
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2014

Lecture 14:

Scaling a Web Site
Scale-out Parallelism, Elasticity, and Caching



 CMU 15-418, Spring 2014

“Good Ol’ Fashion Nightmare”
(Matt & Kim)

Matt & Kim

Tunes

“I think it’s pretty clear what we were singing about.”
- Matt & Kim



 CMU 15-418, Spring 2014

YES.
418 exams are long.

(we did warn you)



 CMU 15-418, Spring 2014

But...



 CMU 15-418, Spring 2014

In many situations. 



 CMU 15-418, Spring 2014

THE QUESTIONS.

had answers...
that seem to indicate...

That were attempted.



 CMU 15-418, Spring 2014

that perhaps.



 CMU 15-418, Spring 2014

SOME

FUNDAMENTAL
CONCEPTS



 CMU 15-418, Spring 2014

may not be understood



 CMU 15-418, Spring 2014

may not be understood at the level

your instructor

might prefer.



 CMU 15-418, Spring 2014

AND SO



 CMU 15-418, Spring 2014

HERE



 CMU 15-418, Spring 2014

IS



 CMU 15-418, Spring 2014

THE DEAL.



 CMU 15-418, Spring 2014

The Exam 1 Deal
▪ No exam 1 solutions will be distributed at this time
▪ You have the opportunity to redo up to two questions (of your 

choosing) from the exam, on your own time.
- You may discuss the problems with your classmates and the TAs.
- You must write your solutions on your own.
- You will get 50% credit for lost points on regraded questions.
- This must be completed by April 11th

But... there’s a catch.



 CMU 15-418, Spring 2014

Exam 1 Deal: The Catch
▪ You must hand in your solution to Kayvon at office hours

▪ And you are not allowed to hand in unless you are able to 
successfully answer a series of questions I ask you

▪ The questions will a subset of the seven questions on exam 1 
(or simple follow up variants)



 CMU 15-418, Spring 2014

It’s time to start thinking about projects
▪ Timeline

- Project proposal due: April 4th
- Project checkpoint: April 18th

- Parallelism competition "nals! (project presentations): May 9th
▪ Ideas

- Pick an application, parallelize it, and analyze its performance
- Modify a parallel library or compilation tool
- Write a hardware simulator, play around with FPGAs, do real hardware design
- Free to experiment with fun new parallel platforms: FPGAs, mobile devices, Tegra devkits, 

Raspberry Pis, etc.

▪ We will be making a web page of ideas over spring break

▪ See examples from last year:
- http://15418.courses.cs.cmu.edu/spring2013/article/34



 CMU 15-418, Spring 2014

Today’s focus: the basics of scaling a web site

▪ I’m going to focus on performance issues
- Parallelism and locality

▪ Many other issues in developing a successful web platform
- Reliability, security, privacy, etc.
- There are other great courses at CMU for these topics



 CMU 15-418, Spring 2014

A simple web server for static content

while	  (1)	  
{

	  	  	  	  request	  =	  wait_for_request();

	  	  	  	  filename	  =	  parse_request(request);

	  	  	  	  contents	  =	  read_file(filename);

	  	  	  	  send	  contents	  as	  response

}

Question: is site performance a question of throughput or latency? 
(we’ll revisit this question later)



 CMU 15-418, Spring 2014

A simple parallel web server

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process N...

while	  (1)	  
{
	  	  	  	  request	  =	  wait_for_request();

	  	  	  	  filename	  =	  parse_request(request);

	  	  	  	  contents	  =	  read_file(filename);

	  	  	  	  send	  contents	  as	  response
}What factors would you consider in setting 

the value of N for a multi-core web server?

▪ Parallelism: use all the server’s cores
▪ Latency hiding: hide long-latency disk read operations (by context switching between worker processes)
▪ Concurrency: many outstanding requests, want to service quick requests while long requests are in progress

(e.g., large "le transfer shouldn’t block serving index.html)
▪ Footprint: don’t want too many threads so that aggregate working set causes thrashing



 CMU 15-418, Spring 2014

Example: Apache’s parent process dynamically 
manages size of worker pool

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

Busy servicing 
long request

Busy servicing 
long request

New request

Desirable to maintain a few idle workers in 
pool (avoid process creation in critical path of 

servicing requests)



 CMU 15-418, Spring 2014

Limit maximum number of workers to avoid 
excessive memory footprint (thrashing)

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process 3

Key parameter of Apache’s “prefork” multi-processing module:  MaxRequestWorkers

Worker
Process 4

Worker
Process 5

Busy servicing 
long request

Busy servicing 
long request

New requestBusy servicing 
request

Busy servicing 
request

Busy servicing 
request

Request queue



 CMU 15-418, Spring 2014

Aside: why partition server into processes, not threads?

