
Lecture 14: Elliptic Curve Cryptography and Digital

Rights Management

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 3, 2022
5:32pm

©2022 Avinash Kak, Purdue University

Goals:

� Introduction to elliptic curves

� A group structure imposed on the points on an elliptic curve

� Geometric and algebraic interpretations of the group operator

� Elliptic curves on prime finite fields

� Perl and Python implementations for elliptic curves on prime

finite fields

� Elliptic curves on Galois fields

� Elliptic curve cryptography (EC Diffie-Hellman, EC Digital Signature

Algorithm)

� Security of Elliptic Curve Cryptography

� ECC for Digital Rights Management (DRM)

CONTENTS

Section Title Page

14.1 Why Elliptic Curve Cryptography 3

14.2 The Main Idea of ECC — In a Nutshell 9

14.3 What are Elliptic Curves? 13

14.4 A Group Operator Defined for Points on an Elliptic 18
Curve

14.5 The Characteristic of the Underlying Field and the 25
Singular Elliptic Curves

14.6 An Algebraic Expression for Adding Two Points on 29
an Elliptic Curve

14.7 An Algebraic Expression for Calculating 2P from 33
P

14.8 Elliptic Curves Over Zp for Prime p 36

14.8.1 Perl and Python Implementations of Elliptic 39
Curves Over Finite Fields

14.9 Elliptic Curves Over Galois Fields GF (2n) 52

14.10 Is b 6= 0 a Sufficient Condition for the Elliptic 62
Curve y2 + xy = x3 + ax2 + b to Not be Singular

14.11 Elliptic Curves Cryptography — The Basic Idea 65

14.12 Elliptic Curve Diffie-Hellman Secret Key 67
Exchange

14.13 Elliptic Curve Digital Signature Algorithm (ECDSA) 71

14.14 Security of ECC 75

14.15 ECC for Digital Rights Management 77

14.16 Homework Problems 82

2

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.1 WHY ELLIPTIC CURVE
CRYPTOGRAPHY?

� As you saw in Section 12.12 of Lecture 12, the computational

overhead of the RSA-based approach to public-key cryptography

increases with the size of the keys. As algorithms for integer

factorization have become more and more efficient, the RSA

based methods have had to resort to longer and longer keys.

� Elliptic curve cryptography (ECC) can provide the same level

and type of security as RSA (or Diffie-Hellman as used in the

manner described in Section 13.5 of Lecture 13) but with

much shorter keys.

� Table 1 compares the best current estimates of the key sizes for

three different approaches to encryption for comparable levels of

security against brute-force attacks. [While the word “brute-force” for a

symmetric-key cipher like AES means searching through the entire key-space, it means

integer factorization for an algorithm like RSA, and solving the digital-logarithm

problem for an algorithm like ECC.] What makes this table all the more

significant is that for comparable key lengths the computational

burdens of RSA and ECC are comparable. What that implies

is that, with ECC, it takes one-sixth the computational

effort to provide the same level of cryptographic security

3

Computer and Network Security by Avi Kak Lecture 14

that you get with 1024-bit RSA. [The table shown here is basically the same

table as presented earlier in Section 12.12 of Lecture 12, except that now we also include ECC in our

comparison.] [As for why I have double-quoted key in the header of the “RSA and

Diffie-Hellman” column in Table 1, strictly speaking the word key in that column is

the size of the modulus. (Note however that in most cases the size of the private key is

comparable to the size of the modulus.) The reason for double-quoting key in the

header for the ECC column is the same, as you will see in this lecture.]

Symmetric Encryption RSA and Diffie-Hellman ECC

Key Size “Key” size “Key” Size
in bits in bits in bits

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

Table 1: Current best estimates of the key sizes needed to achieve

equivalent level of security with three different methods.

� The computational overhead of both RSA and ECC grows as

O(N3) where N is the key length in bits. Nonetheless, despite

this parity in the dependence of the computational effort on key

size, it takes far less computational overhead to use ECC on

account of the fact that you can get away with much shorter

keys.

4

Computer and Network Security by Avi Kak Lecture 14

� Because of the much smaller key sizes involved, ECC algorithms

can be implemented on smartcards without mathematical

coprocessors. Contactless smart cards work only with ECC

because other systems require too much induction energy. Since

shorter key lengths translate into faster handshaking protocols,

ECC is also becoming increasingly important for wireless

communications.

� For the same reasons as listed above, we can also expect ECC to

become important for wireless sensor networks.

� If you want to combine forward secrecy, in the sense defined in

Section 12.6 of Lecture 12, with authentication, a commonly

used algorithm today is ECDHE-RSA. [The acronym “ECDHE” stands for

“Elliptic Curve Diffie-Hellman Ephemeral”. You will also see in common use a variant acronym:

ECDH-RSA. The difference between ECDHE and ECDH is that the “ephemeral” implied by the last

letter in the former implies just a one-time use of the session key.] In ECDHE-RSA,

RSA is used for certificate based authentication using the

TLS/SSL protocol and ECDHE used for creating a one-time

session key using the method described in Section 14.12. [You

could also use DHE-RSA, which uses the regular Diffie-Hellman

Exchange protocol of Section 13.5 of Lecture 13 for creating session

keys, for the same purpose. However, you are likely to get greater

security with ECDHE-RSA.] [The main reason RSA is widely used for authentication

is because a majority of the certificates in use today are based on RSA public keys. However, that is

changing. You now see more and more organizations using ECC based certificates. ECC based

certificates use the ECDSA algorithm for authentication. This algorithm is presented briefly in

5

Computer and Network Security by Avi Kak Lecture 14

Section 14.13. When authentication is carried out with ECDSA and the session key generated with

ECDH or ECDHE, the combined algorithm is denoted ECDHE-ECDSA or ECDH-ECDSA. As you

will see in Section 14.13, ECDSA stands for “Elliptic Curve Digital Signature Algorithm.”]

� ECC is also used in the algorithms for Digital Rights

Management (DRM), as we will discuss in Section 14.14.

� As you will see in Section 20.5 of Lecture 20, ECC is also used

in the more recent versions of the Tor protocol.

� Although the algorithmic details of how ECC is used in DRM

will be described later in Section 14.14, we will review in the

rest of this section how ECC, along with AES, is used in game

consoles to keep others from gaining direct access to the

binaries and for ensuring that the hardware only executes

authenticated code. There are a lot of Linux folks out there in

the open-source community who like to create their own games

and run them on the popular game consoles. The goal of DRM

in this context is to make it more difficult to enagage in such

practices. DRM also makes it more difficult to run pirated

games on the hardware. I will focus on the PlayStation3 game

console in the discussion that follows.

� PlayStation3 (PS3) stores the executables as SELF files. SELF

stands for “Signed Executable and Linkable Format.” [Think of

these as encrypted and signed version of the “.exe” files in a Windows platform.] These files

6

Computer and Network Security by Avi Kak Lecture 14

are stored encrypted in different sections in such a way that

each section yields the encryption parameters, such as the key

and the IV (initialization vector), needed for decrypting the

next section. [According to the information at the web links at the end of this

section, the first section of the file, 64 bytes long, contains the key and the IV

(Initializing Vector) for decoding the metadata section that follows. The first section

is encrypted with 256-bit AES in the CBC mode (See Section 9.5.2 of Lecture 9 for

this mode). And the metadata section is encrypted with the 128-bit AES in the CTR

mode that was described in Section 9.5.5 of Lecture 9. The metadata section of each

file contains the key and the IV for decrypting the data section of a file. The data

section is also encrypted with 128-bit AES in the CTR mode. As you would expect,

the loader program that pulls these files into RAM must decrypt them on the fly,

using the parameters extracted from each section to decrypt the next section.]

� In PS3, the SELF files are signed with ECDSA algorithm so

that the hardware only executes authenticated code. ECDSA

stands for Elliptic Curve Digital Signature Algorithm. We will

talk about how exactly ECC can be used for digital signatures

in Section 14.13. [Along the lines of what was mentioned on the previous

page, enforcing the condition that only the authenticated code be executed by the

hardware is supposed to make it more difficult to run pirated games on a game

console. However, this also makes it more difficult for folks to create their own games

for PS3. Such folks tend to be mostly Linux users and they would obviously want to

be able to replace the game OS with some variant of Linux on their game consoles.]

� See Section 14.13 on how the code authentication part of the

security in PS3 was cracked.

7

Computer and Network Security by Avi Kak Lecture 14

� The information presented above concerning PlayStation3 can

be found in much greater detail at the links shown below:

http://www.youtube.com/watch?v=5E0DkoQjCmI

http://www.ps3devwiki.com/wiki/SELF_File_Format_and_Decryption

The YouTube video is a recording of a panel session at the

Console Hacking 2010 forum of the 27th Chaos Communication

Congress. You can see additional such video clips at YouTube if

you search for strings like “Console Hacking 2010”. The slides

that were presented at CCC can be downloaded from

http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.

These slides contain a lot of useful comparative information

regarding the different game consoles.

8

http://www.youtube.com/watch?v=5E0DkoQjCmI
http://www.ps3devwiki.com/wiki/SELF_File_Format_and_Decryption
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.2 THE MAIN IDEA OF ECC — IN A
NUTSHELL

� Imagine we have a set of points (xi, yi) in a plane. The set is

very, very large but finite. We will denote this set by E.

� Next imagine we can define a group operator on this set. As

you know from Lecture 4, a group operator is typically denoted

by the symbol ‘+’ even when the operation itself has nothing

whatsoever to do with ordinary arithmetic addition. So given

two points P and Q in the set E, the group operator will allow

us to calculate a third point R, also in the set E, such that

P +Q = R.

� Given a point G ∈ E, we will particularly be interested in using

the group operator to find G +G, G +G +G,

G +G +G + . . . +G for an arbitrary number of repeated

invocations of the group operator. Given an ordinary integer

k, we will use the notation k ×G to represent the repeated

addition G +G + . . . +G in which G makes k appearances,

with the operator ‘+’ being invoked k − 1 times. [Note that k ×G is

NOT an attempt to define a multiplication operator on the set E. That is because k is an

ordinary integer. In other words, k is not in the set E. The only meaning to be associated with

k ×G is that of repeated addition.]

9

Computer and Network Security by Avi Kak Lecture 14

� Now imagine that the set E is magical in the sense that, after

we have calculated k ×G for a given point G ∈ E, it is

extremely difficult to recover k from k ×G. We will assume

that the only way to recover k from k ×G is to try every

possible repeated summation like G +G, G +G +G,

G +G +G + . . . +G until the result equals what we have for

k ×G. [Trying to figure out how many times G participates in the repeated sum

G+G+G+ . . .+G in order for the result to equal k ×G is referred to as solving the discrete

logarithm problem. To see why that is so, consider the traditional notion of logarithm that

allows us to write ak = b as k = loga b. Obviously, ak is nothing but a× a× . . .× a with a making k

appearances in the repeated invocations of the binary operator ‘×’. So when we write ak = b as

k = loga b, we calculate the number of times a participates in the repeated invocations of the

binary operator involved. That is the same as what we want to do in order to determine the

value of k from k ×G: we want to find out how many times G participates in the repeated

invocations of the ‘+’ operator. Just don’t be fooled by the appearance of the operator ‘×’ in

k ×G. It is really not a multiplication. It is a shortcut for denoting the repeated addition

G+G+ . . .+G involving k appearances of G. The notion of discrete logarithms was discussed

earlier in Section 11.8 of Lecture 11 and in Section 13.7 of Lecture 13.]

� If we could ensure the above condition, then “products” like

k ×G for G ∈ E could be used by two parties in a

Diffie-Hellman like protocol for sharing a secret session key.

