
Ananda Gunawardena

Collision Resolution

Hashing

Big Idea in Hashing

� Let S={a1,a2,…am} be a set of objects that we need to
map into a table of size N.

� Find a function such that H:S [1…n]

� Ideally we’d like to have a 1-1 map

� But it is not easy to find one

� Also function must be easy to compute

� Also picking a prime as the table size can help to have a
better distribution of values

Collisions
� Two keys mapping to the same location in the

hash table is called “Collision”

� Collisions can be reduced with a selection of a
good hash function

� But it is not possible to avoid collisions altogether

� Unless we can find a perfect hash function

� Which is hard to do

Collision Resolving strategies

� Few Collision Resolution ideas

� Separate chaining

� Some Open addressing techniques

� Linear Probing

� Quadratic Probing

Separate Chaining

Separate Chaining

� Collisions can be resolved by creating a list of keys that
map to the same value

Separate Chaining

� Use an array of linked lists
� LinkedList[] Table;

� Table = new LinkedList(N), where N is the table size

� Define Load Factor of Table as
� λλλλ = number of keys/size of the table

(λλλλ can be more than 1)

� Still need a good hash function to distribute keys
evenly
� For search and updates

Linear Probing

Linear Probing
� The idea:

� Table remains a simple array of size N

� On insert(x), compute f(x) mod N, if the cell is full, find
another by sequentially searching for the next available
slot
� Go to f(x)+1, f(x)+2 etc..

� On find(x), compute f(x) mod N, if the cell doesn’t
match, look elsewhere.

� Linear probing function can be given by
� h(x, i) = (f(x) + i) mod N (i=1,2,….)

Figure 20.4
Linear probing
hash table after
each insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Linear Probing Example
� Consider H(key) = key Mod 6 (assume N=6)

� H(11)=5, H(10)=4, H(17)=5, H(16)=4,H(23)=5

� Draw the Hash table

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

Clustering Problem
• Clustering is a significant problem in linear probing. Why?
• Illustration of primary clustering in linear probing (b) versus no clustering
(a) and the less significant secondary clustering in quadratic probing (c).
Long lines represent occupied cells, and the load factor is 0.7.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Deleting items from a hash table

Deleting items
� How about deleting items from Hash table?

� Item in a hash table connects to others in the table(eg:
BST).

� Deleting items will affect finding the others

� “Lazy Delete” – Just mark the items as inactive rather
than removing it.

Lazy Delete
� Naïve removal can leave gaps!

Insert f
Remove e

Find f
0 a

2 b

3 c

3 e

5 d

8 j

8 u

10 g

8 s

0 a

2 b

3 c

5 d

3 f

8 j

8 u

10 g

8 s

0 a

2 b

3 c

3 e

5 d

3 f

8 j

8 u

10 g

8 s

0 a

2 b

3 c

5 d

3 f

8 j

8 u

10 g

8 s

“3 f” means search key f and hash key 3

Lazy Delete
� Clever removal

Insert f
Remove e

Find f
0 a

2 b

3 c

3 e

5 d

8 j

8 u

10 g

8 s

0 a

2 b

3 c

gone

5 d

3 f

8 j

8 u

10 g

8 s

0 a

2 b

3 c

3 e

5 d

3 f

8 j

8 u

10 g

8 s

0 a

2 b

3 c

gone

5 d

3 f

8 j

8 u

10 g

8 s

“3 f” means search key f and hash key 3

Load Factor (open addressing)

� definition: The load factor λλλλ of a probing hash
table is the fraction of the table
that is full. The load factor ranges from 0 (empty)
to 1 (completely full).

� It is better to keep the load factor under 0.7
� Double the table size and rehash if load factor gets

high
� Cost of Hash function f(x) must be minimized
� When collisions occur, linear probing can always

find an empty cell
� But clustering can be a problem

Quadratic Probing

Quadratic probing
� Another open addressing method

� Resolve collisions by examining certain cells
(1,4,9,…) away from the original probe point

� Collision policy:
� Define h0(k), h1(k), h2(k), h3(k), …

where hi(k) = (hash(k) + i2) mod size

� Caveat:
� May not find a vacant cell!

� Table must be less than half full (λ < ½)

� (Linear probing always finds a cell.)

Quadratic probing
� Another issue

� Suppose the table size is 16.

� Probe offsets that will be tried:
1 mod 16 = 1

4 mod 16 = 4

9 mod 16 = 9

16mod 16 = 0

25mod 16 = 9 only four different values!

36 mod 16 = 4

49 mod 16 = 1

64 mod 16 = 0

81mod 16 = 1

Figure 20.6
A quadratic
probing hash table
after each
insertion (note that
the table size was
poorly chosen
because it is not a
prime number).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

