Lecture 14
 Multiple Linear Regression and Logistic Regression

Fall 2013
Prof. Yao Xie, yao.xie@isye.gatech.edu
H. Milton Stewart School of Industrial Systems \& Engineering
Georgia Tech

Outline

- Multiple regression
- Logistic regression

Simple linear regression

Based on the scatter diagram, it is probably reasonable to assume that the mean of the random variable Y is related to X by the following simple linear regression model:

where the slope and intercept of the line are called regression coefficients.
-The case of simple linear regression considers a single regressor or predictor x and a dependent or response variable Y .

Multiple linear regression

- Simple linear regression: one predictor variable x
- Multiple linear regression: multiple predictor variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$
- Example:
- simple linear regression property tax $=a *$ house price $+b$
- multiple linear regression property tax $=a_{1} *$ house price $+a_{2} *$ house size $+b$
- Question: how to fit multiple linear regression model?

Multiple linear regression model

- Multiple linear regression model with two regressors (predictor variables)

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

dependent variable
response
independent
regressor variables

$$
E(Y)=50+10 x_{1}+7 x_{2}
$$

More complex models can still be analyzed using multiple linear regression

- Cubic polynomial

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\epsilon \\
& \text { let } x_{1}=x, x_{2}=x^{2}, x_{3}=x^{3}
\end{aligned}
$$

- Interaction effect

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\epsilon \\
& \text { let } x_{3}=x_{1} x_{2} \text { and } \beta_{3}=\beta_{12}
\end{aligned}
$$

In general, any regression model that is linear in parameters (the β 's) is a linear regression model, regardless of the shape of the surface that it generates.

Data for multiple regression

Table 12-1 Data for Multiple Linear Regression

y	x_{1}	x_{2}	\ldots	x_{k}
y_{1}	x_{11}	x_{12}	\cdots	$x_{1 k}$
y_{2}	x_{21}	x_{22}	\cdots	$x_{2 k}$
\vdots	\vdots	\vdots		\vdots
y_{n}	$x_{n 1}$	$x_{n 2}$	\cdots	$x_{n k}$

Data $\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}, y_{i}\right), \quad i=1,2, \ldots, n \quad$ and $\quad n>k$

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}+\epsilon_{i} \\
& =\beta_{0}+\sum_{j=1}^{k} \beta_{j} x_{i j}+\epsilon_{i} \quad i=1,2, \ldots, n
\end{aligned}
$$

Least square estimate of coefficients

$$
L=\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{k} \beta_{j} x_{i j}\right)^{2}
$$

Set derivatives to 0

$$
\begin{aligned}
& \left.\frac{\partial L}{\partial \beta_{0}}\right|_{\hat{\beta}_{0, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\sum_{j=1}^{k} \hat{\beta}_{j} x_{i j}\right)=0 \\
& \left.\frac{\partial L}{\partial \beta_{j}}\right|_{\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\sum_{j=1}^{k} \hat{\beta}_{j} x_{i j}\right) x_{i j}=0
\end{aligned}
$$

Normal equations

$$
\begin{array}{ccc}
n \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i 1} & +\hat{\beta}_{2} \sum_{i=1}^{n} x_{i 2} & +\cdots+\hat{\beta}_{k} \sum_{i=1}^{n} x_{i k}
\end{array}=\sum_{i=1}^{n} y_{i}{ }_{i}^{n}
$$

$\mathrm{k}+1$ normal equations, $\mathrm{k}+1$ coefficients to be determined - can be uniquely determined

Matrix form for multiple linear regression

- Write multiple regression as

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \ldots & x_{1 k} \\
1 & x_{21} & x_{22} & \ldots & x_{2 k} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n 1} & x_{n 2} & \ldots & x_{n k}
\end{array}\right] \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]
$$

Matrix normal equation

- Least square function $L=\sum_{i=1}^{n} \epsilon_{i}^{2}=\epsilon^{\prime} \epsilon=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$
- Coefficient satisfies $\frac{\partial L}{\partial \beta}=\mathbf{0}$
- Normal equation $\mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y} \quad \hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$