Section 14.11 will show you how that can be done. [To convey to

you the core idea of what you’ll see in Section 14.11, let’s say that the point G is made

public for all to use. Now party A will select an integer XA = k1 as his/her private key.

The public key for A will be YA = XA ×G, that is, a k1-fold application of the group

operator to the point G, implying that while the private key is an ordinary integer, the

10

Computer and Network Security by Avi Kak Lecture 14

public key is a point like G. Party B does exactly the same thing: it selects an integer

XB = k2 as his/her private key, with the public key for B being YB = XB ×G. The two

parties exchange their public keys. Subsequently, A computes the session key by

KA = XA × YB = k1 × k2 ×G and B computes the session key KB = XB × YA = k2 × k1 ×G.

Obviously, KA = KB.]

� All of the assumptions we have made above are

satisfied when the set E of points (xi, yi) is drawn

from an elliptic curve.

� At this point a smart reader would ask: If the security of ECC

depends on finding out how many times a point G participates

in a sum like G +G + . . . +G, why would it take an attacker

any more work to figure that out than it would take for a party

to calculate the sum? It would seem that all that the attacker

would need to do would be to keep on adding G to itself until

the attacker sees the value of the sum. That is, if some integer

XA is your private key, and if you derive your public key by

adding the point G to itself XA times, the amount of

computational effort you expend in adding G to itself XA times

should be the same as what the attacker would need to expend

if he kept on adding G to itself until reaching a value that is

your public key.

� The answer to the question raised above lies in the fact that

the amount of computational effort that it takes to add a point

11

Computer and Network Security by Avi Kak Lecture 14

G to itself XA number of times is logarithmic in the size of XA.

It is pretty intuitive as to why that is the case: You add G to

itself once and you get 2×G. Next you add 2×G to itself and

you get 4×G, followed by adding 4×G to itself to get 8×G,

and so on. Since the attacker would not know the value of XA,

he would not be able to take advantage of such exponentially

increasing jumps. There is one more important factor at play

here: As you will soon see in this lecture, all these calculations

are carried out modulo a prime p (in the most commonly used

form of ECC). So, as you keep on adding G to itself, the size of

what you get cannot serve as a guide to how many more times

you must repeat that addition in order to get to the final value.

12

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.3 WHAT ARE ELLIPTIC CURVES?

� First and foremost, elliptic curves have nothing to do with

ellipses. Ellipses are formed by quadratic curves. Elliptic curves

are always cubic. [Note: Elliptic curves are called elliptic because of their

relationship to elliptic integrals in mathematics. An elliptic integral can be used to

determine the arc length of an ellipse.]

� The simplest possible “curves” are, of course, straight lines.

� The next simplest possible curves are conics, these being

quadratic forms of the following sort

ax2 + bxy + cy2 + dx + ey + f = 0

If b2 − 4ac is less than 0, then the curve is either an ellipse, or a

circle, or a point, or the curve does not exist; if it is equal to 0,

then we have either a parabola, or two parallel lines, or no curve

at all; if it is greater than 0, then we either have a hyperbola or

two intersecting lines. (Note that, by definition, a conic is the

intersection of a plane with two cones that are joined at their

tips.)

� The next simplest possible curves are elliptic curves. An elliptic

13

Computer and Network Security by Avi Kak Lecture 14

curve in its “standard form” is described by

y2 = x3 + ax + b

for some fixed values for the parameters a and b. This equation

is also referred to as Weierstrass Equation of

characteristic 0. [The equation shown involves multiplications and additions over

certain objects that are represented by x, y, a, and b. The values that these object acquire are meant

to be drawn from a set that must at least be a ring with a multiplicative identity element. (See

Lecture 4 for what a ring is.) The characteristic of such a ring is the number of times

you must add the multiplicative identity element in order to get the additive identity

element. If adding the multiplicative identity element to itself, no matter how many

times, never gives us the additive identity element, we say the characteristic is 0. For

illustration, the set of all real numbers is of characteristic 0 because no matter how

many times you add 1 to itself, you will never get a 0. When a set is not of

characteristic 0, there will exist an integer p such that p× n = 0 for all n. The value

of p is then the characteristic of the integral domain. For example, in the set of

remainders Z9 (which is a ring with a multiplicative identity element of 1, although it is not an integral domain since 3 × 3 = 0 mod 9)

that you saw in Lecture 5, the numbers 9× n are 0 for every value of the integer n. So

we can say that Z9 is a ring of characteristic 9. When we say that the equation shown

above is of characteristic 0, we mean that the set of numbers that satisfy the equation

constitutes a ring of characteristic 0.]

� Elliptic curves have a rich algebraic structure that can be put to

use for cryptography.

� Figure 1 shows some elliptic curves for a set of parameters

(a, b). The top four curves all look smooth (they do not have

14

Computer and Network Security by Avi Kak Lecture 14

Figure 1: Elliptic curves for different values of the param-

eters a and b. (This figure is from Lecture 14 of “Lecture Notes on Computer and Network

Security” by Avi Kak.)

15

Computer and Network Security by Avi Kak Lecture 14

cusps, for example) because they all satisfy the following

condition on the discriminant of the polynomial

f(x) = x3 + ax + b:

4a3 + 27b2 6= 0 (1)

[Note: The discriminant of a polynomial is the product of the squares of the
differences of the polynomial roots. The roots of the polynomial
f(x) = x3 + ax + b are obtained by solving the equation x3 + ax + b = 0.
Since this is a cubic polynomial, it will in general have three roots. Let’s call them r1,
r2, and r3. Its discriminant will therefore be

D3 =
3
∏

i<j

(ri − rj)
2

which is the same as (r1 − r2)
2(r1 − r3)

2(r2 − r3)
2. It can be shown that when the

polynomial is x3 + ax+ b, the discriminant reduces to

D3 = − 16(4a3 + 27b2)

This discriminant must not become zero for an elliptic curve polynomial x3 + ax+ b to
possess three distinct roots. If the discriminant is zero, that would imply that two or
more roots have coalesced, giving the curve a cusp or some other form of
non-smoothness. Non-smooth curves are called singular. This notion will be defined
more precisely later. It is not safe to use singular curves for cryptography. As to why
that is the case will become clear later in these lecture notes.]

� The bottom two examples in Figure 1 show two elliptic

curves for which the condition on the discriminant is violated.

For the one on the left that corresponds to f(x) = x3, all three

roots of the cubic polynomial have coalesced into a single point

and we get a cusp at that point. For the one on the right that

corresponds to f(x) = x3 − 3x + 2, two of the roots have

16

Computer and Network Security by Avi Kak Lecture 14

coalesced into the point where the curve crosses itself. These

two curves are singular. As mentioned earlier, it is not safe

to use singular curves for cryptography.

� Note that since we can write

y = ±
√
x3 + ax + b

elliptic curves in their standard form will be symmetric about

the x-axis.

� It is difficult to comprehend the structure of the curves that

involve polynomials of degree greater than 3.

� To give the reader a taste of the parameters used in elliptic

curves meant for real security, here is an example:

y2 = x3 + 317689081251325503476317476413827693272746955927x

+ 79052896607878758718120572025718535432100651934

This elliptic curve is used in the Microsoft Windows Media

Digital Rights Management Version 2. We will have more

to say about this curve in Section 14.14.

17

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.4 A GROUP OPERATOR DEFINED
FOR POINTS ON AN ELLIPTIC CURVE

� The points on an elliptic curve can be shown to constitute a

group.

� Recall from Lecture 4 that a group needs the following: (1) a

group operator; (2) an identity element with respect to the

operator; (3) closure and associativity with respect to the

operator; and (4) the existence of inverses with respect to the

operator.

� The group operator for the points on an elliptic curve is, by

convention, called addition. Its definition has nothing to do

with the conventional arithmetic addition.

� To add a point P on an elliptic curve to another point Q on the

same curve, we use the following rule

– We first join P with Q with a straight line. The third point

of the intersection of this straight line with the curve, if such

an intersection exists, is denoted R. The mirror image of this

18

Computer and Network Security by Avi Kak Lecture 14

point with respect to the x-coordinate is the point P + Q.

If the third point of intersection does not exist, we say it is

at infinity.

– The upper two curves in Figure 2 illustrate the addition

operation for two different elliptic curves. The values for a

and b for the upper curve at the left are -4 and 0,

respectively. The values for the same two constants for the

upper curve on the right are 2 and 1, respectively.

� But what happens when the intersection of the line joining P

and Q with the curve is at infinity?

� We denote the point at infinity by the special symbol O and,

through the stipulations that follow, we then show that this

can serve as the additive identity element for the group

operator. [If you really think about it, the point represented by O is actually at infinity —

along the y-axis. You see, the only time when the line joining P and Q does NOT intersect the

curve is when that line is parallel to the y-axis. Stare at the right hand portion of the curves in

Figure 2, the portion that is open toward the positive direction of the y-axis. As you follow

this curve starting from the point on the x-axis, you see the concavity in the curve as it rises to

eventually become parallel to the y-axis. This concavity implies that if you were to draw a line

through any two points in the upper half of the curve, it is guaranteed to intersect the curve in

its lower half portion. Additionally, if you draw a line between any point in the upper half of

the curve and a point in lower half, it will intersect the curve either in the upper half or in the

lower half.]

19

Computer and Network Security by Avi Kak Lecture 14

� We stipulate that P + O = P for any point on the curve. [To

continue with the small-font note in the previous bullet, joining P with O according to our

group law requires that we draw a line through P that is parallel to the y-axis, and that we

then find the “other” point where this line intersects the curve. It follows from the next bullet

that this “other” point will be the mirror reflection of P about the x-axis. That is, this “other”

point will be at −P . When we reflect it with respect to the x-axis, we get back P .]

� We define the additive inverse of a point P as its mirror

reflection with respect to the x coordinate. So if Q on the curve

is the mirror reflection of P on the curve, then Q = − P . For

any such two points, it would obviously be the case that the

third point of intersection with the curve of a line passing

through the first two points will be at infinity. That is, the

point of intersection of a point and its additive inverse will be

the distinguished point O.

� We will further stipulate that that O + O = O, implying

that −O = O. [This is in keeping with the fundamental concept in mathematics

that you get to the same point at infinity regardless of whether you head out in the positive

direction or the negative direction along a coordinate axis.] Therefore, the mirror

reflection of the point at infinity is the same point at infinity.

� Now we can go back to the issue of what happens to P +Q

when the intersection of the line passing through the two points

P and Q with the elliptic curve is at infinity, as would be the

case when P and Q are each other’s mirror reflections with

20

Computer and Network Security by Avi Kak Lecture 14

Figure 2: A pictorial depiction of the group law for elliptic

curves. (This figure is from Lecture 14 of “Lecture Notes on Computer and Network Security” by

Avi Kak.)

21

Computer and Network Security by Avi Kak Lecture 14

regard to the x-axis. Obviously, in this case, the intersection of

P and Q is at the distinguished point O, whose mirror

reflection is also at O. Therefore, for such points,

P + Q = O and Q = −P .

� We have already defined the additive inverse of a point P as its

mirror reflection about the x-axis. What is the additive inverse

of a point where the tangent is parallel to the y-axis? The

additive inverse of such a point is the point itself. That is, if the

tangent at P is parallel to the y-axis, then P + P = O.

� In general, what does it mean to add P to itself? To see what it

means, let’s consider two distinct points P and Q and let Q

approach P . The line joining P and Q will obviously become a

tangent at P in the limit. Therefore, the operation P + P

means that we must draw a tangent at P , find the intersection

of the tangent with the curve, and then take the mirror

reflection of the intersection.

