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This lecture
• Unsupervised learning

∗ Diversity of problems
∗ Pipelines

• Clustering
∗ Problem formulation
∗ Algorithms
∗ Choosing the number of clusters

• Gaussian mixture model (GMM)
∗ A probabilistic approach to clustering
∗ GMM clustering as an optimisation problem
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Unsupervised Learning

A large branch of ML that concerns 
with learning the structure of the 

data in the absence of labels
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Previously: Supervised learning
• Supervised learning: Overarching aim is making 

predictions from data

• We studied methods such as random forest, ANN and 
SVM in the context of this aim

• We had instances 𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚, 𝑖𝑖 = 1, … ,𝑛𝑛 and 
corresponding labels 𝑦𝑦𝑖𝑖 as inputs, and the aim was to 
predict labels for new instances

• Can be viewed as a function approximation problem, but 
with a big caveat

• The ability to generalise is critical
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Now: Unsupervised learning
• Next few lectures: unsupervised learning methods

• In unsupervised learning, there is no dedicated variable 
called a “label”

• Instead, we just have a set of points 𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚, 𝑖𝑖 = 1, … ,𝑛𝑛
∗ And often data cannot be reduced to points in 𝑹𝑹𝑚𝑚 (e.g., data is 

a set of variable length sequences)

• The aim of unsupervised learning is to explore the 
structure (patterns, regularities) of the data

• The aim of “exploring the structure” is vague
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Applications of unsupervised learning
• Diversity of tasks fall into unsupervised learning category

• This subject covers some common applications of 
unsupervised learning:
∗ Clustering (this week)
∗ Dimensionality reduction (next week)
∗ Learning parameters of probabilistic models (after break)

• A few other applications not covered in this course:
∗ Marked basket analysis. E.g., use supermarket transaction logs 

to find items that are frequently purchased together
∗ Outlier detection. E.g., find potentially fraudulent credit card 

transactions
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Data analysis pipelines
• Clustering and dimensionality reduction are listed 

as separate problems

• In many cases, these can be viewed as distinct 
unsupervised learning tasks

• However, different methods can be combined into 
powerful data analysis pipelines

• E.g., we will use these pipelines for data points 
where patterns are obscure, or for datasets that 
are not points in 𝑹𝑹𝑚𝑚

• Before getting to this stage, we first consider a 
classical clustering problem

7art: adapted from Clker-Free-Vector-Images at pixabay.com (CC0)
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Clustering

A fundamental task in Machine 
Learning. Thousands of algorithms, 
yet no definitive universal solution
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Introduction to clustering
• Clustering is automatic grouping of objects such that the 

objects within each group (cluster) are more similar to each 
other than objects from different groups
∗ An extremely vague definition that reflects the variety of real-world 

problems that require clustering

• The key to this definition is defining what “similar” means

9
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Measuring (dis)similarity
• Consider a “classical” setting where the data is a set of points 
𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚, 𝑖𝑖 = 1, … ,𝑛𝑛

• Instead of “similarity”, it is sometimes more convenient to 
use an opposite concept of “dissimilarity” or “difference”

• A natural choice for formalising the “difference” between a 
pair of points is Euclidean distance

𝑑𝑑𝑖𝑖𝑖𝑖 ≡ 𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗 = �
𝑙𝑙=1

𝑚𝑚

𝒙𝒙𝑖𝑖 𝑙𝑙 − 𝒙𝒙𝑗𝑗 𝑙𝑙

2

• Here 𝒙𝒙𝑖𝑖 is a vector and 𝒙𝒙𝑖𝑖 𝑙𝑙 denotes the 𝑙𝑙-th element of 
that vector
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Refresher on K-means clustering

11Figure: Bishop, Section 9.1

Data: Old Faithful 
Geyser Data: waiting 

time between 
eruptions and the 

duration of eruptions

Requires specifying 
the number of 
clusters in advance

Measures 
“dissimilarity” using 
Euclidean distance

Finds “spherical” 
clusters

An iterative 
optimization 
procedure
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K-means as iterative optimisation

