
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2016

Lecture 13:

Memory Consistency
+ course-so-far review (if time)

 CMU 15-418/618, Spring 2016

Hello
Adele
(25)

Tunes

Hello, it’s me
I was wondering if after all these lectures you’d like to meet

To go over everything
They say that studying’s supposed to help ya

But I ain’t done much studying

Hello, can you hear me
I’m in the library dreaming about what the exam is going to be

I hope its shorter, and covers ISPC
I’ve forgotten how it felt before I dealt with so much concurrency

“Adele, no one is going to understand your song about 418” - Producers at XL Recordings

“Okay, fine… I’ll sing about nostalgia then,” - Adele

 CMU 15-418/618, Spring 2016

Today: what you should know

▪ Understand the motivation for relaxed consistency models

▪ Understand the implications of relaxing W→R ordering

 CMU 15-418/618, Spring 2016

Today: who should care

▪ Anyone who:
- Wants to implement a synchronization library
- Will ever work a job in kernel (or driver) development
- Seeks to implement lock-free data structures *
- Does any of the above on ARM processors **

** For reasons to be described later
* Topic of a later lecture

 CMU 15-418/618, Spring 2016

Memory coherence vs. memory consistency
▪ Memory coherence defines requirements for the

observed behavior of reads and writes to the same
memory location
- All processors must agree on the order of reads/writes to X
- In other words: it is possible to put operations involving X on a

timeline such that the observations of all processors are consistent
with that timeline

▪ Memory consistency defines the behavior of reads and
writes to different locations (as observed by other
processors)
- Coherence only guarantees that writes to address X will eventually

propagate to other processors
- Consistency deals with when writes to X propagate to other

processors, relative to reads and writes to other addresses

Observed
chronology of
operations on

address X

P0 write: 5

P1 read (5)

P2 write: 10

P2 write: 11

P1 read (11)

 CMU 15-418/618, Spring 2016

Coherence vs. consistency
(said again, perhaps more intuitive this time)

▪ The goal of cache coherence is to ensure that the memory system in
a parallel computer behaves as if the caches were not there
- Just like how the memory system in a uni-processor system behaves as if the

cache was not there

▪ A system without caches would have no need for cache coherence

▪ Memory consistency defines the allowed behavior of loads and
stores to different addresses in a parallel system
- The allowed behavior of memory should be specified whether or not caches are

present (and that’s what a memory consistency model does)

 CMU 15-418/618, Spring 2016

Memory operation ordering
▪ A program defines a sequence of loads and stores

(this is the “program order” of the loads and stores)

▪ Four types of memory operation orderings
- W→R: write to X must commit before subsequent read from Y *
- R→R: read from X must commit before subsequent read from Y
- R→W: read to X must commit before subsequent write to Y
- W→W: write to X must commit before subsequent write to Y

▪ A sequentially consistent memory system maintains all four
memory operation orderings

* To clarify: “write must commit before subsequent read” means:
 When a write comes before a read in program order, the write must commit (its results are visible)
 by the time the read occurs.

 CMU 15-418/618, Spring 2016

Sequential consistency
▪ A parallel system is sequentially consistent if the result of any

parallel execution is the same as if all the memory operations were
executed in some sequential order, and the memory operations of
any one processor are executed in program order.

There is a chronology of all memory operations
that is consistent with observed values

P0 store: X ←5

P1 store: X ←10

P0 store: Y ←1

P1 load: X

P0 load: X

P1 store: Y ←20

[Adve and Gharachorloo 95]

Note, now timeline lists
operations to addresses X and Y

 CMU 15-418/618, Spring 2016

Sequential consistency (switch metaphor)

Processor 1 Processor 2 Processor 3Processor 0

Memory

▪ All processors issue loads and stores in program order
▪ Memory chooses a processor, performs a memory operation to

completion, then chooses another processor, …

 CMU 15-418/618, Spring 2016

Quick example

A	 =	 1;	
if	 (B	 ==	 0)	
	 	 print	 “Hello”;

B	 =	 1;	
if	 (A	 ==	 0)	
	 	 print	 “World”;

Thread 1 (on P1) Thread 2 (on P2)

Assume A and B are initialized to 0.
Question: Imagine threads 1 and 2 are being run simultaneously
on a two processor system. What will get printed?

