Lecture 13: B+ Tree

Announcements

1. Project Part 2 extension till Friday
2. Project Part 3: B+ Tree coming out Friday
3. Poll for Nov 22nd
4. Exam Pickup: If you have questions, just want to see your exam come to office hours or drop by my office

- Two weeks (until November $8^{\text {th }}$) for questions \& concerns.

Lecture 13: B+ Tree

What you will learn about in this section

1. Recap: Indexing
2. B+ Trees: Basics
3. B+ Trees: Operations, Design \& Cost
4. Recap: Indexing

Indexes: High-level

- An index on a file speeds up selections on the search key fields for the index.
- Search key properties
- Any subset of fields
- is not the same as key of a relation
- Example:

Product(name, maker, price)
On which attributes would you build indexes?

More precisely

- An index is a data structure mapping search keys to sets of rows in a database table
- Provides efficient lookup \& retrieval by search key value- usually much faster than searching through all the rows of the database table
- An index can store the full rows it points to (primary index) or pointers to those rows (secondary index)
- We'll mainly consider secondary indexes

Operations on an Index

- Search: Quickly find all records which meet some condition on the search key attributes
- More sophisticated variants as well. Why?
- Insert / Remove entries
- Bulk Load / Delete. Why?

Indexing is one the most important features provided by a database for performance

Activity-13.ipynb
2. B+ Trees: Basics

What you will learn about in this section

1. B+ Trees: Basics
2. B+ Trees: Design \& Cost
3. Clustered Indexes

B+ Trees

- Search trees
- B does not mean binary!
- Idea in B Trees:
- make 1 node = 1 physical page
- Balanced, height adjusted tree (not the B either)
- Idea in B+ Trees:
- Make leaves into a linked list (for range queries)

B+ Tree Index

Leaf Pages (sorted by search key)

- Leaf pages contain data entries, and are chained (prev \& next)
- Non-leaf pages have data entries

B+ Tree Basics

Parameter $d=$ the order

Each non-leaf ("interior") node has $\mathrm{d} \leq m \leq 2 \mathrm{~d}$ entries
- Minimum 50\% occupancy

Root node has $1 \leq m \leq 2 \mathrm{~d}$ entries

B+ Tree Basics

The n entries in a node define $n+1$ ranges

B+ Tree Basics

Non-leaf or internal node

For each range, in a non-leaf node, there is a pointer to another node with entries in that range

B+ Tree Basics

Leaf nodes also have between d and $2 d$ entries, and are different in that:

B+ Tree Basics

Leaf nodes also have between d and $2 d$ entries, and are different in that:

Their entry slots contain pointers to data records

B+ Tree Basics

Non-leaf or internal node

Leaf nodes also have between d and $2 d$ entries, and are different in that:

Their entry slots contain pointers to data records

They contain a pointer to the next leaf node as well, for faster sequential traversal

B+ Tree Basics

B+ Tree Page Format

index entries

3. B+ Trees: Operations, Design \& Cost

B+ Tree operations

$A B+$ tree supports the following operations:

- equality search
- range search
- insert
- delete
- bulk loading

Searching a B+ Tree

- For exact key values:
- Start at the root
- Proceed down, to the leaf
- For range queries:
- As above
- Then sequential traversal

SELECT name FROM people WHERE age $=25$

SELECT name
FROM people
WHERE 20 <= age
AND age <= 30

B+ Tree: Search

- start from root
- examine index entries in non-leaf nodes to find the correct child
- traverse down the tree until a leaf node is reached
- non-leaf nodes can be searched using a binary or a linear search

B+ Tree Exact Search Animation

$$
K=30 ?
$$

30 in $[30,40)$

To the data!

B+ Tree Range Search Animation

K in $[30,85]$?

$30<80$
30 in $[20,60)$

30 in $[30,40)$

To the data!