▪ Protection
- Don’t want a crash in one worker to bring down the whole web server
- Often want to use non-thread safe libraries (e.g., third-party libraries) in 

server operation

▪ Parent process can periodically recycle workers
(robustness to memory leaks)

▪ Of course, multi-threaded web server solutions exist as well
(e.g., Apache’s “worker” module)



 CMU 15-418, Spring 2014

Dynamic web content

Database
(e.g., mySQL)

PHP/Ruby/Python/Node.js
interpreter

Worker Process

Web Server

Worker Process

PHP/Ruby/Python/Node.js
interpreter

...

Requests

“Response” is not a static page on disk, but the result of 
application logic running in response to a request.



 CMU 15-418, Spring 2014

Consider the amount of logic and the 
number database queries required to 
generate your Facebook News Feed. 



 CMU 15-418, Spring 2014

Scripting language performance (poor)

▪ Two popular content management systems (PHP)
- Wordpress ~ 12 requests/sec/core (DB size = 1000 posts)
- MediaWiki  ~ 8 requests/sec/core

▪ Recent interest in making making scripted code execute faster
- Facebook’s HipHop: PHP to C source-to-source converter
- Google’s V8 Javascript engine:  JIT Javascript to machine code 

[Source: Talaria Inc.]



 CMU 15-418, Spring 2014

“Scale out” to increase throughput

Database
(e.g., mySQL)

Worker Process

Web Server

Worker Process

...

Requests

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

Load Balancer

Use many web servers to meet site’s throughput goals. 

Load balancer maintains list of available web 
servers and an estimate of load on each.

Distributes requests to pool of web servers.
(Redistribution logic is cheap: one load 
balancer typically can service many web 
servers)



 CMU 15-418, Spring 2014

Load balancing with persistence

Database
(e.g., mySQL)

Worker Process

Web Server

Worker Process

...

Requests

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

Load Balancer

All requests associated with a session are directed to the same server (aka. session affinity, “sticky sessions”)

map(sessionId, serverName)

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session
State

Session
State

Session
State

1
3

4

2

Good:
- Do not have to change web-application 

design to implement scale out
Bad:
- Stateful servers can limit load balancing 

options.  Also, session is lost if server fails



 CMU 15-418, Spring 2014

Desirable: avoid persistent state in web server

Database
(e.g., mySQL)

Requests

Load Balancer

Maintain stateless servers, treat sessions as persistent data to be stored in the DB.

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session State

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...



 CMU 15-418, Spring 2014

Dealing with database contention

Database
(e.g., mySQL)

Requests

Load Balancer

Option 1: “scale up”: buy better hardware for database server, buy professional-grade DB that scales 
Good: no change to software
Bad: High cost, limit to scaling 

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...



 CMU 15-418, Spring 2014

Scaling out a database: replicate

Database
Services (writes)

Requests

Load Balancer

Replicate data and parallelize reads
(most DB accesses are reads)
Cost: extra storage, consistency 
issues Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

Slave Database
Read only

Slave Database
Read only

Adopt relaxed consistency models:  
propagate updates “eventually”



 CMU 15-418, Spring 2014

Scaling out a database: partition

Users photos
(reads and writes)

Requests

Load Balancer

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

Users A-M pro"le
(reads and writes)

Users N-Z pro"le
(reads and writes)

Clickstream data
(writes)

Can tune database for access 
characteristics of data stored
(common to use different databases: 
SQL vs. nosql)



 CMU 15-418, Spring 2014

Inter-request parallelism

Page
Request

Load Balancer

Amount of user traffic is directly correlated to response latency.

See great post:
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx

Worker Process
Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

Recommender Service

Noti"cation/
Feed Aggregator

Advertising Service

Parallelize generation of a single page



 CMU 15-418, Spring 2014

How many web servers do you need?



