

Lecture 12

- Process-induced Variations II: Systematic
 - Lithographic Proximity Effect
 - Layout Dependent Strain
 - Well Proximity Effect

Reading: multiple research articles (reference list at the end of this lecture)

Lithography Proximity Effect (LPE)

- Optical Proximity Correction (OPC) used to compensate for image errors due to diffraction effects by adding extra polygons to the pattern on the photomask
- Phase Shift Mask (PSM)
 used to reduce the light interference by
 changing the thickness of transmitting patterns
 on the photomask (i.e. creating a phase shift
 light)

These resolution enhancement techniques help to reduce the pattern distortions, yet still end with round corners.

Impact of Poly Corner Rounding: Gate-Extension Dependence

> Threshold voltage 0.35 0.30 SCE RSCE 0.25 STI ∑ 0.20 ∯ 0.15 0.10 → Vtlin 0.05 0.00 0.02 0.04 0.06 -0.02Poly gate PY0 [um] Average channel length increasing.

1.E-05
1.E-06
1.E-07
1.E-08
1.E-09
1.E-05
1.E-09
1.E-10
2.E-05
3.E-05
Ion [A]

Poly corner rounding can be improved by using multiple patterning/exposure techniques.

11/6/2013

Impact of Active Region Rounding: Asymmetric Source/Drain

- Large source structure provides better performance
 - 10% Ion gain or 3x Ioff reduction
- Large drain structure degrades performance
 - 50% Ion degradation or 3x Ioff leakage

M. Choi, SPIE (2009)

STI Proximity Effect

- Due to the different thermal expansion coefficients between Si and STI, there exists <u>biaxial compressive</u> residual stress in the active region after processing.
- STI-stress generally increases PMOS current and decreases NMOS current.
- Stress relaxes exponentially with increased distance from Si/STI boundary.

R. A. Bianchi, IEDM (2002)

5

Layout Dependent Strain: eSiGe Source/Drain

V. Moroz, SISPAD (2008)

11/6/2013 Nuo Xu EE 290D, Fall 2013 6

Other Sources for Layout Dependent

Well Proximity Effect (WPE)

2-D WPE T.B. Hook, T-ED (2003)

- During ion implantation, kinetic ions scatter back out of PR and become embedded in the Si near PR edge, causing V_{TH} shift.
- The affected distance is ~ 1um.
- Small angle II helps, but never avoids WPE.

Another WPE: Stress-induced Enhanced/Retarded Diffusion

H. Tsuno, VLSI-T (2007)

Layout parameters	NFET			PFET	
shrinkage	В	As	P	В	As
Gate-STI	-9%	-17%	-34%	-23%	-43%
Gate space	1%	1%	3%	2%	4%
STI width	4%	8%	15%	11%	18%

N-MOSFET V_{TH} Shift vs. Inverse of (1) STI-Gate Distance and (r)Gate Spacing

EE 290D, Fall 2013

Design for Manufacturability (DFM)

$$\mu = \mu_{ref} \frac{1 + K_{\mu} \left(\frac{1}{SA + L/2} + \frac{1}{SB + L/2}\right)}{1 + K_{\mu} \left(\frac{1}{SA_{ref} + L/2} + \frac{1}{SB_{ref} + L/2}\right)}$$
 where
$$K_{V} = \frac{K_{VTO}}{1 + \frac{L_{KVTO}}{L^{LLODKVTO}} + \frac{W_{KVTO}}{W^{WLODKVTO}} + \frac{P_{KVTO}}{L^{LLODKVTO}W^{WLODKVTO}}$$

$$V_{TO} = V_{TO\,ref} + K_V \left(\frac{1}{SA + L/2} + \frac{1}{SB + L/2} - \frac{1}{SA_{ref} + L/2} - \frac{1}{SB_{ref} + L/2} \right)$$

where
$$K_V = \frac{K_{VTO}}{1 + \frac{L_{KVTO}}{L^{LLODKVTO}} + \frac{W_{KVTO}}{W^{WLODKVO}} + + \frac{P_{KVTO}}{L^{LLODKVTO}W^{WLODKVTO}}}$$

Compact modeling is the best solution to leverage between the accuracy and design complexity.

Monitors for Systematic Variability

Ring oscillators (RO) and OFF-state transistors are often used to characterize transistors' performance and leakage.

