Lecture 14:

Scaling a Web Site

Scale-out Parallelism, Elasticity, and Caching

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2014

Tunes

“Good OI' Fashion Nightmare”
(Matt & Kim)

Matt & Kim

“I think it’s pretty clear what we were singing about.”
- Matt & Kim

YES.
418 exams are long.

(we did warn you)

In many situations.

THE QUESTIONS.

That were attempted.

had answers...
that seem to indicate...

that perhaps.

SOME

FUNDAMENTAL

CONCEPTS

may not be understood

may not be understood at the level

your instructor !Q]

might prefer.

THE DEAL.

The Exam 1 Deal

B No exam 1 solutions will be distributed at this time

m You have the opportunity to redo up to two questions (of your
choosing) from the exam, on your own time.

- You may discuss the problems with your classmates and the TAs.
- You must write your solutions on your own.

- You will get 50% credit for lost points on regraded questions.

- This must be completed by April 11th

But... there’s a catch.

CMU 15-418, Spring 2014

Exam 1 Deal: The Catch

m You must hand in your solution to Kayvon at office hours

B And you are not allowed to hand in unless you are able to
successfully answer a series of questions | ask you

m The questions will a subset of the seven questions on exam 1
(or simple follow up variants)

CMU 15-418, Spring 2014

It’s time to start thinking about projects

B Timeline
- Project proposal due: April 4th

- Project checkpoint: April 18th
- Parallelism competition finals! (project presentations): May 9th

B |deas
- Pick an application, parallelize it, and analyze its performance

- Modify a parallel library or compilation tool
- Write a hardware simulator, play around with FPGAs, do real hardware design

= Free to experiment with fun new parallel platforms: FPGAs, mobile devices, Tegra devkits,
Raspberry Pis, etc.

m We will be making a web page of ideas over spring break

B See examples from last year:
- http://15418.courses.cs.cmu.edu/spring2013/article/34

CMU 15-418, Spring 2014

Today’s focus: the basics of scaling a web site

® |'m going to focus on performance issues
- Parallelism and locality

m Many other issues in developing a successful web platform

- Reliability, security, privacy, etc.
- There are other great courses at CMU for these topics

CMU 15-418, Spring 2014

A simple web server for static content

while (1)
{

request = wait_for_request();
filename = parse_request(request);

contents = read file(filename);

send contents as response

Question: is site performance a question of throughput or latency?
(we'll revisit this question later)

(MU 15-418, Spring 2014

A simple parallel web server

Parent Process

Worker
Process 1

Worker
Process 2

What factors would you consider in setting
the value of N for a multi-core web server?

N

Worker
Process N

m Parallelism: use all the server’s cores
m Latency hiding: hide long-latency disk read operations (by context switching between worker processes)

request = wait_for_request();

while (1)

{
filename
contents

parse_request(request);

read_file(filename);

send contents as response

m Concurrency: many outstanding requests, want to service quick requests while long requests are in progress

(e.g., large file transfer shouldn’t block serving index.html)

m Footprint: dont want too many threads so that aggregate working set causes thrashing

(MU 15-418, Spring 2014

Example: Apache’s parent process dynamically
manages size of worker pool

Parent Process

Worker Worker : Worker ' Worker ' Worker .

Process 1 Process 2 . Process3 ' + Process4 ' 1 Process5 |

o I Lo .

4 Desirable to maintain a few idle workers in
pool (avoid process creation in critical path of
Busy servicing Busy servicing New request 0 servicing requests)

long request long request i
]
[]
]

CMU 15-418, Spring 2014

Limit maximum number of workers to avoid
excessive memory footprint (thrashing)

Parent Process
/ / N Request queue
Worker Worker Worker Worker Worker
Process 1 Process 2 Process 3 Process 4 Process 5
Bus . . B []
y servicing usy servicing Busy servicing Busy servicing Busy servicing New request

long request long request request request request 0

[

[

[

Key parameter of Apache’s “prefork” multi-processing module: MaxRequestiorkers

CMU 15-418, Spring 2014

Aside: why partition server into processes, not threads?

B Protection

- Don’t want a crash in one worker to bring down the whole web server

- Often want to use non-thread safe libraries (e.g., third-party libraries) in
server operation

m Parent process can periodically recycle workers
(robustness to memory leaks)

m Of course, multi-threaded web server solutions exist as well
(e.g., Apache’s “worker” module)

CMU 15-418, Spring 2014

Dynamic web content

Web Server

Worker Process
Requests

- o e wm wm e PHP/Ruby/Python/Node.js
> interpreter

Database
(e.g., mySQL)

Worker Process

s PHP/Ruby/Python/Node.js | | >
interpreter

“Response” is not a static page on disk, but the result of
application logic running in response to a request.

