Lecture 13: B+ Tree

Announcements

- 1. Project Part 2 extension till Friday
- 2. Project Part 3: B+ Tree coming out Friday
- 3. Poll for Nov 22nd
- 4. Exam Pickup: If you have questions, just want to see your exam come to office hours or drop by my office
 - Two weeks (until November 8th) for questions & concerns.

Lecture 13: B+ Tree

What you will learn about in this section

- 1. Recap: Indexing
- 2. B+ Trees: Basics
- 3. B+ Trees: Operations, Design & Cost

Lecture 13

1. Recap: Indexing

Indexes: High-level

- An <u>index</u> on a file speeds up selections on the <u>search key fields</u> for the index.
 - Search key properties
 - Any subset of fields
 - is **not** the same as key of a relation
- Example:

Product(name, maker, price)

On which attributes would you build indexes?

More precisely

- An <u>index</u> is a data structure mapping <u>search keys</u> to <u>sets of rows in a</u> <u>database table</u>
 - Provides efficient lookup & retrieval by search key value- usually much faster than searching through all the rows of the database table
- An index can store the full rows it points to (*primary index*) or pointers to those rows (*secondary index*)
 - We'll mainly consider secondary indexes

Operations on an Index

- <u>Search</u>: Quickly find all records which meet some *condition on the search key attributes*
 - More sophisticated variants as well. Why?
- Insert / Remove entries
 - Bulk Load / Delete. Why?

Indexing is one the most important features provided by a database for performance

Activity-13.ipynb

Lecture 13

2. B+ Trees: Basics

What you will learn about in this section

- 1. B+ Trees: Basics
- 2. B+ Trees: Design & Cost
- 3. Clustered Indexes

B+ Trees

- Search trees
 - B does not mean binary!
- Idea in B Trees:
 - make 1 node = 1 physical page
 - Balanced, height adjusted tree (not the B either)
- Idea in B+ Trees:
 - Make leaves into a linked list (for range queries)

B+ Tree Index

Leaf Pages (sorted by search key)

- Leaf pages contain data entries, and are chained (prev & next)
- Non-leaf pages have data entries

Parameter *d* = the order

Each *non-leaf ("interior")* **node** has $d \le m \le 2d$ **entries**

• Minimum 50% occupancy

Root *node* has $1 \le m \le 2d$ *entries*

The *n* entries in a node define *n*+1 ranges

Non-leaf or *internal* node

For each range, in a *non-leaf* node, there is a **pointer** to another node with entries in that range

Non-leaf or *internal* node

Leaf nodes also have between *d* and *2d* entries, and are different in that:

Non-leaf or *internal* node

Leaf nodes also have between *d* and *2d* entries, and are different in that:

Their entry slots contain pointers to data records

Non-leaf or *internal* node

Leaf nodes also have between *d* and *2d* entries, and are different in that:

Their entry slots contain pointers to data records

They contain a pointer to the next leaf node as well, *for faster sequential traversal*

Note that the pointers at the

B+ Tree Page Format

in<u>dex entri</u>es

3. B+ Trees: Operations, Design & Cost

B+ Tree operations

A B+ tree supports the following operations:

- equality search
- range search
- insert
- delete
- bulk loading

Searching a B+ Tree

- For exact key values:
 - Start at the root
 - Proceed down, to the leaf
- For range queries:
 - As above
 - Then sequential traversal

SELECT	name
FROM	people
WHERE	age = 25

B+ Tree: Search

- start from root
- examine index entries in non-leaf nodes to find the correct child
- traverse down the tree until a leaf node is reached
- non-leaf nodes can be searched using a binary or a linear search

B+ Tree Exact Search Animation

B+ Tree Range Search Animation

B+ Tree: Insert

- Find correct leaf *L*.
- Put data entry onto L.
 - If *L* has enough space, *done*!
 - Else, must *split L* (*into L and a new node L2*)
 - Redistribute entries evenly, copy up middle key.
 - Insert index entry pointing to *L2* into parent of *L*.
- This can happen recursively
 - To split non-leaf node, redistribute entries evenly, but **pushing up** the middle key. (Contrast with leaf splits.)
- Splits "grow" tree; root split increases height.
 - Tree growth: gets *wider* or *one level taller at top.*

Inserting 8* into B+ Tree

Entry to be inserted in parent node **Copied** up (and continues to appear in the leaf)

Inserting 8* into B+ Tree

Minimum occupancy is guaranteed in both leaf and index page splits

Inserting 8* into B+ Tree

- Root was split: height increases by 1
- Could avoid split by re-distributing entries with a sibling
 - Sibling: immediately to left or right, and same parent

- Re-distributing entries with a **sibling**
 - Improves page occupancy
 - Usually not used for non-leaf node splits. Why?
 - Increases I/O, especially if we check both siblings
 - Better if split propagates up the tree (rare)
 - Use only for leaf level entries as we have to set pointers

Fast Insertions & Self-Balancing

- The B+ Tree insertion algorithm has several attractive qualities:
 - ~ Same cost as exact search
 - **Self-balancing:** B+ Tree remains **balanced** (with respect to height) even after insert

B+ Trees also (relatively) fast for single insertions! However, can become bottleneck if many insertions (if fill-factor slack is used up...)

B+ Tree: Deleting a data entry

- Start at root, find leaf *L* where entry belongs.
- Remove the entry.
 - If L is at least half-full, done!
 - If L has only d-1 entries,
 - Try to **re-distribute**, borrowing from <u>sibling</u> (adjacent node with same parent as L).
 - If re-distribution fails, *merge* L and sibling.
- If merge occurred, must delete entry (pointing to *L* or sibling) from parent of *L*.
- Merge could **propagate** to root, decreasing height.