1. Initialisation: choose 𝑘𝑘 cluster centroids randomly

2. Update:
a) Assign points to the nearest centroid
b) Compute centroids under the current assignment

3. Termination: if no change then stop

4. Go to Step 2
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Clustering algorithms
• There are thousands (!) of clustering algorithms

∗ Jain A.K. et al., Data clustering: 50 years beyond K-means, 2010, 
Pattern recognition letters 

• K-means is still one of the most popular algorithms (perhaps 
the most popular)
∗ Wu X. et al., Top 10 algorithms in data mining, 2008, Knowledge and 

information systems

• Many popular algorithms do not require specifying 𝑘𝑘
∗ Hierarchical clustering (e.g., see Hastie at al., The elements of 

statistical learning)
∗ DBSCAN (Ester M. et al., A density-based algorithm for discovering 

clusters in large spatial databases with noise, 1996, KDD conference)
∗ Affinity propagation (Brendan J.F. and Dueck D., Clustering by passing 

messages between data points, 2007, Science)
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Consensus clustering (1/3)
• Unsupervised learning counterpart of bagging

∗ Monti S. et al., Consensus clustering: a resampling-based method for 
class discovery and visualization of gene expression microarray data, 
2003, Machine Learning

• Consider a dataset 𝐷𝐷 = 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛 , and some pre-defined 
number of iterations 𝑇𝑇

• The algorithm creates sampled versions 𝐷𝐷1, … ,𝐷𝐷𝑇𝑇 of the 
original data
∗ In principle, one can use bootstrapping (sampling with replacement), 

resulting in 𝐷𝐷𝑡𝑡 = 𝑛𝑛
∗ For consensus clustering authors consider subsampling (without 

replacement), resulting in 𝐷𝐷𝑡𝑡 < 𝑛𝑛
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Consensus clustering (2/3)
• 𝐷𝐷1, … ,𝐷𝐷𝑇𝑇 are sampled versions of original data

• Define an 𝑛𝑛 × 𝑛𝑛 indicator matrix 𝑰𝑰𝑡𝑡, such that 𝑰𝑰𝑡𝑡 𝑖𝑖, 𝑗𝑗 = 1 if 
𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 ∈ 𝐷𝐷𝑡𝑡 and 𝑰𝑰𝑡𝑡 𝑖𝑖, 𝑗𝑗 = 0 otherwise

• Apply clustering independently on each 𝐷𝐷𝑡𝑡
• Define an 𝑛𝑛 × 𝑛𝑛 association matrix 𝑴𝑴𝑡𝑡, such that 𝑴𝑴𝑡𝑡 𝑖𝑖, 𝑗𝑗 = 1

if 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 are in the same cluster, and 𝑴𝑴𝑡𝑡 𝑖𝑖, 𝑗𝑗 = 0 otherwise
∗ If 𝒙𝒙𝑖𝑖 ∉ 𝐷𝐷𝑡𝑡 or 𝒙𝒙𝑗𝑗 ∉ 𝐷𝐷𝑡𝑡 then 𝑴𝑴𝑡𝑡 𝑖𝑖, 𝑗𝑗 = 0

• The consensus matrix 𝓜𝓜 is defined as 𝓜𝓜 𝑖𝑖, 𝑗𝑗 ≡ ∑𝑡𝑡=1𝑇𝑇 𝑴𝑴𝑡𝑡 𝑖𝑖,𝑗𝑗
∑𝑡𝑡=1𝑇𝑇 𝑰𝑰𝑡𝑡 𝑖𝑖,𝑗𝑗

∗ Proportion of clustering runs in which two items cluster together
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Consensus clustering (3/3)
• Algorithm