$$
\left[\begin{array}{ccccc}
n & \sum_{i=1}^{n} x_{i 1} & \sum_{i=1}^{n} x_{i 2} & \cdots & \sum_{i=1}^{n} x_{i k} \\
\sum_{i=1}^{n} x_{i 1} & \sum_{i=1}^{n} x_{i 1}^{2} & \sum_{i=1}^{n} x_{i i} x_{i 2} & \cdots & \sum_{i=1}^{n} x_{i} x_{k} \\
\vdots & \vdots & \vdots & & \vdots \\
\vdots & \vdots & \vdots & & \vdots \\
\sum_{i=1}^{n} x_{i k} & \sum_{i=1}^{n} x_{i k} x_{i 1} & \sum_{i=1}^{n} x_{x_{k} x_{i 2}} & \cdots & \sum_{i=1}^{n} x_{i k}^{2}
\end{array}\right]\left[\begin{array}{c}
\hat{\beta}_{0} \\
\hat{\beta}_{1} \\
\vdots \\
\hat{\beta}_{k}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{n} y_{i} \\
\sum_{i=1}^{n} x_{i 1} y_{i} \\
\vdots \\
\vdots \\
\sum_{i=1}^{n} x_{i k} y_{i}
\end{array}\right]
$$

Fitted model

- Fitted model

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}
$$

- Residual $\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}$
- Estimator of variance

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-p}=\frac{S S_{E}}{n-p}
$$

Use \mathbf{R} for multiple linear regression

- Fit model using
Im(response ~ explanatory_1 + explanatory_2 + ... + explanatory_p)
- Example

Ex. Data was collected on 100 houses recently sold in a city. It consisted of the sales price (in \$), house size (in square feet), the number of bedrooms, the number of bathrooms, the lot size (in square feet) and the annual real estate tax (in \$).

Read data

> Housing = read.table("C:/Users/Martin/Documents/W2024/housing.txt", header=TRUE)
> Housing
Taxes Bedrooms Baths Price Size Lot
1136032.0145000124018000
2105011.06800037025000
$99 \quad 1770 \quad 3 \quad 2.088400156012000$
100143032.0127200134018000

Suppose we are only interested in a subset of variables

We want to fit a linear regression model response variable: price predictor variables: size, lot

Create multiple scatter plot

- scatter plots of all pair-wise combinations of variables we are interested in
> myvars = c("Price", "Size", "Lot")
> Housing2 = Housing[myvars]
$>\operatorname{plot}($ Housing2)

Fit model

```
> results = Im(Price ~ Size + Lot, data=Housing)
> results
```

Call:
Im(formula = Price \sim Size + Lot, data $=$ Housing)
Coefficients:
(Intercept) Size Lot
-10535.951 53.7792 .840
$\hat{y}=-10536+53.8 x_{1}+2.8 x_{2}$
> summary(results)
Call:
Im(formula $=$ Price \sim Size + Lot, data $=$ Housing $)$
Residuals:
Min 1Q Median 3Q Max
-81681-19926 25301797284978
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -1.054e+04 9.436e+03 $-1.117 \quad 0.267$
Size $\quad 5.378 \mathrm{e}+01 \quad 6.529 \mathrm{e}+00 \quad 8.237 \quad 8.39 \mathrm{e}-13$ ***
Lot $\quad 2.840 \mathrm{e}+00$ 4.267e-01 6.656 1.68e-09 ***

Signif. codes: 0 ‘***’ 0.001 '**’ $0.01^{\text {'*’ }} 0.05$ '.' $0.1^{\prime \prime} 1$
Residual standard error: 30590 on 97 degrees of freedom
Multiple R-squared: 0.7114, Adjusted R-squared: 0.7054
F-statistic: 119.5 on 2 and 97 DF, p-value: < 2.2e-16

Introduction to logistic regression

- linear regression:
- response variable y is quantitative (real value)

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

- logistic regression:
- response variable Y only takes two values, $\{0,1\}$
Y_{i} is a Bernoulli random variable with probability distribution

Y_{i}	Probability
1	$P\left(Y_{i}=1\right)=\pi_{i}$
0	$P\left(Y_{i}=0\right)=1-\pi_{i}$

Logistic response function

$$
\begin{aligned}
E\left(Y_{i}\right) & =1\left(\pi_{i}\right)+0\left(1-\pi_{i}\right) \\
& =\pi_{i}
\end{aligned}
$$

logit response function, $\quad E(Y)=\frac{1}{1+\exp \left[-\left(\beta_{0}+\beta_{1} x\right)\right]}$

$$
E(Y)=1 /\left(1+e^{-6.0-1.0 x}\right)
$$

Example

- Failure of machine vs temperature

Temperature	O-Ring Failure	Temperature	O-Ring Failure	Temperature	O-Ring Failure
53	1	68	0	75	0
56	1	69	0	75	1
57	1	70	0	76	0
63	0	70	1	76	0
66	0	70	1	78	0
67	0	70	1	79	0
67	0	72	0	80	0
67	0	73	0	81	0