� For an elliptic curve

y2 = x3 + ax + b

we define the set of all points on the curve along with the

distinguished point O by E(a, b).

22

Computer and Network Security by Avi Kak Lecture 14

� E(a, b) is a group with the “addition” operator as we defined it

previously in this section.

� E(a, b) is closed with respect to the addition operation. We can

also show geometrically that the property of associativity is

satisfied. Every element in the set has its additive inverse in the

set.

� Since the operation of “addition” is commutative, E(a, b) is an

abelian group. (Lecture 4 defines abelian groups.)

� Just for notational convenience, we now define “multiplication”

on this group as repeated addition. Therefore,

k × P = P + P + . . . + P

with P making k appearances on the right. [Note that we are

NOT defining a multiplication operator over the set E(a, b).

This is merely a notational convenience to define a k-fold

addition of an element of E(a, b) to itself.]

� Therefore, we can express P + P as 2P , P + P + P as 3P ,

and so on.

� The two curves at the bottom in Figure 2 show us calculating

2P and 3P for a given P . The values of a and b for the lower

23

Computer and Network Security by Avi Kak Lecture 14

curve on the left are -4 and 2, respectively. The values for the

same two constants for the lower curve on the right are both 3.

24

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.5 THE CHARACTERISTIC OF THE
UNDERLYING FIELD

AND THE SINGULAR ELLIPTIC CURVES

� The examples of the elliptic curves shown so far were for the

field of real numbers. (See Lecture 4 for what is meant by a field.) What

that means is that the coefficients a and b and the values taken

on by the variables x and y all belong to the field of real

numbers. These fields are of characteristic zero because no

matter how many times you add the multiplicative identity

element to itself, you’ll never get the additive identity element.

(See the explanatory note at the fourth bullet in Section 14.3 for what is meant by the characteristic

of a field.)

� The group law of Section 14.4 can also be defined when the

underlying field is of characteristic 2 or 3. [It follows from the

explanatory note in the fourth bullet in Section 14.3, when we consider real numbers

modulo 2, we have an underlying field of characteristic 2. By the same token, when we

consider real numbers modulo 3, we have an underlying field of characteristic

3.] But now the elliptic curve y2 = x3 + ax + b becomes

singular, a notion that we will define more precisely shortly.

While singular elliptic curves do admit group laws of the sort we

showed in Section 14.4, such groups, although defined over the

points on the elliptic curve, become isomorphic to either the

25

Computer and Network Security by Avi Kak Lecture 14

multiplicative or the additive group over the underlying field

itself, depending on the type of singularity. That fact makes

singular elliptic curves unsuitable for cryptography

because they are easy to crack.

� To show that the elliptic curve y2 = x3 + ax + b becomes

singular when the characteristic of the underlying field is 2,

let’s look at the partial derivatives of the two sides of the

equation of this curve:

2ydy = 3x2dx + adx

implying

dy

dx
=

3x2 + a

2y
(2)

� A point on the curve is singular if dy
dx is not properly defined

there and a curve that contains a singular point is a singular

curve. [If dy
dx

is not properly defined at a point, then we cannot construct a tangent at that

point. Such a point would not lend itself to the group law presented in Section 14.4, since that law

requires us to draw tangents.] This would be the point where both the

numerator and the denominator are zero. [When only the denominator

goes to zero, the slope is still defined even though it is ∞.] So the elliptic curve

y2 = x3 + ax + b will become singular if it contains a point

(x, y) so that

3x2 + a = 0

26

Computer and Network Security by Avi Kak Lecture 14

2y = 0

and the point (x, y) satisfying these two equations lies on the

curve.

� When the underlying field is of characteristic 2, the equation

2y = 0 will always be satisfied since the number 2 is the same

thing as 0. [This follows from the definition of characteristic in the explanatory note fourth bullet

of Section 14.3]. And the numerator condition 3x2 + a = 0 will be

satisfied at any point on the curve where x =
√

−a
3 . Since we

define a singular point as one where both the numerator and

the denominator go to zero, when the characteristic of the

underlying field is 2, the curve y2 = x3 + ax + b will be singular

on account of this condition being satisfied at the point where

the x coordinate equals
√

−a
3 .

� Let’s now consider the case of a field of characteristic 3. In this

case, since 3 is the same thing as 0, we can write for the curve

slope from Equation (2):

dy

dx
=

a

2y

This curve becomes singular if we should choose a = 0 since the

denominator in the ratio shown above will also go to zero at the

point where the curve intersects the x-axis.

27

Computer and Network Security by Avi Kak Lecture 14

� In general, when using the elliptic curve equation

y2 = x3 + ax + b, we avoid underlying fields of characteristic 2

or 3 because of the nature of the constraints they place on the

parameters a and b in order for the curve to not become

singular.

28

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.6 AN ALGEBRAIC EXPRESSION FOR
ADDING TWO POINTS ON AN ELLIPTIC

CURVE

� Given two points P and Q on an elliptic curve E(a, b), we have

already pointed out that to compute the point P + Q, we first

draw a straight line through P and Q. We next find the third

intersection of this line with the elliptic curve. We denote this

point of intersection by R. Then P +Q is equal to the mirror

reflection of R about the x-axis.

� In other words, if P , Q, and R are the three intersections of the

straight line with the curve, then

P + Q = − R

� This implies that the three intersections of a straight line with

the elliptic curve must satisfy

P + Q + R = O

� We will next examine the algebraic implications of the above

relationship between the three points of intersection.

29

Computer and Network Security by Avi Kak Lecture 14

� The equation of the straight line that runs through the points P

and Q must be of the form:

y = αx + β

where α is the slope of the line, which is given by

α =
yQ − yP
xQ − xP

� For a point (x, y) to lie at the intersection of the straight line

and the elliptic curve E(a, b), the following equality must hold

(αx + β)2 = x3 + ax + b (3)

since y = αx + β on the straight line through the points P

and Q and since the equation of the elliptic curve is

y2 = x3 + ax + b.

� For there to be three points of intersection between the straight

line and the elliptic curve, the cubic form in Equation (3) must

have three roots. We already know two of these roots,

since they must be xP and xQ, correspond to the

points P and Q.

� Being a cubic equation, since Equation (3) has at most three

roots, the remaining root must be xR, the x-coordinate of the

third point R.

30

Computer and Network Security by Avi Kak Lecture 14

� Equation (3) represents a monic polynomial. What that

means is that the coefficient of the highest power of x is 1.

� A property of monic polynomials is that the sum of

their roots is equal to the negative of the coefficient

of the second highest power. Expressing Equation (3) in

the following form:

x3 − α2x2 + (a − 2αβ)x + (b − β2) = 0 (4)

we notice that the coefficient of x2 is −α2. Therefore, we have

xP + xQ + xR = α2

We therefore have the following result for the x-coordinate of R:

xR = α2 − xP − xQ (5)

� Since the point (xR, yR) must be on the straight line

y = αx + β, we can write for yR:

yR = αxR + β

= αxR + (yP − αxP)

= α(xR − xP) + yP (6)

31

Computer and Network Security by Avi Kak Lecture 14

� To summarize, ordinarily a straight line will intersect an elliptic

curve at three points. If the coordinates of the first two points

are (xP , yP) and (xQ, yQ), then the coordinates of the third

point are

xR = α2 − xP − xQ (7)

yR = α(xR − xP) + yP (8)

� We started out with the following relationship between P , Q,

and R

P + Q = − R

we can therefore write the following expressions for the x and

the y coordinates of the addition of two points P and Q:

xP+Q = α2 − xP − xQ (9)

yP+Q = α(xP − xR) − yP (10)

since the y-coordinate of the reflection −R is negative of the

y-coordinate of the point R on the intersecting straight line.

32

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.7 AN ALGEBRAIC EXPRESSION FOR
CALCULATING 2P FROM P

� Given a point P on the elliptic curve E(a, b), computing 2P

(which is the same thing as computing P + P), requires us to

draw a tangent at P and to find the intersection of this tangent

with the curve. The reflection of this intersection about the

x-axis is then the value of 2P .

� Given the equation of the elliptic curve y2 = x3 + ax + b,

the slope of the tangent at a point (x, y) is obtained by

differentiating both sides of the curve equation

2y
dy

dx
= 3x2 + a

� We can therefore write the following expression for the slope of

the tangent at point P :

α =
3x2P + a

2yP
(11)

� Since drawing the tangent at P is the limiting case of drawing a

line through P and Q as Q approaches P , two of the three

33

Computer and Network Security by Avi Kak Lecture 14

roots of the following equation (which is the same as Equation

(3) you saw before):

(αx + β)2 = x3 + ax + b (12)

must coalesce into the point xP and the third root must be xR.

As before, R is the point of intersection of the tangent with the

elliptic curve.

� As before, we can use the property that sum of the roots of the

monic polynomial above must equal the negative of the

coefficient of the second highest power. Noting two of the three

roots have coalesced into xP , we get

xP + xP + xR = α2

� This gives us the following expression for the x coordinate of

the point R:

xR = α2 − 2xP (13)

� Since the point R must also lie on the straight line

y = αx + β, substituting the expression for xR in this

equation yields

yR = αxR + β

34

Computer and Network Security by Avi Kak Lecture 14

= αxR + (yP − αxP)

= α(xR − xP) + yP (14)

� To summarize, if we draw a tangent at point P to an elliptic

curve, the tangent will intersect the curve at a point R whose

coordinates are given by

xR = α2 − 2xP

yR = α(xR − xP) + yP (15)

� Since the value of 2P is the reflection of the point R about the

x-axis, the value of 2P is obtained by taking the negative of the

y-coordinate:

x2P = α2 − 2xP

y2P = α(xP − xR) − yP (16)

Except for the fact that α is now different, these formulas look

very much like those shown in Equations (9) and (10) for the

case when the two points are the same.

35

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.8 ELLIPTIC CURVES OVER Zp FOR
PRIME p

� The elliptic curve arithmetic we described so far was over real

numbers. These curves cannot be used as such for

cryptography because calculations with real numbers are prone

to round-off error. Cryptography requires error-free

arithmetic. That is after all the main reason for the notion of

a finite field that was introduced in Lectures 4 through 7.

� By restricting the values of the parameters a and b, the value of

the independent variable x, and the value of the dependent

variable y to some prime finite field Zp, we obtain elliptic

curves that are more appropriate for cryptography. As far as

their analytic description is concerned, such curves are again

described by

y2 ≡ (x3 + ax + b) (mod p) (17)

However, the points on such curves are now subject to the

following modulo p version of the smoothness constraint on the

discriminant that you previously saw in Eq. (1) in Section 14.3:

(4a3 + 27b2) 6= 0 (mod p)

36

Computer and Network Security by Avi Kak Lecture 14

� We use the notation Ep(a, b) to represent all the points (x, y)

that obey the conditions shown above. Ep(a, b) will also include

the distinguished point O, the point at infinity.

� So the points in Ep(a, b) are the set of coordinates (x, y), with

x, y ∈ Zp, such that the equation y2 = x3 + ax + b, with

a, b ∈ Zp is satisfied modulo p and such that the condition

4a3 + 27b2 6= 0 (mod p) is fulfilled.

� Obviously, then, the set of points in Ep(a, b) is no longer a

curve, but a collection of discrete points in the (x, y) plane (or,

even more precisely speaking, in the Cartesian product

Zp × Zp).

� Since the points in Ep(a, b) can no longer be connected to form

a smooth curve, we cannot use the geometrical construction to

illustrate the action of the group operator. That is, given a

point P , now one cannot show geometrically how to compute

2P , or given two points P and Q, one cannot show

geometrically how to determine P +Q. However, the

algebraic expressions we derived for these

operations continue to hold good provided the

calculations are carried out modulo p.