1. Choose a clustering algorithm
2. For 𝑡𝑡 = 1 …𝑇𝑇

a) Sample 𝐷𝐷𝑡𝑡 from 𝐷𝐷 (this can also be done by sampling features 
rather than data points)

b) Apply clustering on 𝐷𝐷𝑡𝑡
c) Save connectivity matrix 𝑴𝑴𝑡𝑡 and indicator matrix 𝑰𝑰𝑡𝑡

3. Construct consensus matrix 𝓜𝓜
4. Cluster 𝐷𝐷 using 𝓜𝓜 as a similarity matrix (e.g., apply 

hierarchical clustering)

16
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Choosing the number of clusters
• Many clustering algorithms do not require 𝑘𝑘, but require 

specifying some other parameters that influence resulting 
number of clusters

• Suppose that we are using the algorithm that does require 𝑘𝑘

• The number of clusters can be known from context
∗ E.g., clustering genetic profiles from a group of cells that is known to 

contain a certain number of cell types

• Visualising the data (e.g., using multidimensional reduction, 
next week) can help to estimate the number of clusters

• Another strategy is to try a few plausible values and see 
whether it makes difference to the analysis

17
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Number of clusters and overfitting
• In the context of k-means it might be appealing to treat 𝑘𝑘 as 

an parameter to be optimised

• This does not work because larger 𝑘𝑘 results in a more flexible 
model that will always fit the data better
∗ This is analogous to overfitting in supervised learning

• Instead, approaches that can work are:
∗ Cross-validation-like strategies for determining 𝑘𝑘
∗ Try several possible 𝑘𝑘 and look at the trend
∗ Information-theoretic results

• Example of the second approach is shown in the next slide

• Examples of the third approach are given in green slides after 
that

18
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Kink method and gap statistics
• Manual inspection of minimised within cluster variation as a 

function of 𝑘𝑘

19

• The real number of clusters is 
indicated by the kink in this curve

• The gap statistics (Hastie et al. 
book) developed for k-means 
clustering is an automated version 
of the kink method

• This method measures the gaps 
between each 𝑘𝑘 and analyses their 
distribution
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Akaike information criterion
• This and next methods are only applicable for parametric 

probabilistic models 𝑝𝑝 𝑿𝑿|𝜽𝜽 . Let �𝜽𝜽 be MLE for this 
model, and let 𝐿𝐿∗ ≡ 𝑝𝑝 𝑿𝑿|�𝜽𝜽

• Akaike information criterion (AIC) is defined as
𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 − 2 ln 𝐿𝐿∗

• Here 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 is the number of free parameters

• The equation is simple, but the derivation is very 
complicated. AIC is one of fundamental results in statistic

• AIC estimates divergence between the true unknown 
model (e.g., GMM with true number of clusters), and the 
current model

20
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Akaike information criterion
• Method: consider several different 𝑘𝑘, and their corresponding 

GMM. Find MLE parameters for each model

• Compute AIC for each model and choose 𝑘𝑘 that resulted in 
the smallest AIC

• The smallest AIC is preferable because AIC is an estimator of 
divergence between the true and current models

• AIC estimator was shown to be biased for finite sample sizes, 
thus a correction has been proposed which should be used in 
practice instead AIC (𝑛𝑛 is the number of data points)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 + ln 𝐿𝐿∗ +
2𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 + 1
𝑛𝑛 − 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 − 1
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Bayesian information criterion
• AIC was derived from a frequentist standpoint. Bayesian 

information criterion (BIC) represents the Bayesian 
approach to model selection

• Bayesian model selection is based on marginal likelihood 
𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

• BIC is an approximate computation of the marginal 
likelihood

• BIC is defined as
𝐵𝐵𝐼𝐼𝐼𝐼 = 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 ln𝑛𝑛 − 2 ln 𝐿𝐿∗

• One should choose a model with the smallest BIC

22
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Gaussian Mixture Model

A probabilistic view of clustering

23
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Why GMM clustering
• K-means algorithm is one of the most popular algorithms, 