CMU 15-418, Spring 2014

— This Li 2 See All
=) Update Status Add Photo / Video == Ask Question On e L a2 ee

's on your mind?) ’- - - I
What d L B - Y Consider the amount of logic and the

Y8 1 o Rl

+ Add to this list

Doctors Urge Their Colleagues To Quit Doing generate your FaCEbOOk News FEEdo

number database queries required to

Thanks you! Maybe we can take these billions in savings and cover the
uninsured...

Worthless Tests : NPR List Suggestions
WWW.Npr.org

Nine national medical groups have identified 45 diagnostic a] Add

tests, procedures and treatments that they say often are
unnecessary and expensive. The head of one of the -

specialty groups says unneeded tests probably account for _ Add
$250 billion in health care spending. Y

Like - Comment - Share - 33 minutes ago near San Francisco, CA

=Y I Add
g‘
dy I | Add

See More Suggestions

Add

N

Famous street art seen throughout city

Like - Comment - 2 hours ago -

Find Friends - 10 hours ago

Whenever I'm at a presentation and they're having A/V problems, there's an
irresistible urge to jump in and fix it myself.

¥ Like - Comment _on Twitter - 16 hours ago via Twitter

&9 Brian Park likes this.

Write a comment...

-‘aooed a route on MapMyRUN.com.

““=" 5 miles from MS bldg 99 up to Old Redmond and
~across 520

Redmond, WA 5.32 mi

Al Like - Comment - 20 hours ago - M4 CMU 15-41 8, Spring 2014

Scripting language performance (poor)

m Two popular content management systems (PHP)

- Wordpress ~ 12 requests/sec/core (DB size = 1000 posts)
- MediaWiki ~ 8 requests/sec/core

[Source: Talaria Inc.]

m Recent interest in making making scripted code execute faster

- Facebook’s HipHop: PHP to C source-to-source converter
- Google’s V8 Javascript engine: JIT Javascript to machine code

CMU 15-418, Spring 2014

“Scale out” to increase throughput

Use many web servers to meet site’s throughput goals.

Requests

1
Load balancer maintains list of available web
servers and an estimate of load on each.

Distributes requests to pool of web servers.

Load Balancer

(Redistribution logic is cheap: one load

balancer typically can service many web

servers)

Web Server
Worker Process
<! .
’ 5
’
? Worker Process
¢ A
9 o
YA
‘' ¢ Web Server
Y 2R 4
0 ?
04 Worker Process
~ o
~ . .
~ -l
. Worker Process
'\
()
‘ ()
‘ []
1
'\
N Web Server
|
'\ Worker Process
Y .
[)
[)
Worker Process

T

Database
(e.g., mySQL)

CMU 15-418, Spring 2014

Load balancing with persistence

All requests associated with a session are directed to the same server (aka. session affinity, “sticky sessions”)

Web Server Session
4 Worker Process ate
1, R :
’ 3"
) 4 Worker Process
’
t, A \
’ |
Requests PRI Session
1. Sessionld = X -’ 'zl" Web Server State
Il B N BN = = = '
> Sessionld = Y > '1" Worker Process “—_
;s Seccionld X Load Balancer : \
: ' Worker Process <+
4. Sessionld =X ‘
. [
map(sessionld, serverName) “ .
'} [
' 2 .
“ Web Server ession
Good: . State
- Do not have to change web-application . Worker Process g
design to implement scale out X
Bad: o . Worker Process
- Stateful servers can limit load balancing

options. Also, session is lost if server fails

Database
(e.g., mySQL)

CMU 15-418, Spring 2014

0 0
1> 1w 1IN 1=

Desirable: avoid persistent state in web server

Maintain stateless servers, treat sessions as persistent data to be stored in the DB.