� Note that for a prime finite field Zp, the value of p is its

37

Computer and Network Security by Avi Kak Lecture 14

characteristic. (See Section 14.3 for what is meant by the

characteristic of a ring.) Elliptic curves over prime finite

fields with p ≤ 3, while admitting the group law, are not

suitable for cryptography. (See Section 14.5)

� The set Ep(a, b) of points, with the elliptic curve defined over a

prime finite field Zp, constitutes a group, the group operator

being as defined in Sections 14.6 and 14.7. [In the hierarchy of algebraic

structures presented in Lecture 4, the set Ep(a, b) is NOT even a ring since we have not defined

multiplication over the set. Yes, we can compute things like k ×G for an element G ∈ Ep(a, b),

since we can construe such a product as repeated addition of the element G. Nonetheless, we

are NOT allowed to compute a product of arbitrary two elements in Ep(a, b).]

38

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.8.1 Perl and Python Implementations for
Elliptic Curves Defined Over Prime Finite

Fields

� Shown next is Python code that implements the algebraic

formulas derived previously in Sections 14.6 and 14.7 for the

case of elliptic curves defined over a prime finite field Zp. [Note

that this code is NOT optimized for very large primes, that is, for primes of the size

you are likely to encounter in production work.]

� The implementation of the add() in lines (B1) through (B21) is

based on the algebraic formulas for the group law in Sections

14.6 and 14.7. This code takes care of all possibilities

concerning the group operator: (i) when both the points are at

infinity; (ii) when only one of the points is at infinity; (iii) when

the two points are different but on the same vertical line; (iv)

when the two points are the same; (v) when the two points are

different but on the same vertical line; and, finally, (vi) and

when the two points are different and NOT on the same vertical

line. The code shown in lines (C1) through (C9) is for what we

loosely refer to as multiplying a point on the curve with an

integer. A naive implementation of this would be as shown

below where we simply add the point to itself repeatedly.

def k_times_Point(curve, point, k, mod):

39

Computer and Network Security by Avi Kak Lecture 14

if isinstance(point, basestring): return "point at infinity"

elif k == 1: return point

else:

result = point

for i in range(k-1):

result = add(curve, result, point, mod)

return result

What is shown in the code block in lines (C1) through (C9) is a

more efficient version of this. With this implementation, if the

number of times you need to add a point to itself is, say, 2n, you

would need to call add() only n times. When the number of

times you need to add a point to itself is not a power of 2, you

specialcase that as shown in line (C6).

#!/usr/bin/env python

ECC.py

Author: Avi Kak

February 26, 2012

Modified: February 28, 2016

import random, sys, functools

from PrimeGenerator import * # From Homework Problem 15 of Lecture 12

from Factorize import factorize # From Section 12.6 of Lecture 12

def MI(num, mod): # This method is from Section 5.7 of Lecture 5 #(A1)

’’’

The function returns the multiplicative inverse (MI)

of num modulo mod

’’’

NUM = num; MOD = mod #(A2)

x, x_old = 0, 1 #(A3)

y, y_old = 1, 0 #(A4)

while mod: #(A5)

q = num // mod #(A6)

num, mod = mod, num % mod #(A7)

x, x_old = x_old - q * x, x #(A8)

y, y_old = y_old - q * y, y #(A9)

if num != 1: #(A10)

return "NO MI. However, the GCD of %d and %d is %u" % (NUM, MOD, num) #(A11)

else: #(A12)

MI = (x_old + MOD) % MOD #(A13)

40

Computer and Network Security by Avi Kak Lecture 14

return MI #(A14)

def add(curve, point1, point2, mod): #(B1)

’’’

If ‘point1 + point2 = result_point’, this method returns the

result_point, where ‘+’ means the group law for the set of points

E_p(a,b) on the elliptic curve y^2 = x^3 + ax + b defined over the

prime finite field Z_p for some prime p.

Parameters:

curve = (a,b) represents the curve y^2 = x^3 + ax + b

point1 = (x1,y1) the first point on the curve

point2 = (x2,y2) the second point on the curve

mod = a prime p for Z_p elliptic curve

The args for the parameters point1 and point2 may also be the string

"point at infinity" when one or both of these points is meant to be the

identity element of the group E_p(a,b).

’’’

if isinstance(point1, str) and isinstance(point2, str): #(B2)

return "point at infinity" #(B3)

elif isinstance(point1, str): #(B4)

return point2 #(B5)

elif isinstance(point2, str): #(B6)

return point1 #(B7)

elif (point1[0] == point2[0]) and (point1[1] == point2[1]): #(B8)

alpha_numerator = 3 * point1[0]**2 + curve[0] #(B9)

alpha_denominator = 2 * point1[1] #(B10)

elif point1[0] == point2[0]: #(B11)

return "point at infinity" #(B12)

else: #(B13)

alpha_numerator = point2[1] - point1[1] #(B14)

alpha_denominator = point2[0] - point1[0] #(B15)

alpha_denominator_MI = MI(alpha_denominator, mod) #(B16)

alpha = (alpha_numerator * alpha_denominator_MI) % mod #(B17)

result = [None] * 2 #(B18)

result[0] = (alpha**2 - point1[0] - point2[0]) % mod #(B19)

result[1] = (alpha * (point1[0] - result[0]) - point1[1]) % mod #(B20)

return result #(B21)

def k_times_point(curve, point, k, mod): #(C1)

’’’

This method returns a k-fold application of the group law to the same

point. That is, if ‘point + point + + point = result_point’,

where we have k occurrences of ‘point’ on the left, then this method

returns result of such ‘summation’. For notational convenience, we may

refer to such a sum as ‘k times the point’.

Parameters:

curve = (a,b) represents the curve y^2 = x^3 + ax + b

point = (x,y) a point on the curve

k = positive integer

mod = a prime p for Z_p elliptic curve

’’’

if k <= 0: sys.exit("k_times_point called with illegal value for k") #(C2)

if isinstance(point, str): return "point at infinity" #(C3)

elif k == 1: return point #(C4)

elif k == 2: return add(curve, point, point, mod) #(C5)

41

Computer and Network Security by Avi Kak Lecture 14

elif k % 2 == 1: #(C6)

return add(curve, point, k_times_point(curve, point, k-1, mod), mod) #(C7)

else: #(C8)

return k_times_point(curve, add(curve, point, point, mod), k/2, mod) #(C9)

def on_curve(curve, point, mod): #(C10)

’’’

Checks if a point is on an elliptic curve.

Parameters:

curve = (a,b) represents the curve y^2 = x^3 + ax + b

point = (x,y) a candidate point

mod = a prime p for Z_p elliptic curve

’’’

lhs = point[1]**2 #(C11)

rhs = point[0]**3 + curve[0]*point[0] + curve[1] #(C12)

return lhs % mod == rhs % mod #(C13)

def get_point_on_curve(curve, mod): #(D1)

’’’

WARNING: This is NOT an appropriate function to run for very large

values of mod (as in the elliptic curves for production work.

It would be much, much too slow.

Returns a point (x,y) on a given elliptic curve.

Parameters:

curve = (a,b) represents the curve y^2 = x^3 + ax + b

mod = a prime p for Z_p elliptic curve

’’’

ran = random.Random() #(D2)

x = ran.randint(1, mod-1) #(D3)

y = None #(D4)

trial = 0 #(D5)

while 1: #(D6)

trial += 1 #(D7)

if trial >= (2*mod): break #(D8)

rhs = (x**3 + x*curve[0] + curve[1]) % mod #(D9)

if rhs == 1: #(D10)

y = 1 #(D11)

break #(D12)

factors = factorize(rhs) #(D13)

if (len(factors) == 2) and (factors[0] == factors[1]): #(D14)

y = factors[0] #(D15)

break #(D16)

x = ran.randint(1, mod-1) #(D17)

if not y: #(D18)

sys.exit("Point on curve not found. Try again --- if you have time") #(D19)

else: #(D20)

return (x,y) #(D21)

def choose_curve_params(mod, num_of_bits): #(E1)

a,b = None,None #(E2)

while 1: #(E3)

a = random.getrandbits(num_of_bits) #(E4)

b = random.getrandbits(num_of_bits) #(E5)

if (4*a**3 + 27*b**2)%mod == 0: continue #(E6)

break #(E7)

42

Computer and Network Security by Avi Kak Lecture 14

return (a,b) #(E8)

def mycmp(p1, p2): #(F1)

if p1[0] == p2[0]: #(F2)

if p1[1] > p2[1]: return 1 #(F3)

elif p1[1] < p2[1]: return -1 #(F4)

else: return 0 #(F5)

elif p1[0] > p2[0]: return 1 #(F6)

else: return -1 #(F7)

def display(all_points): #(G1)

point_at_infy = ["point at infinity" for point in all_points \

if isinstance(point,str)] #(G2)

all_points = [[int(str(point[0]).rstrip("L")), \

int(str(point[1]).rstrip("L"))] \

for point in all_points if not isinstance(point, str)] #(G3)

all_points.sort(key = functools.cmp_to_key(mycmp))

all_points += point_at_infy #(G5)

print(str(all_points)) #(G6)

if __name__ == ’__main__’:

Example 1:

p = 23 #(M1)

a,b = 1,4 # y^2 = x^3 + x + 4 #(M2)

point = get_point_on_curve((a,b), p) #(M3)

print("Point: %s\n" % str(point)) # (7,3) #(M4)

all_points = list(map(lambda k: k_times_point((a,b), \

(point[0],point[1]), k, p), range(1,30))) #(M5)

display(all_points) #(M6)

[[0, 2], [0, 21], [1, 11], [1, 12], [4, 7], [4, 16], [7, 3],

[7, 20], [8, 8], [8, 15], [9, 11], [9, 12], [10, 5],

[10, 18], [11, 9], [11, 14], [13, 11], [13, 12], [14, 5],

[14, 18], [15, 6], [15, 17], [17, 9], [17, 14], [18, 9],

[18, 14], [22, 5], [22, 18], ’point at infinity’]

Example 2:

generator = PrimeGenerator(bits = 16) #(M7)

p = generator.findPrime() # 64951 #(M8)

print("Prime returned: %d" % p) #(M9)

a,b = choose_curve_params(p, 16) #(M10)

print("a and b for the curve: %d %d" % (a, b)) # 62444, 47754 #(M11)

point = get_point_on_curve((a,b), p) #(M12)

print(str(point)) # (1697, 89) #(M13)

Example 3:

Parameters of the DRM2 elliptic curve:

p = 785963102379428822376694789446897396207498568951 #(M14)

a = 317689081251325503476317476413827693272746955927 #(M15)

b = 79052896607878758718120572025718535432100651934 #(M16)

A point on the curve:

Gx = 771507216262649826170648268565579889907769254176 #(M17)

Gy = 390157510246556628525279459266514995562533196655 #(M18)

43

Computer and Network Security by Avi Kak Lecture 14

print(str(list(map(lambda k: k_times_point((a,b), (Gx,Gy), k, p),

range(1,5))))) #(M19)

[(771507216262649826170648268565579889907769254176L,

390157510246556628525279459266514995562533196655L),

[131207041319172782403866856907760305385848377513L,

2139936453045853218229235170381891784525607843L],

[716210695201203540500406352786629938966496775642L,

251074363473168143346338802961433227920575579388L],

[695225880076209899655288358039795903268427836810L,

87701351544010607198039768840869029919832813267L]]

� All you have to do to execute the above script is to make the

call:

ECC.py

A typical call will produce the output that is shown in the

commented out sections of the code shown above. As you can

see in main, the script presents three examples. Example 1, in

lines (M1) through (M6), first specifies a small prime in line

(M1) and the parameters of the curve in line (M2). It then calls

on the function get point on curve() to fetch a point on the

curve. As shown in commented out part of line (M4), the point

returned is at the coordinates (7, 3). Starting at this point, the

statements in lines (M4) and (M5) uses the notion of repeated

additions to generated 30 points on the elliptic curve. These are

displayed by the statement in line (M6) in the commented out

section just below that line.

