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Factor Models

I Factor models are statistical models that try to explain
complex phenomena through a small number of basic causes
or factors.

I Factor models serve two main purposes:
1. They reduce the dimensionality of models to make

estimation possible;
2. They find the true causes that drive data.

I Factor models were introduced by Charles Spearman in 1904.
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Factor Models

I The Spearman model explains intellectual abilities through one
common factor, the famous ”general intelligence” g factor,
plus another factor s which is specific to each distinct ability.

I Louis Leon Thurstone developed the first true multifactor
model of intelligence, where were identified the following
seven primary mental abilities:

Verbal Comprehension Word Fluency
Number Facility Spatial Visualization
Associative Memory Perceptual Speed
Reasoning.
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Factor Models

I In the early applications of factor models to psychometrics,
the statistical model was essentially a conditional multivariate
distribution. The objective was to explain psychometric tests
as probability distributions conditional on the value of one or
more factors. In this way, one can make predictions of, for
example, the future success of young individuals in different
activities.

I In economics, factor models are typically applied to time
series. The objective is to explain the behavior of a large
number of stochastic processes, typically price, returns, or rate
processes, in terms of a small number of factors. These
factors are themselves stochastic processes.
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Factor Models

I In order to simplify both modeling and estimation, most factor
models employed in financial econometrics are static models.
This means that time series are assumed to be sequences of
temporally independent and identically distributed (IID)
random variables so that the series can be thought as
independent samples extracted from one common distribution.

I In financial econometrics, factor models are needed not only
to explain data but to make estimation feasible. Factor
models able to explain all pairwise correlations in terms of a
much smaller number of correlations between factors.
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Linear Factor Models Equations

Linear factor models are regression models of the following type:

Xi = αi +
K∑

j=1

βij fj + εi

where

Xi = a set of N random variables
fj = a set of K common factors
εi = the noise terms associated with each variable Xi

βij ’s are the factor loadings or factor sensitivities, which express
the influence of the j-th factor on the i-th variable.

Note: In this formulation, factor models are essentially static
models, but it is possible to add a dynamics to both the variables
and the factors.
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Factor Models

I One of the key objectives of factor models is that the
covariances between the variables Xi is determined only by the
covariances between factors.

I Suppose that the noise terms are mutually uncorrelated, so
that

E (εiεj) =

{
0 i 6= j
σ2

i i = j

and that the noise terms are uncorrelated with the factors,
that is, E (εi fj) = 0,∀i , j .

I Suppose also that both factors and noise terms have a zero
mean, so that E (Xi ) = αi .

Factor models that respect the above constraints are called strict
factor models.

Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of KarlsruheLecture 13 Principal Components Analysis and Factor Analysis



Factor Models

Lets compute the covariances of a strict factor model:

E ((Xi − αi )(Xj − αj)) = E
(( K∑

s=1

βis fs + εi

)( K∑
t=1

βjt ft + εj

))

= E
(( K∑

s=1

βis fs
)( K∑

t=1

βjt ft
))

+ E
(( K∑

s=1

βis fs
)
(εj)

)

+E
(
(εi )

K∑
t=1

βjt ft
)

+ E (εiεj)

=
∑
s,t

βisE (fs ft)βjt + E (εiεj)
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Factor Models

We can express the above compactly in matrix form. Lets write a
factor model in matrix form as follows:

X = α + βf + ε

where
X = (X1, . . . ,XN)′ = the N-vector of variables
α = (α1, . . . , αN)′ = the N-vector of means
ε = (ε1, . . . , εN)′ = the N-vector of idiosyncratic noise terms
f = (f1, . . . , fK )′ = the K -vector of factors

β =

 β11 · · · β1K
...

. . .
...

βN1 · · · βNK

 = the N × K matrix of factor loadings.
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Factor Models

I Lets define the following:
Σ = the N × N variance-covariance matrix of the variables X
Ω = the K × K variance-covariance matrix of the factors
Ψ = N × N variance-covariance matrix of the error terms ε.

I If we assume that our model is a strict factor model, the
matrix Ψ will be a diagonal matrix with the noise variances on
the diagonal, that is,

Ψ =

 Ψ2
1 · · · 0
...

. . .
...