B+ Tree: Insert

- Find correct leaf L.
- Put data entry onto L.
- If L has enough space, done!
- Else, must split L (into L and a new node L2)
- Redistribute entries evenly, copy up middle key.
- Insert index entry pointing to $L 2$ into parent of L.
- This can happen recursively
- To split non-leaf node, redistribute entries evenly, but pushing up the middle key. (Contrast with leaf splits.)
- Splits "grow" tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

Inserting 8* into B+ Tree

Inserting 8* into B+ Tree

Minimum occupancy is guaranteed in both leaf and
index page splits

Inserting 8* into B+ Tree

- Root was split: height increases by 1
- Could avoid split by re-distributing entries with a sibling
- Sibling: immediately to left or right, and same parent

Inserting 8* into B+ Tree

- Re-distributing entries with a sibling
- Improves page occupancy
- Usually not used for non-leaf node splits. Why?
- Increases I/O, especially if we check both siblings
- Better if split propagates up the tree (rare)
- Use only for leaf level entries as we have to set pointers

Fast Insertions \& Self-Balancing

- The B+ Tree insertion algorithm has several attractive qualities:
- ~ Same cost as exact search
- Self-balancing: B+ Tree remains balanced (with respect to height) even after insert

B+ Trees also (relatively) fast for single insertions!
However, can become bottleneck if many insertions (if fill-factor slack is used up...)

B+ Tree: Deleting a data entry

- Start at root, find leaf L where entry belongs.
- Remove the entry.
- If L is at least half-full, done!
- If L has only d-1 entries,
- Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
- If re-distribution fails, merge L and sibling.
- If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
- Merge could propagate to root, decreasing height.

Deleting 22* and 20*

- Deleting 22* is easy.
- Deleting 20* is done with re-distribution. Notice how the middle key is copied up.

... And then deleting 24*

- Must merge.
- In the non-leaf node, toss the index entry with

Non-leaf Re-distribution

- Tree during deletion of 24*.
- Can re-distribute entry from left child of root to right child.

After Re-distribution

- Rotate through the parent node
- It suffices to re-distribute index entry with key 20; For illustration 17 also re-distributed

B+ Tree deletion

- Try redistribution with all siblings first, then merge. Why?
- Good chance that redistribution is possible (large fanout!)
- Only need to propagate changes to parent node
- Files typically grow not shrink!

Duplicates

- Duplicate Keys: many data entries with the same key value
- Solution 1:
- All entries with a given key value reside on a single page
- Use overflow pages!
- Solution 2:
- Allow duplicate key values in data entries
- Modify search
- Use RID to get a unique (composite) key!
- Use list of rids instead of a single rid in the leaf level
- Single data entry could still span multiple pages

B+ Tree Design

- How large is d ?
- Example:
- Key size $=4$ bytes

NB: Oracle allows $64 \mathrm{~K}=$ 2^16 byte blocks
$\rightarrow \mathrm{d}<=2730$

- Pointer size $=8$ bytes
- Block size $=4096$ bytes
- We want each node to fit on a single block/page
- 2 d x $4+(2 \mathrm{~d}+1) \times 8<=4096 \rightarrow \boldsymbol{d}<=\mathbf{1 7 0}$

B+ Tree: High Fanout = Smaller \& Lower IO

- As compared to e.g. binary search trees, B+ Trees have high fanout (between $d+1$ and 2d+1)
- This means that the depth of the tree is small \rightarrow getting to any element requires very few IO operations!
- Also can often store most or all of the B+ Tree in main memory!
- A TiB $=2^{40}$ Bytes. What is the height of a B+ Tree (with fill-factor $=1$) that indexes it (with 64 K pages)?
- $\left(2^{*} 2730+1\right)^{\mathrm{h}}=2^{40} \rightarrow \boldsymbol{h}=\mathbf{4}$

The fanout is defined as the number of pointers to child nodes coming out of a node

Note that fanout is dynamicwe'll often assume it's constant just to come up with approximate eqns!

The known universe contains $\sim 10^{80}$ particles... what is the height of a $B+$ Tree that indexes these?