� Subsequently, in Example 2 in lines (M7) through (M13), we

first call on the PrimeGenerator tool in lines (M7) and (M8) to

give us a 16-bit prime number for a new modulus whose value is

44

Computer and Network Security by Avi Kak Lecture 14

shown in the commented out portion of line (M8). In line

(M10), we then call on the function choose curve params() to

return values for the curve parameters a and b for a

non-singular elliptic curve with respect to the modulus shown in

line (M8). Using the values of a and b shown in the commented

out portion of line (M11), we then call get point on curve() in

line (M12) to give us a point on the curve, whose coordinates

are shown in the commented-out portion of line (M13).

� Finally, in Example 3 in lines (M14) through (M19), for the

modulus and the curve parameters a and b, we use values that

were actually used in a DRM application. These values are

shown in lines (M14), (M15), and (M16). In lines (M17) and

(M18), we then specify a point on the curve from the same

DRM application. Subsequently, we call on the k times point()

function in line (M19) to use the group law to generate a total

of five points on the curve starting from the fist point shown in

lines (M17) and (M18).

� I’ll now present a Perl version of the Python script shown above:

#!/usr/bin/env perl

ECC.pl

Author: Avi Kak

February 28, 2016

use strict;

use warnings;

use Math::BigInt;

require "FactorizeWithBigInt.pl"; # From Lecture 12, Section 12.9

45

Computer and Network Security by Avi Kak Lecture 14

require "PrimeGenerator.pl"; # From Lecture 12, Section 12.13

############################### class ECC ######################################

package ECC;

sub new { #(A1)

my ($class, %args) = @_; #(A2)

bless { #(A3)

mod => $args{mod}, #(A4)

a => $args{a}, #(A5)

b => $args{b}, #(A6)

}, $class; #(A7)

}

class method:

sub choose_curve_params { #(B1)

my ($mod, $num_of_bits) = @_; #(B2)

my ($param1,$param2) = (undef, undef); #(B3)

while (1) { #(B4)

my @arr = map {my $x = rand(1); $x > 0.5 ? 1 : 0 } 0 .. $num_of_bits-1;

#(B5)

my $bstr = join ’’, split /\s/, "@arr"; #(B6)

$param1 = oct("0b".$bstr); #(B7)

$param1 = Math::BigInt->new("$param1"); #(B8)

@arr = map {my $x = rand(1); $x > 0.5 ? 1 : 0 } 0 .. $num_of_bits-1; #(B9)

$bstr = join ’’, split /\s/, "@arr"; #(B10)

$param2 = oct("0b".$bstr); #(B11)

$param2 = Math::BigInt->new("$param2"); #(B12)

last unless $param1->copy()->bpow(Math::BigInt->new("3"))

->bmul(Math::BigInt->new("4"))->badd($param2->copy()

->bmul($param2)->bmul(Math::BigInt->new("27")))

->bmod($mod)->bzero(); #(B13)

}

return ($param1, $param2); #(B14)

}

sub mycmp3 { #(C1)

my $self = shift; #(C2)

my ($p1, $p2) = ($a, $b); #(C3)

if ($p1->[0]->bcmp($p2->[0]) == 0) { #(C4)

if ($p1->[1]->bcmp($p2->[1]) > 0) { #(C5)

return 1; #(C6)

} elsif ($p1->[1]->bcmp($p2->[1]) < 0) { #(C7)

return -1; #(C8)

} else { #(C9)

return 0; #(C10)

}

} elsif ($p1->[0]->bcmp($p2->[0]) > 0) { #(C11)

return 1; #(C12)

} else { #(C13)

return -1; #(C14)

}

}

sub display { #(D1)

46

Computer and Network Security by Avi Kak Lecture 14

my $self = shift; #(D2)

my @all_points = @{$_[0]}; #(D3)

my @numeric_points = grep {$_ !~ /point_at_infinity/} @all_points; #(D4)

my @sorted = sort mycmp3 @numeric_points; #(D5)

push @sorted, "point_at_infinity"; #(D6)

my @output = map { $_ !~ /point_at_infinity/ ?

"($_->[0],$_->[1])" : "point_at_infinity" } @sorted; #(D7)

print "@output\n"; #(D8)

}

This function returns the multiplicative inverse (MI) of $num modulo $mod

sub MI { #(E1)

my $self = shift; #(E2)

my ($num, $mod) = @_; #(E3)

my ($NUM, $MOD) = ($num, $mod); #(E4)

my ($x, $x_old) = (Math::BigInt->bzero(), Math::BigInt->bone()); #(E5)

my ($y, $y_old) = (Math::BigInt->bone(), Math::BigInt->bzero()); #(E6)

while ($mod->is_pos()) { #(E7)

my $q = $num->copy()->bdiv($mod); #(E8)

($num, $mod) = ($mod, $num->copy()->bmod($mod)); #(E9)

($x, $x_old) = ($x_old->bsub($q->bmul($x)), $x); #(E10)

($y, $y_old) = ($y_old->bsub($q->bmul($y)), $y); #(E11)

}

if (! $num->is_one()) { #(E12)

return undef; #(E13)

} else { #(E14)

my $MI = $x_old->badd($MOD)->bmod($MOD); #(E15)

return $MI; #(E16)

}

}

The args for the parameters point1 and point2 may also be the string

"point at infinity" when one or both of these points is meant to be the

identity element of the group E_p(a,b).

sub add { #(F1)

my $self = shift; #(F2)

my ($point1, $point2) = @_; #(F3)

my ($alpha_numerator, $alpha_denominator); #(F4)

if (($point1 =~ /point_at_infinity/)

&& ($point2 =~ /point_at_infinity/)) { #(F5)

return "point_at_infinity"; #(F6)

} elsif ($point1 =~ /point_at_infinity/) { #(F7)

return $point2; #(F8)

} elsif ($point2 =~ /point_at_infinity/) { #(F9)

return $point1; #(F10)

} elsif (($point1->[0]->bcmp($point2->[0]) == 0)

&& ($point1->[1]->bcmp($point2->[1]) == 0)) { #(F11)

$alpha_numerator = $point1->[0]->copy()->bmul($point1->[0])

->bmul(Math::BigInt->new("3"))->badd($self->{a}); #(F12)

$alpha_denominator = $point1->[1]->copy()->badd($point1->[1]); #(F13)

} elsif ($point1->[0]->bcmp($point2->[0]) == 0) { #(F14)

return "point_at_infinity"; #(F15)

} else {

$alpha_numerator = $point2->[1]->copy()->bsub($point1->[1]); #(F16)

$alpha_denominator = $point2->[0]->copy()->bsub($point1->[0]); #(F17)

47

Computer and Network Security by Avi Kak Lecture 14

}

my $alpha_denominator_MI =

$self->MI($alpha_denominator->copy(), $self->{mod}); #(F18)

my $alpha =

$alpha_numerator->bmul($alpha_denominator_MI)->bmod($self->{mod}); #(F19)

my @result = (undef, undef); #(F20)

$result[0] = $alpha->copy()->bmul($alpha)

->bsub($point1->[0])->bsub($point2->[0])->bmod($self->{mod}); #(F21)

$result[1] = $alpha->copy()

->bmul($point1->[0]->copy()->bsub($result[0]))

->bsub($point1->[1])->bmod($self->{mod}); #(F22)

return \@result; #(F22)

}

Returns a point (x,y) on a given elliptic curve.

sub get_point_on_curve { #(G1)

my $self = shift; #(G2)

my $randgen = Math::BigInt::Random::OO->new(max => $self->{mod} - 1); #(G3)

my $x = Math::BigInt->new(); #(G4)

unless ($x->is_pos()) { #(G5)

$x = $randgen->generate(1); #(G6)

}

my $y; #(G7)

my $trial = Math::BigInt->bzero(); #(G8)

while (1) { #(G9)

last if $trial->binc()->bcmp(

$self->{mod}->copy()->badd($self->{mod})) >= 0; #(G10)

my $rhs = $x->copy()->bpow(Math::BigInt->new("3"))

->badd($x->copy()->bmul($self->{a}->copy()))

->badd($self->{b}->copy())->bmod($self->{mod}); #(G11)

if ($rhs->is_one()) { #(G12)

$y = Math::BigInt->bone(); #(G13)

last; #(G14)

}

my @factors = @{FactorizeWithBigInt->new($rhs)->factorize()}; #(G15)

if ((@factors == 2) && ($factors[0] == $factors[1])) { #(G16)

$y = $factors[0]; #(G17)

last; #(G18)

}

$x = Math::BigInt->new(); #(G19)

unless ($x->is_pos()) { #(G20)

$x = $randgen->generate(1); #(G21)

}

}

if (! defined $y) { #(G22)

die "Point on curve not found. Try again --- if you have time"; #(G23)

} else { #(G24)

my @point = ($x, $y); #(G25)

return \@point; #(G26)

}

}

This method returns a k-fold application of the group law to the same

point. That is, if ‘point + point + + point = result_point’,

where we have k occurrences of ‘point’ on the left, then this method

48

Computer and Network Security by Avi Kak Lecture 14

returns result of such ‘summation’. For notational convenience, we may

refer to such a sum as ‘k times the point’.

Parameters:

sub k_times_point { #(H1)

my $self = shift; #(H2)

my ($point, $k) = @_; #(H3)

die "k_times_point called with illegal value for k" unless $k > 0; #(H4)

if ($point =~ /point_at_infinity/) { #(H5)

return "point_at_infinity"; #(H6)

} elsif ($k == 1) { #(H7)

return $point; #(H8)

} elsif ($k == 2) { #(H9)

return $self->add($point, $point); #(H10)

} elsif ($k %2 == 1) { #(H11)

return $self->add($point, $self->k_times_point($point, $k-1)); #(H12)

} else { #(H13)

return $self->k_times_point($self->add($point, $point), int($k/2)); #(H14)

}

}

1;

################################ main ##

package main;

#Example 1:

my $p = 23; #(M1)

$p = Math::BigInt->new("$p"); #(M2)

my ($a, $b) = (1,4); # y^2 = x^3 + x + 4 #(M3)

$a = Math::BigInt->new("$a"); #(M4)

$b = Math::BigInt->new("$b"); #(M5)

my $ecc = ECC->new(mod => $p, a => $a, b => $b); #(M6)

my $point = $ecc->get_point_on_curve(); #(M7)

print "Point: @{$point}\n"; # Point: (7,3) #(M8)

my @all_points = map {my $k = $_; $ecc->k_times_point($point, $k)} 1 .. 31; #(M9)

$ecc->display(\@all_points); #(M10)

(0,2) (0,21) (1,11) (1,12) (4,7) (4,16) (7,3) (7,3) (7,20) (8,8) (8,15) (9,11)

(9,12) (10,5) (10,18) (11,9) (11,14) (13,11) (13,12) (14,5) (14,18) (15,6) (15,17)

(17,9) (17,14) (18,9) (18,14) (22,5) (22,18) (22,18) point_at_infinity

Example 2:

my $generator = PrimeGenerator->new(bits => 16); #(M11)