 CMU 15-418, Spring 2014

Web traffic is bursty
Amazon.com Page Views HuffingtonPost.com Page Views Per Week

HuffingtonPost.com Page Views Per Day

(fewer people read news on weekends)

Holiday shopping season

More examples:
- Facebook gears up for bursts of image 

uploads on Halloween and New Year’s Eve.
- Twitter topics trend after world events



 CMU 15-418, Spring 2014

15-418 Spring 2014 site traffic

Exam 1



 CMU 15-418, Spring 2014

Problem
▪ Site load is bursty

▪ Provisioning site for the average case load will result in poor 
quality of service (or failures) during peak usage
- Peak usage tends to be when users care the most... since by the de"nition the 

site is important at these times

▪ Provisioning site for the peak usage case will result in many 
idle servers most of the time
- Not cost efficient (must pay for many servers, power/cooling, datacenter space, 

etc.)



 CMU 15-418, Spring 2014

Elasticity!
▪ Main idea: site automatically adds or shuts 

down web servers based on measured load

▪ Need source of servers available on-demand
- Example: Amazon.com EC2 instances



 CMU 15-418, Spring 2014

Example: Amazon’s elastic compute cloud (EC2)
▪ Amazon had an over-provisioning problem

Amazon.com Page Views

▪ Solution: make machines available for 
rent to others in need of compute
- For those that don’t want to incur cost of, or have 

expertise to, manage own machines at scale
- For those that need elastic compute capability 



 CMU 15-418, Spring 2014

Site con"guration: normal load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

...

Perf. Monitor

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Load: moderate



 CMU 15-418, Spring 2014

Event triggers spike in load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

...

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

@justinbieber: OMG, parallel 
prog. class @ CMU is 
awesome. Look 4 my "nal 
project on hair sim. #15418

Heavily loaded servers: slow response times

Perf. Monitor
Load: high



 CMU 15-418, Spring 2014

Heavily loaded servers = slow response times
▪ If requests arrive faster than site can service them, queue lengths will grow
▪ Latency of servicing request is wait time in queue + time to actually 

process request
- Assume site has capability to process R requests per second
- Assume queue length is L
- Time in queue = L/R

Worker
Process 1

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

Busy servicing 
long request

Busy servicing 
long request

New requestBusy servicing 
request

Busy servicing 
request

Busy servicing 
request

Request queue

▪ How does site throughput change under heavy load?



 CMU 15-418, Spring 2014

Site con"guration: high load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

...

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects high load
Instantiates new web server instances
Informs load balancer about presence of new servers

Perf. Monitor
Load: moderate



 CMU 15-418, Spring 2014

Site con"guration: return to normal load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

...

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects low load 
Released extra server instances (to save operating cost)
Informs load balancer about loss of servers

Perf. Monitor
Load: too low

@justinbieber: WTF, 
parallel programming is 2 
hrd. Buy my new album.

Note convenience of stateless 
servers in elastic environment:
can kill server without loss of 
important information.



 CMU 15-418, Spring 2014

Today: many “turn-key” environment-in-a-box services 
Offer elastic computing environments for web applications

CloudWatch+Auto Scaling
Amazon Elastic Beanstalk



 CMU 15-418, Spring 2014

The story so far: parallelism
scale out, scale out, scale out

(+ elasticity to be able to scale out on demand)

Now: reuse and locality



 CMU 15-418, Spring 2014

Recall: basic site con"guration

DatabasePHP/Ruby/Python/Node.js
interpreter

Worker Process

Web Server

Requests

$query	  =	  "SELECT	  *	  FROM	  users	  WHERE	  username=‘kayvonf’;
$user	  =	  mysql_fetch_array(mysql_query($userquery));
	  	  	  	  	  	  
echo	  “<div>”	  .	  $user[‘FirstName’]	  .	  “	  “	  .	  $user[‘LastName’]	  .	  “</div>”;

Responses

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code



 CMU 15-418, Spring 2014

Work repeated every page

$query	  =	  "SELECT	  *	  FROM	  users	  WHERE	  username=‘kayvonf’;
$user	  =	  mysql_fetch_array(mysql_query($userquery));
	  	  	  	  	  	  
echo	  “<div>”	  .	  $user[‘FirstName’]	  .	  “	  “	  .	  $user[‘LastName’]	  .	  “</div>”;

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code

▪ Steps repeated to emit my name at the top of every page:
- Communicate with DB
- Perform query
- Marshall results from database into object model of scripting language
- Generate presentation
- etc...

Remember, DB can be hard to scale!



 CMU 15-418, Spring 2014

Solution: cache!

Database
(potentially multiple

machines)

Requests

Load Balancer ...