B+ Trees in Practice

- Typical order: $\mathrm{d}=100$. Typical fill-factor: 67%.
- average fanout = 133
- Typical capacities:
- Height 4: $133^{4}=312,900,700$ records
- Height 3: $133^{3}=2,352,637$ records

Fill-factor is the percent of available slots in the B+ Tree that are filled; is usually < 1 to leave slack for (quicker) insertions

- Top levels of tree sit in the buffer pool:
- Level $1=1$ page $=8$ Kbytes
- Level $2=133$ pages $=1 \mathrm{Mbyte}$
- Level 3 = 17,689 pages = 133 MBytes

Simple Cost Model for Search

- Let:
- $f=$ fanout, which is in [$\mathrm{d}+1,2 \mathrm{~d}+1$] (we'll assume it's constant for our cost model...)
- $\boldsymbol{N}=$ the total number of pages we need to index
- $F=$ fill-factor (usually $\sim=2 / 3$)
- Our B+ Tree needs to have room to index $\boldsymbol{N} / \boldsymbol{F}$ pages!
- We have the fill factor in order to leave some open slots for faster insertions
- What height (h) does our B+ Tree need to be?
- $\mathrm{h}=1 \rightarrow$ Just the root node- room to index f pages
- $\mathrm{h}=2 \rightarrow$ f leaf nodes- room to index f^{2} pages
- $h=3 \rightarrow f^{2}$ leaf nodes- room to index f^{3} pages
- $h \rightarrow f^{h-1}$ leaf nodes- room to index f^{h} pages!
\rightarrow We need a B+ Tree
of height $\mathrm{h}=\left\lceil\log _{f} \frac{N}{F}\right\rceil$!

Simple Cost Model for Search

- Note that if we have \boldsymbol{B} available buffer pages, by the same logic:
- We can store $\boldsymbol{L}_{\boldsymbol{B}}$ levels of the B+ Tree in memory
- where L_{B} is the number of levels such that the sum of all the levels' nodes fit in the buffer:
- $B \geq 1+f+\cdots+f^{L_{B}-1}=\sum_{l \underline{\underline{B}}}^{L_{0}^{-1}} f^{l}$
- In summary: to do exact search:
- We read in one page per level of the tree
- However, levels that we can fit in buffer are free!
- Finally we read in the actual record

IO Cost: $\left\lceil\log _{f} \frac{N}{F}\right\rceil-L_{B}+1$
where $B \geq \sum_{l}^{\underline{\underline{E}}_{0}^{-1}} f^{l}$

Simple Cost Model for Search

- To do range search, we just follow the horizontal pointers
- The IO cost is that of loading additional leaf nodes we need to access + the IO cost of loading each page of the results- we phrase this as "Cost(OUT)"

$$
\begin{aligned}
& \text { IO Cost: }\left\lceil\log _{f} \frac{N}{F}\right\rceil-L_{B}+\operatorname{Cost}(\text { OUT }) \\
& \text { where } B \geq \sum_{l=1}^{L_{0}}{ }^{-1} f^{l}
\end{aligned}
$$

Clustered Indexes

An index is clustered if the underlying data is ordered in the same way as the index's data entries.

Clustered vs. Unclustered Index

Clustered vs. Unclustered Index

- Recall that for a disk with block access, sequential IO is much faster than random IO
- For exact search, no difference between clustered / unclustered
- For range search over R values: difference between $\mathbf{1}$ random IO + R sequential IO, and R random IO:
- A random IO costs ~ 10ms (sequential much much faster)
- For $R=100,000$ records- difference between $\sim 10 \mathrm{~ms}$ and $\sim 17 \mathrm{~min}$!

Summary

- We create indexes over tables in order to support fast (exact and range) search and insertion over multiple search keys
- B+ Trees are one index data structure which support very fast exact and range search \& insertion via high fanout
- Clustered vs. unclustered makes a big difference for range queries too