0 · · · Ψ2
N


I We can express the variance-covariance matrix of the variables

in the following way:

Σ = βΩβ′ + Ψ
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Factor Models

I In applied work, factor models will often be approximate
factor models. They allow idiosyncratic terms to be weakly
correlated among themselves and with the factors.

I As many different factor models have been proposed for
explaining stock returns, an important question is whether a
factor model is fully determined by the observed time series.

I An estimation procedure cannot univocally determine the
hidden factors and the factor loadings from the observable
variables X.
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Factor Models

In fact, suppose that we multiply the factors by any nonsingular
matrix R. We obtain other factors

g = Rf

with a covariance matrix

Ωg = RΩR−1

and we can write a new factor model:

X = α + βf + ε = α + βR−1Rf + ε = α + βgg + ε
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Factor Models

I In order to solve this indeterminacy, we can always choose the
matrix R so that the factors g are a set of orthonormal
variables, that is, uncorrelated variables (the orthogonality
condition) with unit variance (the normality condition).

I In order to make the model uniquely identifiable, we can
stipulate that factors must be a set of orthonormal variables
and that, in addition, the matrix of factor loadings is diagonal.

I Under this additional assumption, a strict factor model is
called a normal factor model. The model is still undetermined
under rotation, that is multiplication by any nonsingular
matrix such that RR′ = I .
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Factor Models

Summary:

I A set of variables has a normal factor representation if it is
represented by the following factor model:

X = α + βf + ε

where factors are orthonormal variables and noise terms are
such that the covariance matrix can be represented as follows:

Σ = ββ′ + Ψ

where β is the diagonal matrix of factor loadings and Ψ is a
diagonal matrix.

I Approximate factor models are uniquely identifiable only in
the limit of an infinite number of series.
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Factor Models: Types of Factors and Their Estimation

In financial econometrics, the factors used in factor models can
belong to three different categories:

I Macroeconomic factors

I Fundamental factors

I Statistical factors

Macroeconomic factors are macroeconomic variables that are
believed to determine asset returns (Example: GNP, the inflation
rate, the unemployment rate, or the steepness of the yield curve).
Fundamental factors are variables that derive from financial
analysis.
Statistical factors are factors that derive from a mathematical
process.
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Factor Models: Types of Factors and Their Estimation

I Macroeconomic factors are exogenous factors that must be
estimated as variables exogenous to the factor model. They
influence the model variables but are not influenced by them.

I A factor model is estimated as a linear regression model,
means that there is indeed a linear relationship between the
factors and the model variables.

I However, such a model will have no explanatory power. The
variance of each variable that is not explained by common
factors appears as noise.

I Adding factors might improve the explanatory power of the
model but, in general, worsens the ability to estimate the
model because there are more parameters to estimate.
There is a trade-off between adding explanatory factors and
the ability to estimate them.
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Factor Models: Types of Factors and Their Estimation

I Statistical factors are obtained through a logical process of
analysis of the given variables.

I Statistical factors are factors that are endogenous to the
system. They are typically determined with one of two
statistical processes; namely, principal component analysis or
factor analysis.

I Note that factors defined through statistical analysis are linear
combinations of the variables.
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Principal Components Analysis

I Principal components analysis (PCA) was introduced in 1933
by Harold Hotelling as a way to determine factors with
statistical learning techniques when factors are not
exogenously given.

I Given a variance-covariance matrix, one can determine factors
using the technique of PCA.

I The concept of PCA is the following.
Consider a set of n stationary time series Xi .
Consider next a linear combination of these series, that is, a
portfolio of securities. Each portfolio P is identified by an
n-vector of weights ωP and is characterized by a variance σ2

P .
Lastly, consider a normalized portfolio, which has the largest
possible variance. In this context, a normalized portfolio is a
portfolio such that the squares of the weights sum to one.
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Principal Components Analysis

I If we assume that returns are IID sequences, jointly normally
distributed with variance-covariance matrix σ, a lengthy direct
calculation demonstrates that each portfolios return will be
normally distributed with variance

σ2
P = ωT

P σωP

I The normalized portfolio of maximum variance can therefore
be determined in the following way: Maximize ωT

p σωP

subject to the normalization condition

ωT
P ωP = 1

where the product is a scalar product.