GMM clustering is a generalisation of k-means

• Empirically, works well in many cases
∗ Moreover, it can be used in a manifold learning pipeline (coming soon)

• Reasonably simple and mathematically tractable

• Example of a probabilistic approach

• Example application of Expectation Maximisation (EM) 
algorithm
∗ EM algorithm is a generic technique, not only for GMM clustering

24
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Clustering: Probabilistic interpretation

25

Clustering can be viewed as 
identification of components of a 
probability density function that 
generated the data

Cluster 1Cluster 2

Identifying cluster centroids 
can be viewed as finding modes 
of distributions
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Modelling uncertainty in data clustering

• K-means clustering assigns each point to exactly one cluster
∗ In other words, the result of such a clustering is partitioning into 𝑘𝑘

subsets

• Similar to k-means, a probabilistic mixture model requires 
the user to choose the number of clusters in advance

• Unlike k-means, the probabilistic model gives us a power to 
express uncertainly about the origin of each point
∗ Each point originates from cluster 𝑐𝑐 with probability 𝑤𝑤𝑐𝑐, 𝑐𝑐 = 1, … , 𝑘𝑘

• That is, each point still originates from one particular cluster 
(aka component), but we are not sure from which one

• Next, for each individual component, the normal distribution 
is a common modelling choice

26
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Normal (aka Gaussian) distribution

27

• Recall that a 1D Gaussian is

𝒩𝒩 𝑥𝑥|𝜇𝜇,𝜎𝜎 ≡
1
2𝜋𝜋𝜎𝜎2

exp −
𝑥𝑥 − 𝜇𝜇 2

2𝜎𝜎2

• And a 𝑚𝑚-dimensional Gaussian is

𝒩𝒩 𝒙𝒙|𝝁𝝁,𝚺𝚺 ≡ 2𝜋𝜋 −𝑚𝑚2 det𝚺𝚺 −12 exp −
1
2
𝒙𝒙 − 𝝁𝝁 ′𝚺𝚺−1 𝒙𝒙 − 𝝁𝝁

∗ 𝚺𝚺 is a symmetric 𝑚𝑚 × 𝑚𝑚 matrix that is assumed to be positive definite
∗ det𝚺𝚺 denotes matrix determinant

Figure: Bishop
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Gaussian mixture model (GMM)

28

• Gaussian mixture distribution (for one data point): 

𝑝𝑝 𝒙𝒙 ≡�
𝑐𝑐=1

𝑘𝑘

𝑤𝑤𝑐𝑐𝒩𝒩 𝒙𝒙|𝝁𝝁𝑐𝑐 ,𝚺𝚺𝑐𝑐

1D example• Here 𝑤𝑤𝑐𝑐 ≥ 0 and 
∑𝑐𝑐=1𝑘𝑘 𝑤𝑤𝑐𝑐 = 1

• That is, 𝑤𝑤1, … ,𝑤𝑤𝑘𝑘 is a 
probability distribution 
over components

• Parameters of the model 
are 𝑤𝑤𝑐𝑐, 𝝁𝝁𝑐𝑐, 𝚺𝚺𝑐𝑐, 𝑐𝑐 = 1, … , 𝑘𝑘

Mixture and individual component densities 
are re-scaled for visualisation purposes

Figure: Bishop
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Checkpoint
• Consider a GMM with five components for 3D 

data. How many independent parameters does 
this model have?

a) 6 × 5 + 3 × 5 + 4

b) 6 × 5 + 3 × 5 + 5

c) 9 × 5 + 3 × 5 + 5

29

art: OpenClipartVectors at 
pixabay.com (CC0)
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Clustering as an optimisation problem

• Given a set of data points, we assume that data points 
are generated by a GMM
∗ Each point in our dataset originates from the 𝑐𝑐-th normal 

distribution component with probability 𝑤𝑤𝑐𝑐

• Clustering now amounts to finding parameters of the 
GMM that “best explain” the observed data

• But what does “best explain” mean?

