𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃
)

3

∫ 𝑑𝑥
𝑥4(1 + 𝑥)

(𝑥)2

𝑥𝐷

0

= 9𝑁𝑘𝐵 (
𝑇

𝜃
)

3

∫ 𝑑𝑥(𝑥2 + 𝑥3)
𝑥𝐷

0

 

𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃
)

3

(
1

3
𝑥𝐷

3 +
1

4
𝑥𝐷

4 ) 

Drop higher order terms and consider definition of 𝑥𝐷 given earlier in terms of 𝜃 

𝐶𝑉 ≈ 3𝑁𝑘𝐵 (
𝑇

𝜃
)

3

(
𝜃

𝑇
)

3

= 3𝑁𝑘𝐵 

This is the classical value of the heat capacity, in which each atom contributes 3𝑘𝐵𝑇 to the total energy, 

and there are N atoms, so the temperature derivative of the total energy is 3𝑁𝑘𝐵.  Heat capacity for a 

general crystalline solid and for specific crystalline solids are plotted below. 



 

 

Notice that the classical value of the heat capacity is reached pretty much at the debye temperature (𝜃).  

Thus, the debye temperature physically represents the temperature when phonons in a solid start 

behaving like a classical gas of particles.  Some debye temperatures for real materials are given below: 

Aluminium 428 K 

Beryllium 1440 K 

Cadmium 209 K 

Manganese 410 K 

Nickel 450 K 

Platinum 240 K 

 

https://en.wikipedia.org/wiki/Aluminium
https://en.wikipedia.org/wiki/Beryllium
https://en.wikipedia.org/wiki/Cadmium
https://en.wikipedia.org/wiki/Manganese
https://en.wikipedia.org/wiki/Nickel
https://en.wikipedia.org/wiki/Platinum


Caesium 38 K 

Carbon 2230 K 

Chromium 630 K 

Copper 343.5 K 

Gold 170 K 

Iron  470 K 

Lead  105 K 

 

Sapphire 1047 K 

Silicon 645 K 

Silver  215 K 

Tantalum 240 K 

Tin (white) 200 K 

Titanium 420 K 

Tungsten 400 K 

 

 

Notice that 

 Many are close to room temperature 

 ‘Soft’ metals such as gold and lead have a low debye temperature 

 Materials containing ‘light’ elements such as carbon, beryllium, and sapphire (Al2O3) have very 

high debye temperature 

https://en.wikipedia.org/wiki/Caesium
https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Chromium
https://en.wikipedia.org/wiki/Copper
https://en.wikipedia.org/wiki/Gold
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Lead
https://en.wikipedia.org/wiki/Sapphire
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Silver
https://en.wikipedia.org/wiki/Tantalum
https://en.wikipedia.org/wiki/Tin
https://en.wikipedia.org/wiki/Titanium
https://en.wikipedia.org/wiki/Tungsten

