
CS5001 / CS5003:
Intensive Foundations
of Computer Science

PDF of this presentation

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up

1

https://course.ccs.neu.edu/cs5001f19-sf/static/lectures/cs5001-lecture-13-review-and-wrapup.pdf

You have learned a lot of things this semester! The final exam will be cumulative,
meaning that it will cover everything during the semester. There will be a focus on
the material since the midterm.

The exam will be a 3-hour exam in class on Tuesday, December 10th, from 6pm-
9pm (or 7pm-10pm, if you want -- you can start at either time).

The exam will be on BlueBook again, and you should already have the program on
your computer.

We will review tonight, and on Thursday there is an optional lab where we can also
review, or you can work on assignment 8.

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up

2

Here are the topics that we have covered in the course:

Pre-midterm:

Variables
Basic types: int, float, str

Library functions
Branching: if / elif / else, not, or, and, ==, !=, <, >, <=, >=
Iteration
Lists, list slicing, list comprehension
Tuples
Creating your own functions
strings and f-strings
recursion
dictionaries
file processing

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up

3

Post-midterm:

Object oriented programming

Creating classes

__init__, __str__, self

Inheritance

Stacks
Queues
Searching

Linear Search
Binary Search

Sorting

Insertion Sort, Selection Sort, Merge Sort, Quicksort (and Radix Sort)

Using Python for AI
Iterators, Generators, Lambda Functions, and Sets

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up

4

Study Tips

1. Review lecture slides -- make sure you understand all example code
2. Review all labs
3. Review all assignments
4. Review
5. Review your midterm and make sure you understand what you missed (and

would get it right if you did it again!)
6. Do the practice exam:

7. Ask questions on Piazza about concepts or programs you don't understand

Exam Reference Sheet

https://course.ccs.neu.edu/cs5001f19-
sf/static/final/final-practice.zip

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up

5

https://course.ccs.neu.edu/cs5001f19-sf/static/final/exam-reference.pdf
https://course.ccs.neu.edu/cs5001f19-sf/static/final/final-practice.zip

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
Post-midterm:

Object oriented programming

Creating classes

__init__, __str__, __eq__, self

Inheritance

 Be prepared to create a class with an __init__, __str__, and

__eq__ functions

Be prepared to create an inherited class that calls r

Be prepared to use classes provided for you

6

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
Post-midterm:

Stacks

Understand the first-in-last-out nature of a stack

Understand what the push, pop, top, and empty functions do

Be prepared to create a stack using a list

Be prepared to use a stack to solve problems that can benefit from the use of a
stack

7

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
Post-midterm:

Queues

Understand the first-in-first-out nature of a queue

Be prepared to create a queue from a list

Understand what the enqueue, dequeue, front, and empty functions do

Be prepared to use a queue in a program to solve a problem

8

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
Post-midterm:

Searching

Linear Search
Binary Search

Understand the difference between a linear search and binary search

Be able to trace a binary search and explain how it works. Make sure you
remember that in order to do a binary search, the elements must be sorted

9

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
Post-midterm:

Sorting

Insertion Sort, Selection Sort, Merge Sort, Quicksort (and Radix Sort)

Be able to explain all of the above sorts (except Radix sort)

Be able to actually code selection sort and insertion sort

Be able to talk about why merge sort is, on average, much faster than insertion
sort

Be able to talk about why selection sort is never fast

10

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
Post-midterm:

Using Python for AI
Iterators, Generators, Lambda Functions, and Sets

We won't ask specific questions about AI, nor will we ask about iterators,
generators, lambda functions, or sets.

11

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
Where to go from here

You are prepared for your next class, CS 5004 - Object-Oriented Design

The class is taught in Java, which means that you will need to learn a new programming
language. Java is similar to Python in many ways, but it is also different in many ways.
You will find it relatively easy to learn Java, but some things will be tricky to remember.
Here is an example of the similarities and differences between Python and Java:

class Main {
 public static void main(String[] args) {
 for (int i=0; i < 10; i++) {
 System.out.println("Java " + Integer.toString(i));
 }
 }
}

1
2
3
4
5
6
7

Java
def main():
 for i in range(10):
 print(f"Python {i}")

if __name__ == "__main__":
 main()

1
2
3
4
5
6

Python

Some differences:

Java has curly braces for blocks. Indentation is optional (though recommended)
for loops look different (and require parentheses)

Variables must have the type (e.g., int i)

Statements end with a semicolon (;) in Java

12

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
Another example:

import java.util.ArrayList; // import the ArrayList class
import java.util.Scanner;

class Main {
 public static void main(String[] args) {
 // create a list
 ArrayList<String> myList = new ArrayList<String>();
 while (true) {
 System.out.print("Please enter a name (blank line to end): ");
 Scanner in = new Scanner(System.in);
 String s = in.nextLine();
 if (s.isEmpty()) {
 break;
 }
 myList.add(s);
 }
 System.out.println("You entered:");
 for (String s : myList) {
 System.out.println(s);
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Yes, Java does look different! See the next slide for the equivalent Python program.

13

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
Another example:

def main():
 my_list = []
 while True:
 s = input("Please enter a name (blank line to end): ")
 if s == '':
 break
 my_list.append(s)
 print("You entered:")
 for s in my_list:
 print(s)

if __name__ == "__main__":
 main()

1
2
3
4
5
6
7
8
9

10
11
12
13

Python programs tend to be shorter than Java programs. But, there are some
similarities:

There are while loops and for loops in both.

Lists and ArrayLists are similar
Both have break statements

Both use dot notation

14

Lecture 13: Review and Wrap-upLecture 13: Review and Wrap-up
The bottom line: you will be able to learn Java relatively quickly, despite the
differences.

You have learned programming skills that translate across languages.

You have learned problem solving skills that translate across languages.

You should be proud of how far you've come during the semester, and good luck as
you go forward to your future classes in the Align program!

15