Deleting 22* and 20*

- Deleting 22* is easy.
- Deleting 20* is done with re-distribution. Notice how the middle key is **copied up**.

... And then deleting 24*

- Must merge.
- In the non-leaf node,
 toss the index entry with
 key value = 27

Non-leaf Re-distribution

- Tree *during deletion* of 24*.
- Can re-distribute entry from left child of root to right child.

After Re-distribution

- Rotate through the parent node
- It suffices to re-distribute index entry with key 20; For illustration 17 also re-distributed

B+ Tree deletion

- Try redistribution with all siblings first, then merge. Why?
 - Good chance that redistribution is possible (large fanout!)
 - Only need to propagate changes to parent node
 - Files typically grow not shrink!

Duplicates

- Duplicate Keys: many data entries with the same key value
- Solution 1:
 - All entries with a given key value reside on a single page
 - Use overflow pages!
- Solution 2:
 - Allow duplicate key values in data entries
 - Modify search
 - Use RID to get a **unique** (composite) key!
- Use list of rids instead of a single rid in the leaf level
 - Single data entry could still span multiple pages

B+ Tree Design

- How large is **d**?
- Example:
 - Key size = 4 bytes
 - Pointer size = 8 bytes
 - Block size = 4096 bytes

• We want each *node* to fit on a single *block/page*

• 2d x 4 + (2d+1) x 8 <= 4096 → d <= 170

NB: Oracle allows 64K =
2^16 byte blocks
→ d <= 2730

B+ Tree: High Fanout = Smaller & Lower IO

- As compared to e.g. binary search trees, B+ Trees have high fanout (between d+1 and 2d+1)
- This means that the depth of the tree is small → getting to any element requires very few IO operations!
 - Also can often store most or all of the B+ Tree in main memory!
- A TiB = 2⁴⁰ Bytes. What is the height of a B+ Tree (with fill-factor = 1) that indexes it (with 64K pages)?
 - $(2^*2730 + 1)^h = 2^{40} \rightarrow h = 4$

The <u>fanout</u> is defined as the number of pointers to child nodes coming out of a node

Note that fanout is dynamicwe'll often assume it's constant just to come up with approximate eqns!

The known universe contains ~10⁸⁰ particles... what is the height of a B+ Tree that indexes these?

B+ Trees in Practice

- Typical order: d=100. Typical fill-factor: 67%.
 - average fanout = 133
- Typical capacities:
 - Height 4: 133⁴ = 312,900,700 records
 - Height 3: 133³ = 2,352,637 records
- Top levels of tree sit *in the buffer pool*:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 MBytes

Fill-factor is the percent of available slots in the B+ Tree that are filled; is usually < 1 to leave slack for (quicker) insertions

Typically, only pay for one IO!

Simple Cost Model for Search

• Let:

- f = fanout, which is in [d+1, 2d+1] (we'll assume it's constant for our cost model...)
- **N** = the total number of *pages* we need to index
- **F** = fill-factor (usually ~= 2/3)
- Our B+ Tree needs to have room to index **N / F** pages!
 - We have the fill factor in order to leave some open slots for faster insertions
- What height (*h*) does our B+ Tree need to be?
 - h=1 \rightarrow Just the root node- room to index f pages
 - h=2 \rightarrow f leaf nodes- room to index f² pages
 - h=3 \rightarrow f² leaf nodes- room to index f³ pages
 - ...
 - $h \rightarrow f^{h-1}$ leaf nodes- room to index f^h pages!

→ We need a B+ Tree of height h = $\left[\log_f \frac{N}{F}\right]!$

Simple Cost Model for Search

- Note that if we have **B** available buffer pages, by the same logic:
 - We can store L_B levels of the B+ Tree in memory
 - where L_B is the number of levels such that the sum of all the levels' nodes fit in the buffer:
 - $B \ge 1 + f + \dots + f^{L_B 1} = \sum_{l=0}^{L_B 1} f^l$
- In summary: to do exact search:
 - We read in one page per level of the tree
 - However, levels that we can fit in buffer are free!
 - Finally we read in the actual record

IO Cost:
$$\left[\log_f \frac{N}{F}\right] - L_B + 1$$

where $B \ge \sum_{l=0}^{L_B-1} f^l$

Simple Cost Model for Search

- To do range search, we just follow the horizontal pointers
- The IO cost is that of loading additional leaf nodes we need to access + the IO cost of loading each *page* of the results- we phrase this as "Cost(OUT)"

IO Cost:
$$\left[\log_{f} \frac{N}{F}\right] - L_{B} + Cost(OUT)$$

where $B \ge \sum_{l=0}^{L_{B}} 1^{-1} f^{l}$

Clustered Indexes

An index is <u>clustered</u> if the underlying data is ordered in the same way as the index's data entries.

Clustered vs. Unclustered Index

Clustered vs. Unclustered Index

- Recall that for a disk with block access, sequential IO is much faster than random IO
- For exact search, no difference between clustered / unclustered
- For range search over R values: difference between 1 random IO + R sequential IO, and R random IO:
 - A random IO costs ~ 10ms (sequential much much faster)
 - For R = 100,000 records- difference between ~10ms and ~17min!

Summary

- We create indexes over tables in order to support fast (exact and range) search and insertion over multiple search keys
- **B+ Trees** are one index data structure which support very fast exact and range search & insertion via *high fanout*
 - Clustered vs. unclustered makes a big difference for range queries too