Answer: assuming writes propagate immediately (e.g., P1 won’t continue to ‘if’
statement until P2 observes the write to A), then code will either print “hello” or “world”,
but not both.

 CMU 15-418/618, Spring 2016

Relaxing memory operation ordering

▪ A sequentially consistent memory system maintains all four
memory operation orderings (W→R, R→R, R→W, W→W)

▪ Relaxed memory consistency models allow certain orderings
to be violated

 CMU 15-418/618, Spring 2016

Back to the quick example

A	 =	 1;	
if	 (B	 ==	 0)	
	 	 print	 “Hello”;

B	 =	 1;	
if	 (A	 ==	 0)	
	 	 print	 “World”;

Thread 1 (on P1) Thread 2 (on P2)
From the processor’s
perspective, these are
independent instructions
in each thread.

(If this was a sequential program, it would not violate
program correctness if a processor chose to reorder them…

e.g., execute them concurrently)

 CMU 15-418/618, Spring 2016

Motivation for relaxed consistency: hiding latency
▪ Why are we interested in relaxing ordering requirements?

- To gain performance
- Specifically, hiding memory latency: overlap memory access operations with other

operations when they are independent
- Remember, memory access in a cache coherent system may entail much more work

then simply reading bits from memory (finding data, sending invalidations, etc.)

Write A

Read B

Write A
Read B

vs.

 CMU 15-418/618, Spring 2016

Another way of thinking about relaxed ordering

A	 =	 1;	

B	 =	 1;	

unlock(L);

Thread 1 (on P1) Thread 2 (on P2)

lock(L);	

x	 =	 A;	

y	 =	 B;

Program order
(dependencies in red: required for

sequential consistency)

A	 =	 1;	

B	 =	 1;	

unlock(L);

Thread 1 (on P1) Thread 2 (on P2)

lock(L);	

x	 =	 A;	

y	 =	 B;

“Sufficient” order for correctness
(logical dependencies in red)

An intuitive notion of correct = execution produces the same results as a sequentially
consistent system

 CMU 15-418/618, Spring 2016

Allowing reads to move ahead of writes
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read

- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write

- W→W: write must complete before subsequent write

▪ Allow processor to hide latency of writes
- Total Store Ordering (TSO)
- Processor Consistency (PC)

Write A

Read B

Write A

Read B

vs.

 CMU 15-418/618, Spring 2016

Write buffering example
▪ Write buffering is a common processor optimization that

allows reads to proceed in front of prior writes

Processor 1

Cache

Write Buffer

Reads Writes

Reads Writes

- When store is issued, processor buffers store in write buffer
(assume store is to address X)

- Processor immediately begins executing subsequent loads,
provided they are not accessing address X (exploits ILP in program)

- Further writes can also be added to write buffer (write buffer is
processed in order, there is no W→W reordering)

▪ Write buffering relaxes W→R ordering

* Do not confuse a write buffer (shown here) with a cache’s write-back buffer (discussed last lecture). Both buffers exist to hide the
latency of memory operations. However, the write buffer holds writes that have been issued by the processor, but not yet committed in
the system. The write-back buffer holds dirty cache lines that must be flushed to memory so memory stays up to date. The lines are dirty
because there was some write to them completed by the processor a long time ago. (This is a good distinction to discuss in comments.)

 CMU 15-418/618, Spring 2016

Relaxed consistency performance

Base: Sequentially consistent execution. Processor issues one memory operation at a time,
stalls until completion

W-R: relaxed W→R ordering constraint (write latency almost fully hidden)

Processor 1

Cache

Write Buffer

Reads Writes

Reads Writes

 CMU 15-418/618, Spring 2016

Allowing reads to move ahead of writes
▪ Total store ordering (TSO)

- Processor P can read B before its write to A is seen by all processors
(processor can move its own reads in front of its own writes)

- Reads by other processors cannot return new value of A until the write to A
is observed by all processors

▪ Processor consistency (PC)
- Any processor can read new value of A before the write is observed by all

processors

▪ In TSO and PC, only W→R order is relaxed. The W→W constraint still exists.
Writes by the same thread are not reordered (they occur in program order)

 CMU 15-418/618, Spring 2016

Four example programs

A	 =	 1;	

flag	 =	 1;

while	 (flag	 ==	 0);	

print	 A;