Requests

Sessionld =X
S_ess_ioEId_=!
S_ess_iorlld_=)ﬁ
S_ess._iorlld_=)£

vVVvVYVYYy

Load Balancer

Web Server
Worker Process
<! .
’ 5
’
’ Worker Process
¢ A
1 o
¢ 0
YA
. e Web Server
Y 2K 4
0 ? Worker Process
¢
& o
] N °
RN .
“ Worker Process
'\
‘ ()
‘ ()
'
‘ o
1
'\
N Web Server
'\
'\ Worker Process
Y .
[)
[)
Worker Process

T

Session State

Database
(e.g., mySQL)

CMU 15-418, Spring 2014

Dealing with database contention

Option 1: “scale up”: buy better hardware for database server, buy professional-grade DB that scales

Good: no change to software
Bad: High cost, limit to scaling

Requests

Load Balancer

T

Web Server
Worker Process
<! .
’ 5
’
’ Worker Process
¢ A
1
¢ 0
YA
. e Web Server
Y 2K 4
0 ? Worker Process
¢
& o
] N °
SRR ;
“ Worker Process
'\
‘ ()
‘ ()
'
‘ o
'\
N Web Server
|
'\ Worker Process
Y .
[)
[)
Worker Process

Database
(e.g., mySQL)

CMU 15-418, Spring 2014

Scaling out a database: replicate

Replicate data and parallelize reads .
Adopt relaxed consistency models:
(most DB accesses are reads) propagate updates “eventually”
Cost: extra storage, consistency Web Server s
issues Worker Process
’ . Slave Database M
N Worker Process + Read only
¢ A
’
Requests v .
R Web Server Slave Database
"""" > L P Read only
0 ? Worker Process
------- * '
Load Balancer | : - :
------- \ ! ~ >
> “ b Worker Process
------- * ‘
'
'
' ’ Database
“ Services (writes)
. Web Server
'
! Worker Process
A :
Worker Process

CMU 15-418, Spring 2014

Scaling out a database: partition

Web Server
Worker Process
1 :
Y 4 °
’
? Worker Process
¢ A
’
Requests v .
’
R " Web Server
," Worker Process
S Load Balancer 2.~ .
B BN BN BN BN B * ! ~ Ny 2
“ L Worker Process
‘ o
|\
‘ o
‘ o
|
'Y
Web Server
Can tune database for access '
characteristics of data stored * Ll
(common to use different databases: :
SQL vs. nosql) Worker Process

Clickstream data
(writes)

Users A-M profile
(reads and writes)

Users N-Z profile
(reads and writes)

Users photos
(reads and writes)

CMU 15-418, Spring 2014

Inter-request parallelism

Parallelize generation of a single page

Web Server

Worker Process

Worker Process

Page

Request
==

Web Server

Worker Process

Load Balancer |,

Worker Process

Web Server

Worker Process

amazon

Shop by

Department v Search Al »

More Items to Consider

You viewed

MRy SYSTENS |-

I

Memory Systems: Cache,

A Primer on Memory

Consistency and... DRAM, Disk

Daniel J. Sorin, Mark D. Hill, Bruce Jacob, Spencer Ng,
David... David Wang

Paperback Paperback

YORAAYT (2) YR (8)
$50.00 s124-00 $86.61

» View or edit your browsing history

New For You

SKYFALL

.y

Skyfall
Amazon Instant Video
ool (1,297)

Why recommended?

Rise of the Guardians
Amazon Instant Video

Why recommended?

Worker Process

Amount of user trafficis directly correlated to response latency.

See great post:
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLaten

cy.aspx

Kayvon's Amazon.com Today's Deals GiftCards Help

Customers who viewed this also viewed

The Memory System: You Cache Memory Book, The,

Can't Avoid It... Second Edition
Bruce Jacob » Jim Handy
Paperback Hardcover
oioiol (1) Yook (4)
£35.05 $23.88 £409.00 $91.24

/7 B
BIARNF STROUSTRUT

The C++ Programming OpenGL Programming

Language, 4th... Guide: The...
Bjarne Stroustrup Dave Shreiner, Graham
Paperback Sellers, ...
£7495 $551.91 Paperback
$55.99 $50.86

Why recommended?
Why recommended?

Hello, Kayvon
Your Account v

e

kindle fire 1ic
|"l om

Your
Prime ~

Wish
List ~

0
-\.-./Cart v

St. Patrick’s |

>Shop now

Streaming videos now included with

amazonPrime

It's Your Money
Keep More of It With
TurboTax 2012

» Shop now

Luxury Plens |

Vi ald¥alslY
[alg .

/1 | "VI] |,‘| \/

—V U yudly

a2
lJse

» Shop now

Recommender Service

Notification/
Feed Aggregator

Advertising Service

(MU 15-418, Spring 2014

How many web servers do you need?