$p = $generator->findPrime(); # 64951 #(M12)

$p = Math::BigInt->new("$p"); #(M13)

print "Prime returned: $p\n"; # Prime returned: 56401 #(M14)

($a,$b) = ECC::choose_curve_params($p, 16); #(M15)

print "Parameters a and b for the curve: $a, $b\n"; #(M16)

Parameters a and b for the curve: 52469, 51053

$ecc = ECC->new(mod => $p, a => $a, b => $b); #(M17)

$point = $ecc->get_point_on_curve(); #(M18)

print "Point: @{$point}\n"; # Point: 36700 97 #(M19)

Example 3:

Parameters of the DRM2 elliptic curve:

$p = Math::BigInt->new("785963102379428822376694789446897396207498568951"); #(M20)

49

Computer and Network Security by Avi Kak Lecture 14

$a = Math::BigInt->new("317689081251325503476317476413827693272746955927"); #(M21)

$b = Math::BigInt->new("79052896607878758718120572025718535432100651934"); #(M22)

A point on the curve:

my $Gx =

Math::BigInt->new("771507216262649826170648268565579889907769254176"); #(M23)

my $Gy =

Math::BigInt->new("390157510246556628525279459266514995562533196655"); #(M24)

$ecc = ECC->new(mod => $p, a => $a, b => $b); #(M25)

@all_points = map {my $k = $_; $ecc->k_times_point([$Gx,$Gy], $k)} 1 .. 5; #(M26)

$ecc->display(\@all_points); #(M27)

(131207041319172782403866856907760305385848377513,

2139936453045853218229235170381891784525607843)

(404132732284922951107528145083106738835171813225,

165281153861339913077400732834828025736032818781)

(695225880076209899655288358039795903268427836810,

87701351544010607198039768840869029919832813267)

(716210695201203540500406352786629938966496775642,

251074363473168143346338802961433227920575579388)

(771507216262649826170648268565579889907769254176,

390157510246556628525279459266514995562533196655)

� All you have to do to invoke the above script is to invoke it by

the command line:

ECC.pl

As the reader can see in the output shown in the commented

out portion of the script, the Perl version behaves the same as

the Python code shown earlier.

� The elliptic curve used in Example 1 in both the scripts shown

in this section is an example of a cyclic curve. As shown in the

commented-out section just after line (M6) of the Python script

and just after line (M10) of the Perl version, the number of

points on such a curve, including the point at infinity, is a prime

number — in this case 29. [We say that the order of the curve used in Example 1 is

29.] For a cyclic curve, every point, except of course the point at

infinity, can serve as the generator of the entire curve. That is,

50

Computer and Network Security by Avi Kak Lecture 14

any point on such a curve can be used to generate all the other

points, including the point at infinity, through the k ×G

calculation for different values of k. If we attempted to generate

more than 29 points, the additional points would be repeated

versions of the points already calculated. [For more information on cyclic

curves, see the paper “The Elliptic Curve Digital Signature Algorithm (ECDSA)” by Don Johnson,

Alfred Menezes, and Scott Vanstone.]

� We should also mention that you can also define an elliptic

curve when the coordinates are drawn from the multiplicative

group (Z/NZ)× for any positive integer N . Recall from Section

11.8 of Lecture 11 and Section 13.5 of Lecture 13 that when

N = p, that is, when N is a prime, we denote this

multiplicative group by Z∗
p . The group Z∗

p , NEVER to be

confused with the finite field Zp, consists of the p− 1 integers

{1, 2, 3, · · · , p− 1}. In Section 14.14, we will show how an

elliptic curve whose points are drawn from Z∗
p is used in Digital

Rights Management. The set Ep(a, b) of points, with the elliptic

curve defined over the group Z∗
p also constitutes a group for the

same reasons as stated above.

� As we will see in the next section, elliptic curves can also be

defined over Galois Fields GF (2n) that we introduced in

Lecture 7. Galois fields have characteristic 2. Because of that

fact, elliptic curves over GF (2n) require a form that is different

from the one you have seen so far.

51

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.9 ELLIPTIC CURVES OVER GALOIS
FIELDS GF (2n)

� Elliptic Curves can also be defined over a Galois Field GF (2n).

However, as pointed out in Section 14.14, for such curves to

be cryptographically secure, the value of n must be prime.

� You will recall from Lecture 7 that the addition operation in

GF (2n) is like the XOR operation on bit patterns. That is

x + x = 0 for all x ∈ GF (2n). This implies that a finite field

of the form GF (2n) is of characteristic 2. (See Section 14.3

for what is meant by the characteristic of a field.)

� As mentioned earlier, the elliptic curve we showed earlier

(y2 = x3 + ax + b) is meant to be used only when the

underlying finite field is of characteristic greater than 3. (See

Section 14.5)

� The elliptic curve equation to use when the underlying field is

described by GF (2n) is

y2 + xy = x3 + ax2 + b, b 6= 0 (18)

The constraint b 6= 0 serves the same purpose here that the

52

Computer and Network Security by Avi Kak Lecture 14

constraint 4a3 + 27b2 6= 0 did for the case of the elliptic curve

equation y2 = x3 + ax + b. The reason for the constraint b 6= 0

is that the discriminant becomes 0 when b = 0. As mentioned

earlier, when the discriminant becomes zero, we have multiple

roots at the same point, causing the derivative of the curve to

become ill-defined at that point. In other words, the curve has a

singularity at the point where discriminant is 0.

� Shown in Figure 3 are six elliptic curves described by the

analytical form y2 + xy = x3 + ax2 + b for different values of

the parameters a and b. The four upper curves are non-singular.

The parameters a and b for the top-left curve are 2 and 1,

respectively. The same parameters for the top-right curve are 2

and -1, respectively. For the two non-singular curves in the

middle row, the one on the left has 0 and 2 for its a and b

parameters, whereas the one on the right has -3 and 2. The two

curves in the bottom row are both singular, but for different

reasons. The one on the left is singular because b is set to 0. As

the next section will show, this is a sufficient condition for the

discriminant of an elliptic curve (of the kind being studied in

this section) to be singular. However, as the next section

explains, it is possible for the discriminant of such curves to be

singular even when b is not zero. This is demonstrated by the

curve on the right in the bottom row.

� The fact that the equation of the elliptic curve is different when

the underlying field is GF (2n) introduces the following changes

53

Computer and Network Security by Avi Kak Lecture 14

Figure 3: Elliptic curves meant to be used with Galois fields.

(This figure is from Lecture 14 of “Lecture Notes on Computer and Network Security” by Avi Kak.

54

Computer and Network Security by Avi Kak Lecture 14

in the behavior of the group operator:

– Given a point P = (x, y), we now consider the negative of

this point to be located at −P = (x, − (x + y)).

– Given two distinct points P = (xP , yP) and

Q = (xQ, yQ), the addition of the two points, represented

by (xP+Q, yP+Q), is now given by

xP+Q = α2 + α − xP − xQ − a

yP+Q = −α(xP+Q − xP) − xP+Q − yP (19)

with

α =
yQ − yP
xQ − xP

(20)

– To double a point, that is to calculate 2P from P , we now

use the formulas

x2P = α2 + α − a− 2xP

y2P = −α2 − α + a + (2 + α)xP − αx2P − yP (21)

with

α =
3xP

2 + 2axP − yP
2yP + xP

(22)

55

Computer and Network Security by Avi Kak Lecture 14

This value of α is obtained by differentiating both sides of

y2 + xy = x3 + ax2 + b with respect to x and writing

down an expression for dy
dx just as we derived the expression

for α in Equation (11) in Section 14.7.

– Since the results for doubling shown in Equation (21) can be

obtained (although the style of derivation shown in Section

14.7 is to be preferred) from those in Equation (19) by

letting xQ approach xP , which in our case can be simply

accomplished by setting xQ = xP , the reader may be puzzled

by the very different appearances of the expressions shown

for yP+Q and y2P . If you set xQ = xP in the expression for

yP+Q, then both the y-coordinate expressions can be shown

to reduce to −α3 − 2α2 + α(3xP + a− 1) + 2xP + a− yP .

[The expressions shown in Equations (19) through (22) are derived in a manner
that is completely analogous to the derivation presented in Sections 14.6 and 14.7.
As before, we recognize that the points on a straight line passing through two
points (xP , yP) and (xQ, yQ) are given by y = αx+ β with α =

yQ − yP
xQ − xP

. To find

the point of intersection of such a line with the elliptic curve
y2 + xy = x3 + ax2 + b, as before we form the equation

(αx + β)2 + x(αx+ β) = x3 + ax2 + b (23)

which can be expressed in the following form as a monic polynomial:

x3 + (a− α2 − α)x2 + (−2αβ − β)x + (b − β2) = 0 (24)

Reasoning as before, this cubic equation can have at most three roots, of which
two are already known, those being the points P and Q. The remaining root, if
its exists, must correspond to the point to the point R, which the point where the
straight line passing through P and Q meets the curve again. Again using the
property that the sum of the the roots is equal to the negative of the coefficient of
the second highest power, we can write

xP + xQ + xR = α2 + α− a

56

Computer and Network Security by Avi Kak Lecture 14

We therefore have the following result for the x-coordinate of R:

xR = α2 + α − a − xP − xQ (25)

Since this point must be on the straight line y = αx+ β, we get for the
y-coordinate at the point of intersection yR = αxR + β. Substituting for β from
the equation yP = αxP + β, we get the following result for yR:

yR = α(xR − xP) + yP (26)

Earlier we stated that for the elliptic curves of interest to us in this section, the
negative of a point R = (xR, yR) is given by −R = (xR, − (xR + yR)). Since
the point (xP+Q, yP+Q) is located at the negative of the point R at (xR, yR), we
can write the following result for the summation of the two points P and Q:

xP+Q = xR = α2 + α − xP − xQ − a

yP+Q = − (xR + yR) = −α(xP+Q − xP) + xP+Q − yP (27)

The result for doubling of a point can be derived in a similar manner.

Figure 4 shows these operations in action. The two figures in the topmost row
show us calculating P +Q for the two points P and Q as shown. The figure on
the left in the middle row shows the doubling of a point and the figure on the
right the tripling of a point. Shown in the bottom row are the operations of
doubling and tripling a point.]

� We will use the notation E2n(a, b) to denote the set of all points

(x, y) ∈ GF (2n)×GF (2n), that satisfy the equation

y2 + xy = x3 + ax2 + b,

with a ∈ GF (2n) and b ∈ GF (2n), along with the distinguished

point O that serves as the additive identity element for the

group structure formed by the points on the curve. Note that

57

Computer and Network Security by Avi Kak Lecture 14

Figure 4: Group law on the elliptic curves for Galois fields.

(This figure is from Lecture 14 of “Lecture Notes on Computer and Network Security” by Avi Kak.)

58

Computer and Network Security by Avi Kak Lecture 14

we do not allow b in the above equation to take on the value

which is the additive identity element of the finite field GF (2n).

� If g is a generator for the field GF (2n) (see Section 7.12 of

Lecture 7 for what is meant by the generator of a finite field),

then all the element of GF (2n) can be expressed in the

following form

0, 1, g, g2, g3,, g2
n−2

This implies that the majority of the points on the elliptic curve

E2n(a, b) can be expressed in the form (gi, gj), where

i, j = 0, 1, . . . , 2n − 2. In addition, there may be points

whose coordinates can be expressed (0, gi) or (gi, 0), with

i = 0, 1, . . . , 2n − 2. And then there is, of course, the

distinguished point O.