Thread 1 (on P1) Thread 2 (on P2)
A	 =	 1;	

B	 =	 1;

print	 B;	

print	 A;

Thread 1 (on P1) Thread 2 (on P2)

A	 =	 1;	

print	 B;

B	 =	 1;	

print	 A;

Thread 1 (on P1) Thread 2 (on P2)
A	 =	 1; while	 (A	 ==	 0);	

B	 =	 1;

Thread 1 (on P1) Thread 2 (on P2) Thread 3 (on P3)
while	 (B	 ==	 0);	

print	 A;

1 2

3 4

1 2 3 4
Total Store Ordering (TSO)
Processor Consistency (PC)

Do results of execution match that of sequential consistency (SC)

✔
✔

✔
✔

✔
✗

✗
✗

Assume A and B are initialized to 0
Assume prints are loads

 CMU 15-418/618, Spring 2016

Clarification
▪ The cache coherency problem exists because of the

optimization of duplicating data in multiple processor caches.
The copies of the data must be kept coherent.

▪ Relaxed memory consistency issues arise from the
optimization of reordering memory operations. (Consistency
is unrelated to whether there are caches in the system.)

 CMU 15-418/618, Spring 2016

Allowing writes to be reordered
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read

- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write

- W→W: write must complete before subsequent write

▪ Partial Store Ordering (PSO)
- Execution may not match sequential consistency on program 1

(P2 may observe change to flag before change to A)

A	 =	 1;	

flag	 =	 1;

while	 (flag	 ==	 0);	

print	 A;

Thread 1 (on P1) Thread 2 (on P2)

 CMU 15-418/618, Spring 2016

Why might it be useful to allow more
aggressive memory operation reorderings?

▪ W→W: processor might reorder write operations in a write
buffer (e.g., one is a cache miss while the other is a hit)

▪ R→W, R→R: processor might reorder independent
instructions in an instruction stream (out-of-order execution)

▪ Keep in mind these are all valid optimizations if a program
consists of a single instruction stream

 CMU 15-418/618, Spring 2016

Allowing all reorderings
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read

- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write

- W→W: write must complete before subsequent write

▪ Examples:
- Weak ordering (WO)
- Release Consistency (RC)

- Processors support special synchronization operations
- Memory accesses before memory fence instruction must

complete before the fence issues

- Memory accesses after fence cannot begin until fence
instruction is complete

reorderable	 reads	
and	 writes	 here	

...	

MEMORY	 FENCE	

...	

reorderable	 reads	
and	 writes	 here	

...	

MEMORY	 FENCE

 CMU 15-418/618, Spring 2016

Example: expressing synchronization in relaxed models
▪ Intel x86/x64 ~ total store ordering

- Provides sync instructions if software requires a specific
instruction ordering not guaranteed by the consistency model
- mm_lfence (“load fence”: wait for all loads to complete)
- mm_sfence (“store fence”: wait for all stores to complete)
- mm_mfence (“mem fence”: wait for all me operations to complete)

▪ ARM processors: very relaxed consistency model

A cool post on the role of memory fences in x86:
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

ARM has some great examples in their programmer’s reference:
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf

A great list:
http://www.cl.cam.ac.uk/~pes20/weakmemory/

http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://www.cl.cam.ac.uk/~pes20/weakmemory/

 CMU 15-418/618, Spring 2016

operation	 X	
(with	 acquire	 semantics)

Acquire/release semantics
▪ Operation X with acquire semantics: prevent reordering

of X with any load/store after X in program order
- Other processors see X’s effect before the effect of all

subsequent operations
- Example: taking a lock must have acquire semantics

▪ Operation X with release semantics: prevent reordering
of X with any load/store before X in program order
- Other processors see effects of all prior operations

before seeing effect of X.
- Example: releasing a lock must have release semantics

loads	 and	 stores	
that	 cannot	 be	
moved	 above	 X

these	 loads	 can	
stores	 can	 be	 moved	

below	 X

operation	 X	
(with	 release	 semantics)

loads	 and	 stores	
that	 can	 be	 moved	

above	 X

these	 loads	 and	
stores	 can	 not	 be	

moved	 below	 X

 CMU 15-418/618, Spring 2015

C++ 11 atomic<T>

atomic<int>	 ready;	
int	 foo;	

foo	 =	 1;	
ready.store(1);