CMU 15-418, Spring 2014

Web trafficis bursty

Amazon.com Page Views

Daily Pageviews (percent)
amazon.com

-
- —
- -
- -
05.— —
.
- -
- -
- -

Holiday shopping season

More examples:

- Facebook gears up for bursts of image
uploads on Halloween and New Year’s Eve.

- Twitter topics trend after world events

HuffingtonPost.com Page Views Per Week

Directly Measured quUntcast

25M

20M

15M

10M ‘
2/2012 3/2012

HuffingtonPost.com Page Views Per Day

oM Directly Measured quUocntcast

2/2012 3/2012

(fewer people read news on weekends)

CMU 15-418, Spring 2014

15-418 Spring 2014 site traffic

Exam 1

® Pageviews \
20,000

(MU 15-418, Spring 2014

Problem

m Site load is bursty

m Provisioning site for the average case load will result in poor
quality of service (or failures) during peak usage

- Peak usage tends to be when users care the most... since by the definition the
site is important at these times

m Provisioning site for the peak usage case will result in many
idle servers most of the time

- Not cost efficient (must pay for many servers, power/cooling, datacenter space,
etc.)

CMU 15-418, Spring 2014

Elasticity!

m Main idea: site automatically adds or shuts
down web servers based on measured load

B Need source of servers available on-demand

amazon
web services”

- Example: Amazon.com EC2 instances

CMU 15-418, Spring 2014

Example: Amazon’s elastic compute cloud (EC2)

Amazon.com Page Views

Daily Pageviews (percent)
damazon.com

B Amazon had an over-provisioning problem

B Solution: make machines available for | |

rent to others in need of compute
- For those that don’t want to incur cost of, orhave |

o[: . | . ' \ |
[] [
expertlse to, Manage own machines at scale it e
[] (N K
For those that need elastic compute capability
vCPU ECU Memory (GiB) Instance Storage (GB) Linux/UNIX Usage
General Purpose - Current Generation
m3.medium 1 3 3.75 1 x4 SSD $0.113 per Hour
ma3.large 2 6.5 o 1x32 SSD $0.225 per Hour
ma3.xlarge 4 13 15 2 x40 SSD $0.450 per Hour
m3.2xlarge 8 26 30 2 x 80 SSD $0.900 per Hour
General Purpose - Previous Generation
m1.small 1 1 12T 1 x 160 $0.060 per Hour
m1.medium 1 2 3.75 1x410 $0.120 per Hour
m1.large 2 4 oD 2 x 420 $0.240 per Hour
m1.xlarge 4 8 15 4 x 420 $0.480 per Hour

CMU 15-418, Spring 2014

Site configuration: normal load

Requests

Perf. Monitor
Load: moderate

Load Balancer

Web Server

Database
(potentially multiple
machines)

Web Server

DB Slave 1

Master

DB Slave 2

Web Server

CMU 15-418, Spring 2014

Event triggers spike in load

@justinbieber: OMG, parallel
prog. class @ CMU is
awesome. Look 4 my final

Requests . .
project on hair sim. #15418
------- >
"""" P | Perf. Monitor
....... > Load: high Database
> . ¢; Web Server (potentiall}r multiple
------- 2 g
Letlet pd \ machines)
_______ > o_v
_______ > Load Balancer ’::- :. . I Web Server DB Slave 1
KR < Master
T
....... 5 “s: . DB Slave 2
------- -’ “st °
\‘s:
------ > N Web Server
1)
------- * [] []
- Heavily loaded servers: slow response times
------ >
------- >
------- >

CMU 15-418, Spring 2014

Heavily loaded servers = slow response times

B |frequests arrive faster than site can service them, queue lengths will grow

B Latency of servicing request is wait time in queue + time to actually
process request

- Assume site has capability to process R requests per second

- Assume queue lengthis L

- Timein queue =L/R

B How does site throughput change under heavy load?

Worker
Process 1

Worker
Process 2

Busy servicing
long request

Busy servicing
long request

Worker
Process 3

Busy servicing
request

Worker
Process 4

Worker
Process 5

Busy servicing
request

Busy servicing
request

Request queue

New request

CMU 15-418, Spring 2014

Site configuration: high load

Site performance monitor detects high load
Instantiates new web server instances
Informs load balancer about presence of new servers