11/6/2013 Nuo Xu EE 290D, Fall 2013 11

Summary of Systematic Variability on Planar Bulk MOSFETs

Layout Variation	Typical I _{on} variation range	Typical V _{th} variation range
Length of diffusion (LOD) (SiGe or STI)	~30%	~50mV
Spacing to adjacent diffusion	~5%	$\sim \! \! 15 mV$
Active diffusion corners	~5%	~15mV
Poly spacing	~15%	~30mV
Poly corner rounding	~5%	$\sim 20 \text{mV}$
Well boundary (WPE)/ Dual stress liner (DSL)	~15%	~90mV
Contact to gate distance	~3%	$\sim 10 mV$

delay(ps) leakage power(nW)		no well prox	ximity model	using well proximity model		
25C/1.0V		value	ratio	value	ratio	
inverter	cell rise	27.98	1	30.12	1.08	
	cell fall	19.34	1	21.19	1.10	
	leakage	4.654	1	2.448	0.53	
NAND	cell rise	31.18	1	33.34	1.07	
	cell fall	28.83	1	31.55	1.09	
	leakage	5.095	1	3.007	0.59	
NOR	cell rise	55.67	1	59.88	1.08	
	cell fall	20.52	1	22.38	1.09	
	leakage	10.107	1	6.222	0.62	

impacts of different systematic variability sources Courtesy of X.-W. Lin (Synopsys)

Layout-dependent strain and WPE play the dominant role on transistor performance's drift.

standard logic circuit performance shift w/ WPE Y.-M. Sheu, CICC (2005)

Small active-region area cells suffer more from systematic variability.

Impact of Layout Dependent Strain on FinFETs

- Topologies of nested and isolated FinFET are unavoidable.
- Mobility of nested FinFET will be enhanced by ~80%.
- Stress of isolated FinFET is almost relaxed.

M. Choi, ISTDM (2012)

Strained FinFET Inverter Performance

stress profiles from a nested FinFET

CMOS Inverter performance benchmark

Inverter Layout		STI comp. – I GPa	STI tensile I GPa	
(a)	2 gates 2 fins	reference	+6.15 %	
(b)	I gate 4 fins	- 4.69 %	- 5.14 %	

- PMOS stress (induced by eSiGe) boosts with fin length and # of gates per fin and degrades with increasing fin pitch.
- NMOS stress (induced by tensile STI) boosts with increasing fin pitch, and degrades with increasing # of gates per fin.
- For a CMOS invertor, the best configuration comes from a multiple-gate yet moderate fin-pitch design.

M. G. Bardon, VLSI-T (2013)

References

- 1. T. B. Hook *et al.*, "Lateral Ion Implant Straggle and Mask Proximity Effect," *IEEE Transactions on Electron Devices*, vol.50, no.9, pp. 1946-1951, 2003.
- 2. R.A. Bianchi *et al.*, "Accurate Modeling of Trench Isolation Induced Mechanical Stress Effects on MOSFET Electrical Performance," *IEEE IEDM Tech. Dig.*, pp.117-120, 2002.
- 3. V. Moroz *et al.*, "The Impact of Layout on Stress-Enhanced Transistor Performance," *SISPAD Tech. Dig.*, pp.143-146, 2005.
- 4. N. Xu et al., "Physically based Modeling of Stress Induced Variation in Nanoscale Transistor Performance," *IEEE Transactions on Device and Material Reliability*, vol.11, no.3, pp. 378-386, 2011.
- 5. H. Aikawa *et al.*, "Variability Aware Modeling and Characterization in Standard Cell in 45nm CMOS with Stress Enhancement Technique," *Symp. VLSI Tech.*, pp.90-91, 2008.
- 6. H. Tsuno *et al.*, "Advanced Analysis and Modeling of MOSFET Characteristics Fluctuation Caused by Layout Variation," *Symp. VLSI Tech.*, pp.204-205, 2007.
- 7. L. T.-N. Wang *et al.*, "Parameter-Specific Ring Oscillator for Process Monitoring at the 45nm Node," *IEEE CICC Tech. Dig.*, 2010.
- 8. Y.-M. Sheu *et al.*, "Modeling Well Edge Proximity Effect on Highly-Scaled MOSFETs," *IEEE CICC Tech. Dig.*, 2005.
- 9. M. Choi et al., "14nm FinFET Stress Engineering with Epitaxial SiGe Source/Drain," International SiGe Technology and Device Meeting, Berkeley, CA, 2012.
- 10. M. G. Bardon *et al.*, "Layout induced Stress Effects in 14nm and 10nm FinFETs and their Impact on Performance," *Symp. VLSI Tech.Dig.*, pp. 114-115, 2013.