I It can be demonstrated that the solution of this problem is the
eigenvector ω2 corresponding to the largest eigenvalue λ2 of
the variance-covariance matrix σ.
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Principal Components Analysis

I Consider next the set of all normalized portfolios orthogonal
to ω1, that is, portfolios completely uncorrelated with ω1.
These portfolios are identified by the following relationship:

ωT
1 ωP = ωT

P ω1 = 0

Among this set, the portfolio of maximum variance is given by
the eigenvector ω2 corresponding to the second largest
eigenvalue λ2 of the variance-covariance matrix σ.

I If there are n distinct eigenvalues, we can repeat this process
n times. In this way, we determine the n portfolios Pi of
maximum variance. The weights of these portfolios are the
orthonormal eigenvectors of the variance- covariance matrix σ.

I These portfolios of maximum variance are all mutually
uncorrelated.
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Principal Components Analysis

I It can be demonstrated that we can recover all the original
return time series as linear combinations of these portfolios:

Xj =
n∑

i=1

αj ,iPi

I Thus far we have succeeded in replacing the original n
correlated time series Xj with n uncorrelated time series Pi

with the additional insight that each Xj is a linear
combination of the Pi .

I Suppose now that only p of the portfolios Pi have a significant
variance, while the remaining n-p have very small variances.
We can then implement a dimensionality reduction by
choosing only those portfolios whose variance is significantly
different from zero. Lets call these portfolios factors F.
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Principal Components Analysis

I It is clear that we can approximately represent each series Xi
as a linear combination of the factors plus a small
uncorrelated noise. In fact we can write

Xj =

p∑
i=1

αj ,iFi +
n∑

i=p+1

αj ,iPi =

p∑
i=1

αi ,jFi + εj

where the last term is a noise term.

I Therefore to implement PCA one computes the eigenvalues
and the eigenvectors of the variance-covariance matrix and
chooses the eigenvalues significantly different from zero.

I The corresponding eigenvectors are the weights of portfolios
that form the factors. Criteria of choice are somewhat
arbitrary.
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Principal Components Analysis

I Suppose, however, that there is a strict factor structure, which
means that returns follow a strict factor model as defined
earlier in this chapter:

r = a + βf + ε

I The matrix β can be obtained diagonalizing the
variance-covariance matrix.

I In general, the structure of factors will not be strict and one
will try to find an approximation by choosing only the largest
eigenvalues.
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Principal Components Analysis

I PCA works either on the variance-covariance matrix or on the
correlation matrix. The technique is the same but results are
generally different.

I PCA applied to the variance-covariance matrix is sensitive to
the units of measurement, which determine variances and
covariances. If PCA is applied to prices and not to returns,
the currency in which prices are expressed matters; one
obtains different results in different currencies. In these cases,
it might be preferable to work with the correlation matrix.

I PCA is a generalized dimensionality reduction technique
applicable to any set of multidimensional observations. It
admits a simple geometrical interpretation which can be easily
visualized in the three-dimensional case.
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Principal Components Analysis: Illustration
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Principal Components Analysis: Illustration

I Performing PCA is equivalent to determining the eigenvalues
and eigenvectors of the covariance matrix or of the correlation
matrix. The two matrices yield different results. We perform
both exercises.

I We estimate the covariance with the empirical covariance
matrix. Recall that the empirical covariance σij between
variables (Xi ,Xj) is defined as follows:

σ̂ij =
1

T

T∑
t=1

(Xi (t)− X̄i )(Xj(t)− X̄j)

X̄i =
1

T

T∑
t=1

Xi (t), X̄j =
1

T

T∑
t=1

Xj(t)
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Principal Components Analysis: Illustration

For the whole exhibit look at page 441.
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Principal Components Analysis: Illustration

For the whole exhibit look at page 442.
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Principal Components Analysis: Illustration

For the whole exhibit look at page 443.
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Principal Components Analysis: Illustration
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Principal Components Analysis: Illustration

I If we form portfolios whose weights are the eigenvectors, we
can form 10 portfolios that are orthogonal (i.e., uncorrelated).
These orthogonal portfolios are called principal components.

I The variance of each principal component will be equal to the
corresponding eigenvector. Thus the first principal component
will have the maximum possible variance and the last principal
component will have the smallest variance.
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Principal Components Analysis: Illustration
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Principal Components Analysis: Illustration

I The 10 principal components thus obtained are linear
combinations of the original series, X = (X1, . . . ,XN)′ that is,
they are obtained by multiplying X by the matrix of the
eigenvectors.