� The order of an elliptic curve, that is the number of points

in the group E2n(a, b) is important from the standpoint

of the cryptographic security of the curve. [Note: When

we talk about the order of E2n(a, b), we must of course include the distinguished point

O.]

� Hasse’s Theorem addresses the question of how many points are

on an elliptic curve that is defined over a finite field. This

theorem says that if N is the number of points on Eq(a, b) when

59

Computer and Network Security by Avi Kak Lecture 14

the curve is defined on a finite field Zq with q elements, then N

is bounded by

|N − (q + 1)| ≤ 2
√
q

What this says that the number of points, N , on an elliptic

curve must be in the interval [q + 1−√
q, q + 1 +

√
q]. As

mentioned previously, N includes the additive identity element

O.

� Since the Galois field GF (2n) contains 2n elements, we can say

that the order of E2n(a, b) is equal to 2
n + 1 − t where t is a

number such that |t| ≤
√
2n.

� An elliptic curve defined over a Galois Field GF (2n) is

supersingular if 2|t, that is if 2 is a divisor of t.

[Supersingularity is not to be confused with singularity. As previously explained in

Section 14.5, when an elliptic curve is defined over real numbers, singularity of the

curve is related to its smoothness. More specifically, a curve is singular if its slope at a

point is not defined in the sense that both the numerator and the denominator in the

expression for the slope are zero at that point. Supersingularity, on the other hand,

is related to the order of E2n and how this order relates to the number of points in the

underlying finite field.]

� Should it happen that t = 0, then the order of E2n is 2n + 1.

Since this number is always odd, such a curve can never be

supersingular. Supersingular curves defined over fields of

60

Computer and Network Security by Avi Kak Lecture 14

characteristic 2 (which includes the binary finite fields GF (2n))

always have an odd number of points, including the

distinguished point O.

� Supersingular curves are to be avoided for cryptography because

they are vulnerable to the MOV attack. More on that in

Section 14.14.

� The set E2n(a, b) of points constitutes a group, with the group

operator as defined by Equations (19) through (22).

61

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.10: IS b 6= 0 A SUFFICIENT
CONDITION FOR THE ELLIPTIC CURVE
y2+xy = x3+ax2+ b TO NOT BE SINGULAR?

� In general, we want to avoid using singular elliptic curves for

cryptography for reasons already indicated.

� In Section 14.9 we indicated that when using a curve of form

y2 + xy = x3 + ax2 + b, you want to make sure that b 6= 0 since

otherwise the curve will be singular.

� We will now consider in greater detail when exactly the curve

y2 + xy = x3 + ax2 + b becomes singular for the case when the

underlying field consists of real numbers. Toward that end we

will derive an expression for the discriminant of a polynomial

that is singular if and only if the curve y2 + xy = x3 + ax2 + b

is singular. The condition which will prevent the discriminant

going to zero will be the condition under which the curve

y2 + xy = x3 + ax2 + b will stay nonsingular.

� To meet the goal stated above, we will introduce the coordinate

transformation

62

Computer and Network Security by Avi Kak Lecture 14

y = Y − x

2

in the equation

y2 + xy = x3 + ax2 + b

� The purpose of the coordinate transformation is to get rid of the

troublesome term xy in the equation. Note that this coordinate

transformation cannot make a singularity disappear, and

neither can it introduce a new singularity. With this

transformation, the equation of the curve becomes

Y 2 − x2

4
= x3 + ax2 + b

which can be rewritten as

Y 2 = x3 + (a +
1

4
)x2 + b

The polynomial on the right hand side of the equation shown

above has a singular point wherever its discriminant goes to

zero.

� In general, the discriminant of the polynomial

a3z
3 + a2z

2 + a1z = 0

is given by

63

Computer and Network Security by Avi Kak Lecture 14

D3 = a21a
2
2 − 4a0a

3
2 − 4a31a3 + 18a0a1a2a3 − 27a20a

2
3

� Substituting the coefficient values for our case, a3 = 1,

a2 = (a + 1
4
), a1 = 0, and a0 = b, in the general formula for the

discriminant of a cubic polynomial, we get for the discriminant

D3 = − 4b



a +
1

4





3

− 27b2

This simplifies to

D3 =
1

16

[

−64a3b − 48a2b − 12ab − b − 432b2
]

which can be expressed as

D3 = − 1

16
b

[

64a3 + 48a2 + 12a + 432b + 1
]

� Therefore, if b = 0, the discriminant will become 0. However, it

should be obvious that even when the b = 0 condition is not

satisfied, certain values of a and b may cause the discriminant

to go to 0.

� As with the supersingular curves, elliptic curves that are

singular are to be avoided for cryptography because they are

vulnerable to the MOV attack described in Section 14.14.

64

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.11 ELLIPTIC CURVE
CRYPTOGRAPHY — THE BASIC IDEA

� That elliptic curves over finite fields could be used for

cryptography was suggested independently by Neal Koblitz

(University of Washington) and Victor Miller (IBM) in 1985.

� Just as RSA uses multiplication as its basic arithmetic

operation (exponentiation is merely repeated multiplication),

ECC uses the “addition” group operator as its basic arithmetic

operation (multiplication is merely repeated addition).

� Suppose G is a user-chosen “base point” on the curve Eq(a, b),

where q = p for some prime p when the underlying finite field

is a prime finite field and q = 2n when the underlying finite

field is a Galois field.

� In accordance with how the group operator works, k×G stands

for G + G + G + . . . + G with G making k appearances in

this expression.

� The core notion that ECC is based on is that, with a proper

choice for G, whereas it is relatively easy to calculate

65

Computer and Network Security by Avi Kak Lecture 14

C = M ×G, it can be extremely difficult to recover M from

C even when an adversary knows the curve Eq(a, b) and the G

used. As explained earlier in Section 14.2, recovering M from C

is referred to as having to solve the discrete logarithm

problem. [On the basis of the comment made earlier in Section 14.2 regarding

“discrete logarithms,” determining the number of times G participates in

C = G ◦G ◦G ◦ . . . ◦G, where ‘◦’ is the group operator, can be thought of as taking

the “logarithm” of C to the base G.]

� An adversary could try to recover M from C = M ×G by

calculating 2G, 3G, 4G, . . ., kG with k, in the worst case,

spanning the size of the set Eq(a, b), and then seeing whether or

not the result matched C. But if q is sufficiently large and if the

point G on the curve Eq(a, b) is chosen carefully, that would

take much too long.

� From an algorithmic standpoint, attempting to recover M from

C by repeated addition would amount to solving an

exponentially complex problem with exhaustive search. Such

solutions are not scalable and they only work for toy examples.

66

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.12 ELLIPTIC CURVE
DIFFIE-HELLMAN

SECRET KEY EXCHANGE

� The reader may wish to first review Section 13.5 of Lecture 13

before proceeding further. The Diffie-Hellman idea was first

introduced in that section. This section introduces the

Elliptic-Curve Diffie-Hellman (ECDH) algorithm for

establishing a secret session key between two parties. [You may see two

acronyms used in connection with this algorithm — ECDH and ECDHE — to reflect how it used. The

acronym ECDHE officially stands for “Elliptic Curve Diffie-Hellman Ephemeral.” If the key exchange

described in this section is used in conjunction with authentication provided by, say, RSA-based certificates,

the combined algorithm may be shown as ECDHE-RSA, although it should really be designated as just

ECDH-RSA. The word “ephemeral” is supposed to capture the situation when there is no authentication

between to parties and they just want a session key on a one-time basis.]

� A community of users wishing to engage in secure

communications with ECC chooses the parameters q, a, and b

for an elliptic-curve based group Eq(a, b), and a base point

G ∈ Eq(a, b). Recall that in the notation Eq(a, b), q = p for

some prime p when the underlying finite field is a prime finite

field and q = 2n when the underlying finite field is a Galois

field.

67

Computer and Network Security by Avi Kak Lecture 14

� A selects an integer XA to serve as his/her private key. A then

generates YA = XA ×G to serve as his/her public key. A

makes publicly available the public key YA.

� B designates an integer XB to serve as his/her private key. As

was done by A, B also calculates his/her public key by

YB = XB ×G.

� In order to create a shared secret key (that could subsequently

be used for, say, a symmetric-key based communication link),

both A and B now carry out the following operations:

– A calculates the shared session key by

K = XA × YB (28)

– B calculates the shared session key by

K = XB × YA (29)

– The calculations in Eqs. (19) and (20) yield the same result
because

K as calculated by A = XA × YB

= XA × (XB ×G)

= (XA ×XB)×G

68

Computer and Network Security by Avi Kak Lecture 14

= (XB ×XA)×G

= XB × (XA ×G)

= XB × YA

= K as calculated by B

� To discover the secret session key, an attacker could try to

discover XA from the publicly available base point G and the

publicly available YA. Recall, YA = XA ×G. But, as already

explained in Section 14.11, this requires solving the discrete

logarithm problem which, for a properly chosen set of curve

parameters and G, can be extremely hard.

� To increase the level of difficulty in solving the discrete

logarithm problem, we select for G a base point whose order is

very large. The order of a point on the elliptic curve is the

least number of times G must be added to itself so that we

get the identity element O of the group Eq(a, b). [We can also

associate the notion of order with an elliptic curve over a finite field: The order of an elliptic

curve is the total number of points in the set Eq(a, b). This order is denoted #Eq(a, b).]

� The base point G is also known as the generator of a

subgroup of Eq(a, b) whose elements are all given by G, 2G,

3G, . . ., and, of course, the identity element O. For the size of

the subgroup to equal the degree of the generator G, the value

of n must be a prime when the underlying field is a Galois field

GF (2n).

69

Computer and Network Security by Avi Kak Lecture 14

� Can you see a strong parallel between how the generator g is

chosen for regular DH and how the generator G is chosen for

ECDH? As explained in Section 13.5 of Lecture 13, for regular

DH, you choose a generator g ∈ Z∗
p that results in a large-order

cyclic subgroup {g, g2, g3,, 1} of the multiplicative group

Z∗
p . For ECDH, you choose a generator point G that leads to a

large-sized cyclic subgroup {G, 2G, 3G,,O} of the group

Eq(a, b).

70

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.13 ELLIPTIC-CURVE DIGITAL
SIGNATURE ALGORITHM (ECDSA)

� This is the ECC version of the digital signature algorithm

presented in Section 13.6 of Lecture 13. This algorithm, known

more commonly by its acronym ECDSA, has been much in the

news lately because of its use for code authentication in

PlayStation3 game consoles. Code authentication means that

the digital signature of a binary file is checked and verified

before it is allowed to be run on a processor.

� Paralleling our earlier description in Section 13.6 of Lecture 13,

the various steps of ECDSA are:

– For a digital signature based on an elliptic curve defined over a

prime finite field Zp, select a large prime p, choose the parameters a
and b for the curve, and a generator point G of high order n

(meaning that n×G = O for a large n). [Note that this use for the symbol n is

different from how I have used it before in this lecture. I have used it previously in q = 2n when the

underlying finite field is a Galois Field. In this section, we are only considering the elliptic curves

defined over a prime finite field Zp.]

– For high security work, you would want to choose the curve
parameters as recommended in the NIST document FIPS 186-3

available from
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

71

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

Computer and Network Security by Avi Kak Lecture 14

– Now randomly select X, 1 ≤ X ≤ n− 1, to serve as your private key.

– Next you calculate your public key Y by

Y = X ×G

where the “multiplication” operation is according to the group law

for the elliptic curve. [For its implementation in Python, see the function

k times point(curve, point, k, mod) in the code shown in Section 14.8.]

Note that the public key consists of a pair of numbers that are the
coordinates of the point Y on the elliptic curve.