• We are going to call upon another old friend: MLE 
principle tells us to use parameter values that maximise 
𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛)

30
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Fitting a GMM model to data
• Assuming that data points are independent, our aim is to 

find 𝑤𝑤𝑐𝑐, 𝝁𝝁𝑐𝑐, 𝚺𝚺𝑐𝑐, 𝑐𝑐 = 1, … , 𝑘𝑘 that maximise

𝑝𝑝 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

�
𝑐𝑐=1

𝑘𝑘

𝑤𝑤𝑐𝑐𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑐𝑐 ,𝚺𝚺𝑐𝑐

• This is actually an ill-posed problem
∗ Singularities (points at which the likelihood is not defined)
∗ Non-uniqueness

31

Bishop, Fig. 9.7

• Theoretical cure – Bayesian approach

• Practical cure – heuristically avoid 
singularities
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Fitting a GMM model to data

• Yet again, we are facing an optimisation problem

• Assuming that data points are independent, our aim 
is to find 𝑤𝑤𝑐𝑐, 𝝁𝝁𝑐𝑐, 𝚺𝚺𝑐𝑐, 𝑐𝑐 = 1, … , 𝑘𝑘 that maximise

𝑝𝑝 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

�
𝑐𝑐=1

𝑘𝑘

𝑤𝑤𝑐𝑐𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑐𝑐 ,𝚺𝚺𝑐𝑐

• Let’s see if this can be solved analytically

• Taking the derivative of this expression is pretty 
awkward, try the usual log trick

32
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Attempting the log trick for GMM

• Our aim is to find 𝑤𝑤𝑐𝑐, 𝝁𝝁𝑐𝑐, 𝚺𝚺𝑐𝑐, 𝑐𝑐 = 1, … ,𝑘𝑘 that 
maximise

log 𝑝𝑝 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

log �
𝑐𝑐=1

𝑘𝑘

𝑤𝑤𝑐𝑐𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑐𝑐 ,𝚺𝚺𝑐𝑐

• The log cannot be pushed inside the sum. The 
derivative of the log likelihood still going to have a 
cumbersome form

• We should use an iterative procedure

33
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Fitting a GMM using iterative optimisation

• So there’s little prospect in analytical solution

• At this point, we could use the gradient descent 
algorithm

• But it still requires taking partial derivatives

• Another problem of using the gradient descent are 
complicated constraints on parameters

• We aim to find 𝑤𝑤𝑐𝑐, 𝝁𝝁𝑐𝑐, 𝚺𝚺𝑐𝑐, 𝑐𝑐 = 1, … , 𝑘𝑘, where 𝚺𝚺𝑐𝑐 are 
symmetric and positive definite for each 𝑐𝑐, and where 
𝑤𝑤𝑐𝑐 add up to one

34
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Introduction to Expectation Maximisation

• Expectation Maximisation (EM) algorithm is a common 
way to find parameters of a GMM

• EM is a generic algorithm for finding MLE of parameters 
of a probabilistic model

• Broadly speaking, as “input” EM requires
∗ A probabilistic model that is can be specified by a fixed number 

of parameters
∗ Data 

• EM is widely used outside clustering and GMMs (another 
application of EM coming soon)

35
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MLE vs EM
• MLE is a frequentist principle that suggests that given 

a dataset, the “best” parameters to use are the ones 
that maximise the probability of the data
∗ MLE is a way to formally pose the problem

• EM is an algorithm
∗ EM is a way to solve the problem posed by MLE

• MLE can be found by other methods such as gradient 
descent (but gradient descent is not always the most 
convenient method)

36
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This lecture
• Unsupervised learning

∗ Diversity of problems
∗ Pipelines

• Clustering
∗ Problem formulation
∗ Algorithms
∗ Choosing the number of clusters

• Gaussian mixture model (GMM)
∗ A probabilistic approach to clustering
∗ GMM clustering as an optimisation problem

37
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