I If the eigenvalues and the corresponding eigenvectors are all
distinct we can apply the inverse transformation and recover
the X as linear combinations of the principal components.

I PCA is interesting if, in using only a small number of principal
components, we nevertheless obtain a good approximation.
So we regress the original series X onto a small number of
principal components. By choosing as factors the components
with the largest variance, we can explain a large portion of the
total variance of X.
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Principal Components Analysis: Illustration

For the whole exhibit look at page 448.
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Principal Components Analysis: Illustration
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Principal Components Analysis: Illustration
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Principal Components Analysis: Illustration
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PCA and Factor Analysis with Stable Distributions

I PCA and factor analysis can be applied provided that all
variances and covariances exist. Applying them does not
require that distributions are normal, but only that they have
finite variances and covariances.

I Variances and covariances are not robust but are sensitive to
outliers. Robust equivalent of variances and covariances exist.

I In order to make PCA and factor analysis insensitive to
outliers, one could use robust versions of variances and
covariances and apply PCA and factor analysis to these robust
estimates.
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PCA and Factor Analysis with Stable Distributions

I In many cases, however, distributions might exhibit fat tails
and infinite variances. In this case, large values cannot be
trimmed but must be taken into proper consideration.
However, if variances and covariances are not finite, the least
squares methods used to estimate factor loadings cannot be
applied. In addition, the concept of PCA and factor analysis
cannot be applied.

I In fact, if distributions have infinite variances, it does not
make sense to determine the portfolio of maximum variance
as all portfolios will have infinite variance and it will be
impossible, in general, to determine an ordering based on the
size of variance.
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Factor Analysis

I Here we consider an alternative technique for determining
factors: factor analysis (FA).

I Suppose we are given T independent samples of a random
vector X = (X1, . . . ,XN)′, N time series of stock returns at T
moments, as in the case of PCA.

I Assuming that the data are described by a strict factor model
with K factors, the objective of factor analysis (FA) consists
of determining a model of the type

X = α + βf + ε

with covariance matrix

Σ = ββ′ + Ψ

Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of KarlsruheLecture 13 Principal Components Analysis and Factor Analysis



Factor Analysis

I The estimation procedure is performed in two steps:
1. We estimate the covariance matrix and the factor

loadings.
2. We estimate factors using the covariance matrix and the

factor loadings.

I Assuming that the variables are jointly normally distributed
and temporally independently and identically distributed (IID),
we can estimate the covariance matrix with maximum
likelihood methods. Iterative methods such as the expectation
maximization (EM) algorithm are generally used for the
estimation of factor models.
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Factor Analysis

I After estimating the matrices β and Ψ factors can be
estimated as linear regressions.

I In fact, assuming that factors are zero means, we can write
the factor model as

X − α = βf + ε

which shows that, at any given time, factors can be estimated
as the regression coefficients of the regression of (Xα) onto β.

I Using the standard formulas of regression analysis we can now
write factors, at any given time, as follows:

f̂t = (β̂′Ψ̂−1β̂)−1β̂′Ψ̂−1(Xt − α̂)
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Factor Analysis

I Maximum likelihood estimates implies that the number of
factors is known. The correct number of factors is determined
basing on the heuristic procedure when estimates of q factors
stabilize and cannot be rejected on the basis of p probabilities.

I The factor loadings matrix can also be estimated with
ordinary least squares (OLS) methods.

I OLS estimates of the factor loadings are inconsistent when
the number of time points goes to infinity but the number of
series remains finite, unless we assume that the idiosyncratic
noise terms all have the same variance.

I The OLS estimators remain consistent under the assumption
when both the number of processes and the time go to infinity.

So, to perform factor analysis, we need to estimate only the factor
loadings and the idiosyncratic variances of noise terms.
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An Illustration of Factor Analysis
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An Illustration of Factor Analysis
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Applying PCA to Bond Portfolio Management

There are two applications in bond portfolio management where
PCA has been employed.

I The first application is explaining the movement or dynamics
in the yield curve and then applying the resulting principal
components to measure and manage yield curve risk.

I The second application of PCA is to identify risk factors
beyond changes in the term structure.

For example, given historical bond returns and factors that are
believed to affect bond returns, PCA can be used to obtain
principal components that are linear combinations of the variables
that explain the variation in returns.
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Using PCA to Control Interest Rate Risk

I Using PCA, several studies have investigated the factors that
have affected the historical returns on Treasury portfolios.