– You will make p, a, b, G, n and Y publicly available and you will

treat X as your private key.

– Generate a one-time random number K such that 0 < K < n− 1.

By one-time we mean that you will discard K after each use. That
is, each digital signature you create will be with a different K. [You

must discard K after each use. Using the same K for two different signatures is a

major security breach in the use of this algorithm, as will be explained later.]

– Now you are ready to construct a digital signature of a document.

Let H be the hash the document you want to sign. (See Lecture 15
on hashing functions.)

– The digital signature you construct for H will consist of two parts
that we will denote sig1 and sig2. You construct sig1 by first

calculating the elliptic curve point K ×G and retaining only its
x-coordinate modulo p:

sig1 = (K ×G)x mod n

Note that sig1 is NOT a two-dimensional point on the curve, but
just a number — just like K. Should the modulo operation produce

a zero value for sig1, you try a different value for K. You next
construct sig2 by

72

Computer and Network Security by Avi Kak Lecture 14

sig2 = K−1 · (H + X · sig1) mod n

where K−1 is the multiplicative inverse of K modulo n that can be
obtained with the Extended Euclid’s Algorithm (See Sections 5.6
and 5.7 of Lecture 5).

� Let’s say you have sent your document along with its signature

(sig1, sig2) to some recipient and the recipient wishes to make

sure that he/she is not receiving a modified message. The

recipient can verify the authenticity of the document by (a) first

calculating its hash H of the document (using the same

algorithm that you did); (b) calculating the numbers

w = sig−1
2 mod n, u1 = H · w mod n, and

u2 = sig1 · w mod n; (c) using these numbers to compute the

point (x, y) = u1 ×G + u2 × Y on the curve, where the

operator ‘×’ is the “multiplication” operator corresponding to

the repeated invocations of the group law; and, finally,

authenticating the signature by checking whether the

equivalence sig1 ≡ x (mod n) holds.

� I will now address the danger of using the same K for two

different documents — danger in the sense that an adversary

can figure out your private key and then proceed to counterfeit

your signature. Let the hashes of two different documents you

are signing with the same K value be H and H ′. The two
signatures for these two documents will look like:

73

Computer and Network Security by Avi Kak Lecture 14

sig1 = (K ×G)x mod n

sig2 = K−1 · (H − X · sig1) mod n

sig′1 = (K ×G)x mod n

sig′2 = K−1 · (H ′ − X · sig′1) mod n

where the primed signatures are for the second document. Note

that sig1 and sig′1 remain the same because they are

independent of the document. Therefore, if an adversary were

to calculate the difference sig2 − sig′2, he would obtain

sig2 − sig′2 = K−1(H −H ′)

From this, the adversary can immediately calculate the value of

K you used for your digital signature. And, using the equation

sig2 = K−1 · (H −X · sig1) mod n, the adversary can proceed

to calculate your private key X . [This was the ploy used to break

the ECDSA based code authentication in PlayStation3 a couple of years

back.]

� For a proof of the ECDSA algorithm, see the paper “The

Elliptic Curve Digital Signature Algorithm (ECDSA)” by Don

Johnson, Alfred Menezes, and Scott Vanstone that appeared in

International Journal of Information Security, pp. 36-63, 2001.

ECDSA as a standard is described in the document ANSI

X9.62.

74

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.14 SECURITY OF ECC

� Just as RSA depends on the difficulty of large-number

factorization for its security, ECC depends on the difficulty of

the large number discrete logarithm calculation. This is referred

to as the Elliptic Curve Discrete Logarithm Problem

(ECDLP).

� It was shown by Menezes, Okamoto, and Vanstone (MOV) in

1993 that (for supersingular elliptic curves) the problem of

solving the ECDLP problem (where the domain is the group

Eq(a, b)) can be reduced to the much easier problem of finding

logarithms in a finite field. There has been much work recently

on extending the MOV reduction to general elliptic curves.

� In order to not fall prey to the MOV attack, the underlying

elliptic curve and the base point chosen must satisfy what is

known as the MOV Condition.

� The MOV condition is stated in terms of the order of the base

point G. The order m of the base point G is the value of m

such that m×G = O where O is the additive identity

element of the group Eq(a, b) as defined in Section 14.4.

75

Computer and Network Security by Avi Kak Lecture 14

� The MOV condition states that the order m of the base-point

should not divide qB − 1 for small B, say for B < 20. Note that

q is the prime p when the underlying finite field is Zp or it is 2
n

when the underlying finite field is GF (2n).

� When using GF (2n) finite fields, another security consideration

relates to what is known as the Weil descent attack. To not

be vulnerable to this attack, n must be a prime.

� Elliptic curves for which the total number of points on the curve

equals the number of elements in the underlying finite field are

also considered cryptographically weak.

76

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.15 ECC FOR DIGITAL RIGHTS
MANAGEMENT

� ECC has been and continues to be used for Digital Rights

Management (DRM). DRM stands for technologies/algorithms

that allow a content provider to impose limitations on the whos

and hows of the usage of some media content made available by

the provider.

� ECC is used in the DRM associated with the Windows Media

framework that is made available by Microsoft to third-party

vendors interested in revenue-generating content creation and

distribution. In what follows, we will refer to this DRM as

WM-DRM.

� The three main versions of WM-DRM are Version 1 (released in

1999), Version 2 (released in 2003, also referred to as Version 7.x

and Version 9), and Version 3 (released in 2003, also known as

Version 10). All three versions have been cracked. As you would

expect in this day and age, someone figures out how to strip

away the DRM protection associated with, say, a movie and

makes both the unprotected movie and the protection stripping

algorithm available anonymously on the web. In the meantime,

the content provider (like Apple, Sony, Microsoft, etc.) comes

77

Computer and Network Security by Avi Kak Lecture 14

out with a patch to fix the exploit. Thus continues the cat and

mouse game between the big content providers and the

anonymous “crackers.”

� Again as you would expect, the actual implementation details of

most DRM algorithms are proprietary to the content providers

and distributors. But, on October 20, 2001, an individual, under

the pseudonym Beale Screamer, posted a detailed description of

the inner workings of the WM-DRM Version 2. This

information is still available at the URLs http://cryptome.org/ms-drm.htm

and http://cryptome.org/beale-sci-crypt.htm where you will find a

command-line tool named FreeMe for stripping away the DRM

protection of the older versions of Windows Media documents.

Since Version 2 is now considered out of date, the main

usefulness of the information posted at the web site lies in its

educational value.

� WM-DRM Version 2 used elliptic curve cryptography for

exchanging a secret session key between a user’s computer and

the license server at the content provider’s location. As to how

that can be done, you have already seen the algorithm in

Section 14.12.

� The ECC used in WM-DRM V. 2 is based on the first elliptic

curve y2 = x3 + ax + b that was presented in Section 14.3.

The ECC algorithm used is based on the points on the curve

78

http://cryptome.org/ms-drm.htm
http://cryptome.org/beale-sci-crypt.htm

Computer and Network Security by Avi Kak Lecture 14

whose x and y coordinates are drawn from the multiplicative

group Z∗
p , defined earlier in Section 11.8 of Lecture 11, Section

13.5 of Lecture 13, and Section 14.8 of this lecture, with the

number p set to the value shown below: [Recall from Section 11.8 of Lecture 11

and Section 13.5 of Lecture 13 that the multiplicative group Z∗

p consists of the p− 1 integers

{1, 2, 3, · · · , p− 1}]

p = 785963102379428822376694789446897396207498568951

In the WM-DRM ECC, all are represented using 20 bytes. Here

is the hex representation of the modulus p shown above:

p = 0x89abcdef012345672718281831415926141424f7

� We also need to specify values for the parameters a and b of the

elliptic curve y2 = x3 + ax + b. As you would expect, these

parameters are also drawn from the multiplicative group Z∗
p and

their values are given by

a = 317689081251325503476317476413827693272746955927

b = 79052896607878758718120572025718535432100651934

Since all numbers in the ECC implementation under

consideration are stored as blocks of 20 bytes, the hex

representations of the byte blocks stored for a and b are

a = 0x37a5abccd277bce87632ff3d4780c009ebe41497

b = 0x0dd8dabf725e2f3228e85f1ad78fdedf9328239e

79

Computer and Network Security by Avi Kak Lecture 14

� Following the discussion in Sections 14.11 and 14.12, the ECC

algorithm would also need to choose a base point G on the

elliptic curve y2 = x3 + ax + b. The x and the y coordinates

of this point in the ECC as implemented in WM-DRM are

Gx = 771507216262649826170648268565579889907769254176

Gy = 390157510246556628525279459266514995562533196655

The 20-byte hex representations for these two coordinates are

Gx = 0x8723947fd6a3a1e53510c07dba38daf0109fa120

Gy = 0x445744911075522d8c3c5856d4ed7acda379936f

� As mentioned in Section 14.12, an ECC protocol must also

make publicly available the order of the base point. For the

present case, this order is given by

#Ep(a, b) = 785963102379428822376693024881714957612686157429

� With the elliptic curve and its parameters set as above, the next

question is how exactly the ECC algorithm is used in

WM-DRM.

� When you purchase media content from a Microsoft partner

peddling their wares through the Window Media platform, you

would need to download a “license” to be able play the content

80

Computer and Network Security by Avi Kak Lecture 14

on your computer. Obtaining the license consists of your

computer randomly generating a number n ∈ Zp for your

computer’s private key. Your computer then multiplies the base

point G with the private key to obtain the public key.

Subsequently your computer can interact with the content

provider’s license server in the manner described in Section

14.12 to establish a secret session key for the transfer of license

related information into your computer.

� In order to ensure that only your computer can use the

downloaded license, WM-DRM makes sure that you cannot

access the private key that your computer generated for the

ECC algorithm. Obviously, if you could get hold of that n, you

could pass the encrypted content file and the private key to your

friend and they would be able to pretend to be you vis-a-vis the

license server. WM-DRM hides an RC4 encrypted version of the

private key in the form of a linked list in which each nodes

stores one half of the key.

� When DRM software is cracked, it is usually done by what is

known as “hooking” the DRM libraries on a computer as they

dump out either the keys or the encrypted content.

81

Computer and Network Security by Avi Kak Lecture 14

Back to TOC

14.16 HOMEWORK PROBLEMS

1. ECC uses numbers that correspond to points on elliptic curves.

What is an elliptic curve? Does it have anything to do with an

ellipse?

2. What is the geometrical interpretation of the group law that is

used for the numbers drawn from the elliptic curves in ECC?

3. What is the fundamental reason for why ECC can use shorter

keys for providing the same level of security as what RSA does

with much longer keys?

4. Section 14.13 described the ECDSA algorithm (which, as was

mentioned in Section 14.1, is used for authentication in ECC

based certificates). One significant disadvantage of ECDSA

vis-a-vis an RSA based digital signature algorithm is that the

security of ECDSA depends on the quality of the random

number generator used for K. Why do you think the security of

ECDSA would be compromised if K is generated from a

low-entropy source?

5. Programming Assignment:

82

Computer and Network Security by Avi Kak Lecture 14

Section 14.8 included Python code (unoptimized for large

primes) that implemented the group law for the set of points on

standard-form elliptic curves over prime finite fields. Extend

this code with the implementations required for the different

algorithmic steps of the ECDSA algorithm of Section 14.13.

83

Computer and Network Security by Avi Kak Lecture 14

Acknowledgments

I’d like to thank Helena Verrill and Subhash Kak for sharing their

insights with me on the mathematics of elliptic curves and on the

subject of elliptic curve cryptography. Helena Verrill is the source

of much of the information provided regarding the singularity and

supersingularity of elliptic curves.

84