▪ Provides atomic read, write, read-modify-write of entire objects
- Atomicity may be implemented by mutex or efficiently by processor-supported atomic

instructions (if T is a basic type)
- More on this after spring break

▪ Provides memory ordering semantics for operations before and after
atomic operations
- By default: sequential consistency
- See std::memory_order or more detail

//	 other	 code…	
while	 (ready.load()==0);	
//	 use	 foo	 here…	

Thread 1 (on P1) Thread 2 (on P2)

C++ atomic ensures sequentially consistent behavior by
default, so compiler must emit appropriate fences on x86

 CMU 15-418/618, Spring 2015

C++ 11 atomic<T>

atomic<int>	 ready;	
int	 foo;	

foo	 =	 1;	
ready.store(1,	 memory_order_release);

▪ Provides atomic read, write, read-modify-write of entire objects
- Atomicity may be implemented by mutex or efficiently by processor-supported atomic

instructions (if T is a basic type)
- More on this after spring break

▪ Provides memory ordering semantics for operations before and after
atomic operations
- By default: sequential consistency
- See std::memory_order or more detail

//	 other	 code…	
while	 (ready.load(memory_order_acquire)==0);	
//	 use	 foo	 here…	

Thread 1 (on P1) Thread 2 (on P2)

No fence required on x86

 CMU 15-418/618, Spring 2016

Conflicting data accesses
▪ Two memory accesses by different processors conflict if…

- They access the same memory location
- At least one is a write

▪ Unsynchronized program
- Conflicting accesses not ordered by synchronization (e.g., a fence,

operation with release/acquire semantics, barrier, etc.)
- Unsynchronized programs contain data-races: the output of the

program depends on relative speed of processors (non-deterministic
program results)

 CMU 15-418/618, Spring 2016

Synchronized programs
▪ Synchronized programs yield SC results on non-SC systems

- Synchronized programs are data-race-free

▪ In practice, most programs you encounter will be synchronized
(via locks, barriers, etc. implemented in synchronization libraries)
- Rather than via ad-hoc reads/writes to shared variables like in the earlier

“four example programs” slide

 CMU 15-418/618, Spring 2016

Summary: relaxed consistency
▪ Motivation: obtain higher performance by allowing recording

of memory operations (reordering is not allowed by
sequential consistency)

▪ One cost is software complexity: programmer or compiler
must correctly insert synchronization to ensure certain
specific operation orderings when needed
- But in practice complexities encapsulated in libraries that provide intuitive

primitives like lock/unlock, barrier (or lower level primitives like fence)
- Optimize for the common case: most memory accesses are not conflicting, so

don’t design a system that pays the cost as if they are

▪ Relaxed consistency models differ in which memory ordering
constraints they ignore

 CMU 15-418/618, Spring 2016

Eventual consistency in distributed systems
▪ For many of you, relaxed memory consistency will be a key

factor in writing web-scale programs in distributed
environments

▪ “Eventual consistency”
- Say machine A writes to an object X in a shared distributed database
- Many copies of database exist for performance scaling and redundancy
- Eventual consistency guarantees that if there are no other updates to X, A’s update will

eventually be observed by all other nodes in the system (note: no guarantees on when, so
updates to objects X and Y might propagate to different clients differently)

Post to Facebook wall:
“Woot! The 418 exam is

gonna be great!”

Facebook
DB mirror

Facebook
DB mirror

Facebook
DB mirror

Facebook
DB mirror

 CMU 15-418/618, Spring 2016

If time: course so far review
(a more-or-less randomly selected collection of

topics from previous lectures)

 CMU 15-418/618, Spring 2016

Exam details
▪ Closed book, closed laptop

▪ One “post it” note (but we’ll let you use both sides)

▪ Covers all lecture material so far in course, including today’s discussion of
memory consistency

▪ The TAs will lead a review session on Saturday in Wean 7500
- Please come with questions

 CMU 15-418/618, Spring 2016

Throughput vs. latency

THROUGHPUT

LATENCY

The rate at which work gets done.
- Operations per second
- Bytes per second (bandwidth)
- Tasks per hour

The amount of time for an operation to complete
- An instruction takes 4 clocks
- A cache miss takes 200 clocks to complete
- It takes 20 seconds for a program to complete

 CMU 15-418/618, Spring 2016

Ubiquitous parallelism
▪ What motivated the shift toward multi-core parallelism in

modern processor design?
- Inability to scale clock frequency due to power limits
- Diminishing returns when trying to further exploit ILP

Is the new performance focus
on throughput, or latency?