Requests
Il B BE =E = = * ---------------------------------------
Web Server
=======91" porf. Monitor ,’ __
m====dp | Loadmoderate S Database
R¢ N Web Server (potentially multiple
I N O O . * " "" \ maChiHES)
’ .
o’ 9
> Load Balancer KA = DB Slave 1
=P ’:~._* Web Server —)
NP Master
Il N = = . * “:‘s o DBSlaVEZ
\ } $ °
\ 3
B B O = * . “ “ S [
“ SRR
SR o 0 Web Server
' Y |
Il I I = = ‘
*)} “ E"""'""""'"""""""""""":
=== ‘\ Web Server
W :
Il I I = = * ‘ --
W S
=== \ k Web Server §

CMU 15-418, Spring 2014

Site configuration: return to normal load

Site performance monitor detects low load
Released extra server instances (to save operating cost)
Informs load balancer about loss of servers

@justinbieber: WTF,
parallel programming is 2

hrd. Buy my new album.
&g R
. WehStv& -
Perf. Monitor a®®" . -y
Requests Load: too low Database
N Web Server (potentially multiple
....... > L machines)
’ o
------- * Y 2 " g
_______ Y Load Balancer :'. ey Web Server DB Slave 1
zs Master
....... > AR . DB Slave 2
\ “ °
S
‘ ()
\‘ "
“ Web Server
. e -k
Note convenience of stateless T Wepsandt
servers in elastic environment: ,-—’ ______________ Sy
can kill server without loss Of BDwm. 09090 _ a®:
. . . : “w -
important information. - Nasev
] -m

CMU 15-418, Spring 2014

Today: many “turn-key” environment-in-a-box services

Offer elastic computing environments for web applications

@))81(’ /
Websenvices- re 'RiGHT SCaLE L)
: o
CloudWatch+Auto Scaling ‘ {JN E"GI"%
Amazon Elastic Beanstalk < & '.'lﬂR[I

(MU 15-418, Spring 2014

The story so far: parallelism
scale out, scale out, scale out

(+ elasticity to be able to scale out on demand)

Now: reuse and locality

CMU 15-418, Spring 2014

Recall: basic site configuration

Requests

Web Server

Worker Process

PHP/Ruby/Python/Node.js
interpreter

Database

'$query = "SELECT * FROM users WHERE username=‘kayvonf’;
mysgl fetch_array(mysql query($userquery));

$user

Eecho “div>” . $user[‘FirstName’] . “ “ . $user[‘LastName’] . “</div>”;i

Response Information Flow

HTML

<div>Kayvon Fatahalian</div>

Example PHP Code

PHP ‘user’ object

‘users’ table

CMU 15-418, Spring 2014

Work repeated every page

Example PHP Code

Hello, Kayy D
Your Account - \-.,Cart v

'$query = "SELECT * FROM users WHERE username=‘kayvonf~’;
$user = mysql_fetch_array(mysql_query($userquery));

recho “<div>” . $user[‘FirstName’] . “ “ . $user[‘LastName’] . “</div>”;i

B Steps repeated to emit my name at the top of every page:

HTML

Response Information Flow

PHP ‘user’ object

<div>Kayvon Fatahalian</div>

Communicate with DB

Perform query

‘users’ table

Remember, DB can be hard to scale!

Marshall results from database into object model of scripting language
Generate presentation

etc...

CMU 15-418, Spring 2014

Solution: cache!

® (Cache commonly accessed objects

Requests

Example: memcached, in memory key-value store (e.g., a big hash table)

Reduces database load (fewer queries)

Reduces web server load:
Less data shuffling between DB response and scripting environment

Store intermediate results of common processing

Perf. Monitor

Load Balancer

Web Server

Web Server

Web Server

Web Server

7
—

Memcached

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2

CMU 15-418, Spring 2014

Caching example

userid = $ SESSION[‘userid’];

check if memcache->get(userid) retrieves a valid user object

if not:
make expensive database query
add resulting object into cache with memcache->put(userid)
(so future requests involving this user can skip the query)

continue with request processing logic

m Of course, there is complexity associated with keeping caches in sync with data in
the DB in the presence of writes

- Must invalidate cache
- Very simple “first-step” solution: only cache read-only objects
- More realistic solutions provide some measure of consistency

- But we'll leave this to your distributed computing and database courses

CMU 15-418, Spring 2014

Site configuration

Requests

Perf. Monitor

Load Balancer

Web Server

Web Server

Web Server

Web Server

memcached servers
value = get(key)
put(key, value)