I Robert Litterman and Jose Scheinkman found that three
factors explained historical bond returns for U.S. Treasuries
zero-coupon securities:

1. The changes in the level of rates;
2. The changes in the slope of the yield curve;
3. The changes in the curvature of the yield curve.

I After identifying the factors, Litterman and Scheinkman use
regression analysis to assess the relative contribution of these
three factors in explaining the returns on zero-coupon
Treasury securities of different maturities.
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Using PCA to Control Interest Rate Risk

I On average, the first principal component explained about
90% of the returns, the second principal component 8%, and
the third principal component 2%.

I Thus, only three principal components were needed to fully
explain the dynamics of the yield curve.

I There have been several studies that have examined the yield
curve movement using PCA and reported similar results.
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Using PCA to Control Interest Rate Risk

Once yield curve risk is described in terms of principal components,
the factor loadings can be used to:

I Construct hedges that neutralize exposure to changes in the
direction of interest rates.

I Construct hedges that neutralize exposure to changes in
nonparallel shifts in the yield curve.

I Structure yield curve trades.

PCA of the dynamics of the yield curve have lead to the use of
what is now referred to as principal component duration.
Moreover, PCA can be used to estimate the probability associated
with a given hypothetical interest rate shock so that a bond
portfolio manager can better analyze the interest rate risk of a
bond portfolio and traders can better understand the risk exposure
of a bond trading strategy.
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Factor Analysis: Bond Risk Factors

I For a bond index that includes nongovernment securities,
there are risk factors other than term structure factors.

I Using PCA, Gauthier and Goodman have empirically identified
the risk factors that generate nominal excess returns for the
Salomon Smith Barney Broad Investment Grade Index (SSB
BIG Index) for the period January 1992 to March 2003.

I The results of their PCA for the first six principal components
for each bond sector of the SSB BIG Index are presented on
the next slide.
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An Illustration of Factor Analysis
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Factor Analysis: Bond Risk Factors

I The first principal component explains 92.7% of the variation.

I The second principal component explains 3.1% of nominal
excess returns. Gauthier and Goodman identify this factor as
the credit specific factor because of the high negative factor
loadings on the credit index combined with a high positive
weighting on Treasuries.

I Gauthier and Goodman identify the third principal component
as an optionality factor. This can be supported by noting that
the factor loadings on the assets classes that have some
optionality is positive, while the factor loading on the
noncallable series is negative.
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Factor Analysis: Bond Risk Factors

I This third principal component, which represents optionality,
is consistent with studies of the movements of the yield curve.

I Gauthier and Goodman show that there is a high positive
correlation between the optionality factor and the slope of the
yield, but a negative relationship with 5-year cap volatility.

This suggests

1. the steeper the yield curve slope, the better a callable series
should do;

2. the higher the volatility, the lower the return on the callable
series.
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PCA and Factor Analysis Compared

I The two illustrations of PCA and FA are relative to the same
data and will help clarify the differences between the two
methods.

I Lets first observe that PCA does not imply any specific
restriction on the process. Given a nonsingular covariance
matrix, we can always perform PCA as an exact linear
transformation of the series. When we consider a smaller
number of principal components, we perform an
approximation which has to be empirically justified.

I Factor analysis, on the other hand, assumes that the data
have a strict factor structure in the sense that the covariance
matrix of the data can be represented as a function of the
covariances between factors plus idiosyncratic variances.
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PCA and Factor Analysis Compared

I PCA tends to be a dimensionality reduction technique that
can be applied to any multivariate distribution and that yields
incremental results. This means that there is a trade-off
between the gain in estimation from dimensionality reduction
and the percentage of variance explained.

I Factor analysis, on the other hand, tends to reveal the exact
factor structure of the data. That is, FA tends to give an
explanation in terms of what factors explain what processes.

I Factor rotation can be useful both in the case of PCA and FA.
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An Illustration of Factor Analysis
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An Illustration of Factor Analysis
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An Illustration of Factor Analysis
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Final Remarks

I The required textbook is ”Financial Econometrics: From
Basics to Advanced Modeling Techniques”.

I Please read Chapter 13 for today’s lecture.

I All concepts explained are listed in page 464 of the textbook.
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