 CMU 15-418/618, Spring 2016

Techniques for exploiting independent operations in
applications

1. superscalar
execution

What is it? What is the benefit?
Processor executes multiple instructions per clock. Super-scalar execution
exploits instruction level parallelism (ILP). When instructions in the same
thread of control are independent they can be executed in parallel on a
super-scalar processor.

2. SIMD
execution

3. multi-core
execution

4. multi-threaded
execution

Processor executes the same instruction on multiple pieces of data at
once (e.g., one operation on vector registers). The cost of fetching and
decoding the instruction is amortized over many arithmetic operations.

A chip contains multiple (mainly) independent processing cores, each
capable of executing independent instruction streams.

Processor maintains execution contexts (state: e.g, a PC, registers, virtual
memory mappings) for multiple threads. Execution of thread instructions
is interleaved on the core over time. Multi-threading reduces processor
stalls by automatically switching to execute other threads when one
thread is blocked waiting for a long-latency operation to complete.

 CMU 15-418/618, Spring 2016

1. superscalar
execution

Who is responsible for mapping?
Usually not a programmer responsibility:
ILP automatically detected by processor hardware or by compiler (or both)
(But manual loop unrolling by a programmer can help)

2. SIMD
execution

3. multi-core
execution

4. multi-threaded
execution

In simple cases, data parallelism is automatically detected by the compiler, (e.g.,
assignment 1 saxpy). In practice, programmer explicitly describes SIMD execution
using vector instructions or by specifying independent execution in a high-level
language (e.g., ISPC gangs, CUDA)

Programmer defines independent threads of control.
e.g., pthreads, ISPC tasks, openMP #pragma

Programmer defines independent threads of control. But programmer
must create more threads than processing cores.

Techniques for exploiting independent operations in
applications

 CMU 15-418/618, Spring 2016

Frequently discussed processor examples
▪ Intel Core i7 CPU

- 4 cores
- Each core:

- Supports 2 threads (“Hyper-Threading”)
- Can issue 8-wide SIMD instructions (AVX instructions) or 4-wide SIMD instructions (SSE)
- Can execute multiple instructions per clock (superscalar)

▪ NVIDIA GTX 980 GPU
- 16 “cores” (called SMM core by NVIDIA)
- Each core:

- Supports up to 64 warps (warp is a group of 32 “CUDA threads”)
- Issues 32-wide SIMD instructions (same instruction for all 32 “CUDA threads” in a warp)
- Also capable of issuing multiple instructions per clock

▪ Intel Xeon Phi
- 61 cores
- Each core: supports 4 threads, issues 16-wide SIMD instructions

 CMU 15-418/618, Spring 2016

Multi-threaded, SIMD execution on GPU
= SIMD functional unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

▪ Describe how CUDA threads are mapped to the execution resources on this GTX 980 GPU?
- e.g., describe how the processor executes instructions each clock

 CMU 15-418/618, Spring 2016

Decomposition: assignment 1, program 3
▪ You used ISPC to parallelize the Mandelbrot generation
▪ You created a bunch of tasks. How many? Why?

uniform	 int	 rowsPerTask	 =	 height	 /	 2;	

//	 create	 a	 bunch	 of	 tasks	

launch[2]	 mandelbrot_ispc_task(
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x0,	 y0,	 x1,	 y1,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 width,	 height,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 rowsPerTask,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 maxIterations,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 output);

 CMU 15-418/618, Spring 2016

Amdahl’s law
▪ Let S = the fraction of sequential execution that is inherently sequential

▪ Max speedup on P processors given by:

speedup

Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

 CMU 15-418/618, Spring 2016

Thought experiment
▪ Your boss gives your team a piece of code for which 25% of the operations

are inherently serial and instructs you to parallelize the application on a six-
core machines in GHC 3000. He expects you to achieve 5x speedup on this
application.

▪ Your friend shouts at your boss, “that is %#*$(%*!@ impossible”!

▪ Your boss shouts back, “I want employees with a can-do attitude! You
haven’t thought hard enough.”