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached

▪ Cache commonly accessed objects
- Example: memcached, in memory key-value store (e.g., a big hash table)
- Reduces database load (fewer queries)
- Reduces web server load:

- Less data shuffling between DB response and scripting environment
- Store intermediate results of common processing



 CMU 15-418, Spring 2014

Caching example
userid	  =	  $_SESSION[‘userid’];

check	  if	  memcache-‐>get(userid)	  retrieves	  a	  valid	  user	  object

if	  not:
	  	  	  make	  expensive	  database	  query
	  	  	  add	  resulting	  object	  into	  cache	  with	  memcache-‐>put(userid)
	  	  	  (so	  future	  requests	  involving	  this	  user	  can	  skip	  the	  query)

continue	  with	  request	  processing	  logic

▪ Of course, there is complexity associated with keeping caches in sync with data in 
the DB in the presence of writes
- Must invalidate cache
- Very simple “"rst-step” solution: only cache read-only objects
- More realistic solutions provide some measure of consistency

- But we’ll leave this to your distributed computing and database courses



 CMU 15-418, Spring 2014

Site con"guration

Database
(potentially multiple

machines)

Requests

Load Balancer ...

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

memcached servers
value = get(key)
put(key, value)



 CMU 15-418, Spring 2014

Example: Facebook memcached deployment
▪ Facebook, circa 2008

- 800 memcached servers
- 28 TB of cached data

▪ Performance
- 200,000 UDP requests per second @ 173 msec latency 
- 300,000 UDP requests per second possible at 

“unacceptable” latency

Source: https://www.facebook.com/note.php?note_id=39391378919

https://www.facebook.com/note.php?note_id=39391378919
https://www.facebook.com/note.php?note_id=39391378919


 CMU 15-418, Spring 2014

More caching
▪ Cache web server responses (e.g. entire pages, pieces of pages)

- Reduce load on web servers
- Example: Varnish-Cache application “accelerator”

Database
(potentially multiple

machines)
Requests

Load Balancer ...

Perf. Monitor
Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache



 CMU 15-418, Spring 2014

Caching using content distribution networks (CDNs)
▪ Serving large media assets can be expensive to serve (high bandwidth costs, tie up 

web servers)
- E.g., images, streaming video

▪ Physical locality is important
- Higher bandwidth
- Lower latency

London Content Distribution Network
Source: http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html
http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html


 CMU 15-418, Spring 2014

CDN usage example

Image source URL:
https://sphotos-a.xx.fbcdn.net/hphotos-prn1/522152_10151325164543897_1133820438_n.jpg

Facebook photo:
Page URL:
https://www.facebook.com/photo.php?fbid=10151325164543897&set=a.10150275074093897.338852.722973896&type=1&theater



 CMU 15-418, Spring 2014

CDN integration

Media Requests

Database

Load Balancer ...

Perf. Monitor
Web Server

DB Slave 
1

Master

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

Web Server

Web Server

Web Server

DB Slave 
2

Local CDN
(Pittsburgh) 

Local CDN
(San Francisco) 

Page Requests

Page Requests

Media Requests



 CMU 15-418, Spring 2014

Summary: scaling modern web sites
▪ Use parallelism

- Scale-out parallelism: leverage many web servers to meet throughput demand
- Elastic scale-out: cost-effectively adapt to bursty load
- Scaling databases can be tricky (replicate, shard, partition by access pattern)

- Consistency issues on writes

▪ Exploit locality and reuse
- Cache everything (key-value stores)

- Cache the results of database access (reduce DB load)
- Cache computation results (reduce web server load)
- Cache the results of processing requests (reduce web server load)

- Localize cached data near users, especially for large media content (CDNs)

▪ Specialize implementations for performance
- Different forms of requests, different workload patterns



 CMU 15-418, Spring 2014

Final comments
▪ It is true that performance of straight-line application logic is often very poor in web-

programming languages (orders of magnitude left on the table in Ruby and PHP).  

▪ BUT... web development is not just trivial hacking in slow scripting languages. Scaling a web 
site is a very challenging parallel-systems problem that involves many of the optimization 
techniques and design choices studied in this class: just at different scales
- Identifying parallelism and dependencies
- Workload balancing: static vs. dynamic partitioning issues
- Data duplication vs. contention
- Throughput vs. latency trade-offs
- Parallelism vs. footprint trade-offs
- Identifying and exploiting reuse and locality

▪ Many great sites (and blogs) on the web to learn more:
- www.highscalability.com has great case studies (see “All Time Favorites” section)
- James Hamilton’s blog: http://perspectives.mvdirona.com

http://www.highscalability.com
http://www.highscalability.com


 CMU 15-418, Spring 2014

Have a nice spring break!