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2

CMU 15-418, Spring 2014

Example: Facebook memcached deployment

m Facebook, circa 2008

- 800 memcached servers
- 28 TB of cached data

m Performance
- 200,000 UDP requests per second @ 173 msec latency

- 300,000 UDP requests per second possible at
“unacceptable” latency

Source: https://www.facebook.com/note.php?note_id=39391378919
CMU 15-418, Spring 2014

https://www.facebook.com/note.php?note_id=39391378919
https://www.facebook.com/note.php?note_id=39391378919

More caching

B (Cache web server responses (e.g. entire pages, pieces of pages)
Reduce load on web servers

- Example: Varnish-Cache application “accelerator”
o © VARNISH

Requests

Perf. Monitor

Load Balancer

CACHE

Front-End Cache |-

Front-End Cache

Front-End Cache |-

Front-End Cache

- P Web Server
Web Server
- =P Web Server
Web Server

Memcached servers

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2

CMU 15-418, Spring 2014

Caching using content distribution networks (CDNs)

B Serving large media assets can be expensive to serve (high bandwidth costs, tie up
web servers)

- E.g.,images, streaming video @ .t
. o 04 I cloudfront
m Physical locality is important) //’,®
o ° Loca%iin Q
- Higher bandwidth A
- Lower latency = 7
é?ﬁgh1 ‘E!' ”!E!L"'<£§i>>
*VeT —— L ocation >
2 X%
S
e N

Location

London Content Distribution Network
Source: http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.htmi

CMU 15-418, Spring 2014

http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html
http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

Kayvon Fatahalian
February 5 via mobile %

Add a description

| @ Tag Photo @ Add Location « Edit |

Like - Comment - Unfollow Post - Share - Edit

]

and 4 others
like this.

I A h culi!

February 5 at 7:38am via mobile - Like

I C iU

o4 February 6 at 11:21pm - Like

-l Write a comment...

Facebook photo:

Page URL:
https://www.facebook.com/photo.php?fbid=10151325164543897&set=a.10150275074093897.338852.722973896&type=1&theater

Image source URL:
https://sphotos-a.xx.fbcdn.net/hphotos-prn1/522152_10151325164543897_1133820438_n.jpg

(MU 15-418, Spring 2014

CDN integration
83

Media Requests

o Memcached servers
B ""% Local CDN
- » | (Pittsburgh)
Page Requests f
E ! Lo Front-End Cache |= Web Server
: : v Perf. Monitor ,: > Datah
: ,"" Front-End Cache Web Server atanase
: : A € ‘0,
: e > ’ Front-End Cache |= P> Web Server DB Slave
. > | Load Bal -% 1
M mmmmEmEmmmmEsEEEEE .- > Oad balancer » o Master
mmmmmmmmmmmmmmmmmmmmmmsses > RN . DB Slave
: pTmTmmmmmmmmmmmomemes > s 2
E Page Requests " -> | Front-End Cache Web Server
L pytaly yiyiyitts E Local CDN
'1 — oo < (San Francisco)
--->

: * Media Requests
3 \'/\3

(MU 15-418, Spring 2014

Summary: scaling modern web sites

m Use parallelism

- Scale-out parallelism: leverage many web servers to meet throughput demand
- Elastic scale-out: cost-effectively adapt to bursty load
- Scaling databases can be tricky (replicate, shard, partition by access pattern)

- Consistency issues on writes

m Exploit locality and reuse

- (Cache everything (key-value stores)
- (ache the results of database access (reduce DB load)
- (Cache computation results (reduce web server load)
= (Cache the results of processing requests (reduce web server load)

- Localize cached data near users, especially for large media content (CDNs)

m Specialize implementations for performance
- Different forms of requests, different workload patterns

CMU 15-418, Spring 2014

Final comments

B |tis true that performance of straight-line application logic is often very poor in web-
programming languages (orders of magnitude left on the table in Ruby and PHP).

B BUT... web development is not just trivial hacking in slow scripting languages. Scaling a web
site is a very challenging parallel-systems problem that involves many of the optimization
techniques and design choices studied in this class: just at different scales

- ldentifying parallelism and dependencies

- Workload balancing: static vs. dynamic partitioning issues
- Data duplication vs. contention

- Throughput vs. latency trade-offs

- Parallelism vs. footprint trade-offs

- Identifying and exploiting reuse and locality

B Many great sites (and blogs) on the web to learn more:

- www.highscalability.com has great case studies (see “All Time Favorites” section)
- James Hamilton’s blog: http://perspectives.mvdirona.com

CMU 15-418, Spring 2014

http://www.highscalability.com
http://www.highscalability.com

Have a nice spring break!

CMU 15-418, Spring 2014