▪ Who is right?

 CMU 15-418/618, Spring 2016

Work assignment Problem to solve

Subproblems
(“tasks”)

Threads
(or processors)

Decomposition

Assignment

STATIC
ASSIGNMENT

DYNAMIC
ASSIGNMENT

Assignment of subproblems to processors is determined before (or right
at the start) of execution. Assignment does not dependent on execution
behavior.

Assignment of subproblems to processors is determined as the program runs.

Good: very low (almost none) run-time overhead
Bad: execution time of subproblems must be predictable (so programmer
can statically balance load)

Good: can achieve balance load under unpredictable conditions
Bad: incurs runtime overhead to determine assignment

Examples: solver kernel, OCEAN, mandlebrot in asst 1, problem 1, ISPC foreach

Examples: ISPC tasks, executing grid of CUDA thread blocks on GPU,
assignment 3, shared work queue

 CMU 15-418/618, Spring 2016

Balancing the workload
Ideally all processors are computing all the time during program execution
(they are computing simultaneously, and they finish their portion of the work at the same time)

Load imbalance can significantly reduce overall speedup
Time P1 P2 P3 P4

 CMU 15-418/618, Spring 2016

Dynamic assignment using work queues

Worker threads:
Pull data from work queue
Push new work to queue as it’s created

T1 T2 T3 T4

Sub-problems
(aka “tasks”, “work”)

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is independent)

 CMU 15-418/618, Spring 2016

Decomposition in assignment 2
▪ Most solutions decomposed the problem in several ways

- Decomposed screen into tiles (“task” per tile)
- Decomposed tile into per circle “tasks”
- Decomposed tile into per pixel “tasks”

 CMU 15-418/618, Spring 2016

Artifactual vs. inherent communication

ARTIFACTUAL
COMMUNICATION

INHERENT
COMMUNICATION

FALSE SHARING

P1 P2

Cache line

Problem assignment as shown. Each processor
reads/writes only from its local data.

 CMU 15-418/618, Spring 2016

Programming model abstractions

1. shared
address space

Communication?

Implicit: loads and stores to
shared variables

2. message
passing

3. data-parallel

Sync?

Synchronization primitives
such as locks and barriers

Structure?

Multiple processors
sharing an address
space.

Multiple processors,
each with own memory
address space.

Explicit: send and receive
messages

Build synchronization out
of messages.

Rigid program
structure: single logical
thread containing
map(f,	 collection)
where “iterations” of
the map can be
executed concurrently

Typically not allowed
within map except
through special built-in
primitives (like
“reduce”). Comm
implicit through loads
and stores to address
space

Implicit barrier at the
beginning and end of
the map.

 CMU 15-418/618, Spring 2016

Cache coherence
Why cache coherence?
Hand-wavy answer: would like shared memory to behave “intuitively” when two
processors read and write to a shared variable. Reading a value after another processor
writes to it should return the new value. (despite replication due to caches)

Requirements of a coherent address space
1. A read by processor P to address X that follows a write by P to address X, should return the value of the

write by P (assuming no other processor wrote to X in between)

2. A read by a processor to address X that follows a write by another processor to X returns the written value...
if the read and write are sufficiently separated in time (assuming no other write to X occurs in between)

3. Writes to the same location are serialized; two writes to the same location by any two processors are seen
in the same order by all processors.
(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system)

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that
 precisely when it is propagated is not defined by definition of coherence.

Condition 3: write serialization

 CMU 15-418/618, Spring 2016

Implementing cache coherence
Main idea of invalidation-based protocols: before
writing to a cache line, obtain exclusive access to it

SNOOPING Each cache broadcasts its cache misses to all other caches. Waits for other
caches to react before continuing.

DIRECTORIES Information about location of cache line and number of shares is stored in a
centralized location. On a miss, requesting cache queries the directory to
find sharers and communicates with these nodes using point-to-point
messages.

Good: simple, low latency
Bad: broadcast traffic limits scalability

Good: coherence traffic scales with number of sharers, and number of
sharers is usually low
Bad: higher complexity, overhead of directory storage, additional latency
due to longer critical path

 CMU 15-418/618, Spring 2016

MSI state transition diagram

S
(Shared)

M
(Modified)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / flush

Broadcast (bus) initiated transaction

Processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --

