Lecture 18: Wrapping up classification

Mark Hasegawa-Johnson, 3/9/2019. CC-BY 3.0: You are free to share and adapt these slides if you cite the original.
Modified by Julia Hockenmaier

Aliza Aufrichtig @alizauf • Mar 4
Garlic halved horizontally = nature's Voronoi diagram?
en.wikipedia.org/wiki/Voronoi_d.

Today's class

- Perceptron: binary and multiclass case
- Getting a distribution over class labels: one-hot output and softmax
- Differentiable perceptrons: binary and multiclass case
- Cross-entropy loss

Recap: Classification, linear classifiers

Classification as a supervised learning task

- Classification tasks: Label data points $\mathbf{x} \in \mathcal{X}$ from an n-dimensional vector space with discrete categories (classes) y $\in \mathcal{Y}$
Binary classification: Two possible labels $\boldsymbol{y}=\{0,1\}$ or $\boldsymbol{y}=\{-1,+1\}$
Multiclass classification: k possible labels $\mathrm{X}=\{1,2, \ldots, k\}$
- Classifier: a function $\boldsymbol{X} \rightarrow \boldsymbol{y} f(\mathbf{x})=\mathrm{y}$
- Linear classifiers $f(\mathbf{x})=\operatorname{sgn}(\mathbf{w x})$ [for binary classification] are parametrized by ($n+1$)-dimensional weight vectors
- Supervised learning: Learn the parameters of the classifier (e.g. w) from a labeled data set $\mathcal{D}^{\text {train }}=\left\{\left(\mathbf{x}^{1}, y^{1}\right), \ldots,\left(\mathbf{x}^{\mathrm{D}}, \mathrm{y}^{\mathrm{D}}\right)\right\}$

Batch versus online training

Batch learning: The learner sees the complete training data, and only changes its hypothesis when it has seen the entire training data set.
Online training: The learner sees the training data one example at a time, and can change its hypothesis with every new example
Compromise: Minibatch learning (commonly used in practice) The learner sees small sets of training examples at a time, and changes its hypothesis with every such minibatch of examples
For minibatch and online example: randomize the order of examples for each epoch (=complete run through all training examples)

Linear classifiers: $f(x)=w_{0}+w x$

Linear classifiers are defined over vector spaces
Every hypothesis $f(\mathbf{x})$ is a hyperplane:

$$
f(\mathbf{x})=w_{0}+w x
$$

$f(x)$ is also called the decision boundary
Assign $\hat{y}=+1$ to all \mathbf{x} where $f(\mathbf{x})>0$
Assign $\hat{y}=-1$ to all \mathbf{x} where $f(\mathbf{x})<0$

$$
\hat{y}=\operatorname{sgn}(f(x))
$$

$y \cdot f(x)>0$: Correct classification

(\mathbf{x}, y) is correctly classified by $f(x)=\hat{y}$ if and only if $y \cdot f(x)>0$:
Case 1 correct classification of a positive example ($y=+1=\hat{y}$): predicted $\mathrm{f}(\mathbf{x})>0 \Rightarrow \mathrm{y} \cdot \mathrm{f}(\mathbf{x})>0$
Case 2 correct classification of a negative example(y =-1 = ŷ): predicted $\mathrm{f}(\mathbf{x})<0 \Rightarrow \mathrm{y} \cdot \mathrm{f}(\mathrm{x})>0$
Case 3 incorrect classification of a positive example ($y=+1 \neq \hat{y}=-1$): predicted $f(x)>0 \Rightarrow y \cdot f(x)<0$
Case 4 incorrect classification of a negative example $(y=-1 \neq \hat{y}=+1)$: predicted $\mathrm{f}(\mathbf{x})<0 \Rightarrow \mathrm{y} \cdot \mathrm{f}(\mathbf{x})<0$

Perceptron

Perceptron

For each training instance $\overrightarrow{\boldsymbol{x}}$ with correct label $y \in\{-1,1\}$:

- Classify with current weights: $y^{\prime}=\operatorname{sgn}\left(\vec{w}^{T} \vec{x}\right)$
- Predicted labels $y^{\prime} \in\{-1,1\}$.
- Update weights:
- if $y=y^{\prime}$ then do nothing
- if $y \neq y^{\prime}$ then $\vec{w}=\vec{w}+\eta$ y \vec{x}
- η (eta) is a "learning rate."

Learning rate η : determines how much \mathbf{w} changes.
Common wisdom: η should get smaller (decay) as we see more examples.

The Perceptron rule

If target $\mathbf{y}=+\mathbf{1}: \mathbf{x}$ should be above the decision boundary
Lower the decision boundary's slope: $\mathbf{w}^{i+1}:=\mathbf{w}^{i}+\mathbf{x}$

If target $\mathbf{y}=\mathbf{- 1}: \mathbf{x}$ should be below the decision boundary
Raise the decision boundary's slope: $\mathbf{w}^{\mathbf{i + 1}}:=\mathbf{w}^{\mathbf{i}}-\mathbf{x}$

Perceptron: Proof of Convergence

If the data are linearly separable (if there exists a \vec{w} vector such that the true label is given by $\left.y^{\prime}=\operatorname{sgn}\left(\vec{w}^{T} \vec{x}\right)\right)$, then the perceptron algorithm is guaranteed to converge, even with a constant learning rate, even $\eta=1$.

Training a perceptron is often the fastest way to find out if the data are linearly separable. If \vec{w} converges, then the data are separable; if \vec{w} cycles, then no.
If the data are not linearly separable, then perceptron converges (trivially) iff the learning rate decreases, e.g., $n=1 / n$ for the n 'th training sample.

Multi-class classification

(Ab)using binary classifiers for multiclass classification

- One vs. all scheme: K classifiers, one for each of the K classes Pick the class with the largest score.
- All vs. all scheme:
$K(K-1)$ classifiers for each pair of classes Pick the class with the largest \#votes.
- For both schemes, the classifiers are trained independently.

Multiclass classifier

- A single K-class discriminant function, consisting of K linear functions of the form

$$
\mathrm{f}_{k}(\mathbf{x})=\mathbf{w}_{k} \mathbf{x}+\mathbf{w}_{k 0}
$$

- Assign class k if $f_{k}(\mathbf{x})>\mathrm{f}_{j}(\mathbf{x})$ for all $j \neq k$
- I.e.: Assign class $k^{*}=\operatorname{argmax}_{k}\left(\mathbf{w}_{k} \mathbf{x}+\mathrm{w}_{k 0}\right)$
- We can combine the K different weight vectors into a single vector \mathbf{w} :
- $\mathbf{w}=\left(\mathbf{w}_{1} \ldots \mathbf{w}_{k} \ldots \mathbf{w}_{k}\right)$

NB: Why w can be treated as a single vector

Your classifier could map the n-dimensional feature vectors $\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ to (sparse) $\mathbf{K} \times n$-dimensional vectors $\mathrm{F}(\mathrm{y}, \mathrm{x})$ in which each class corresponds to n dimensions:

$$
\begin{aligned}
& Y=\{1 \ldots K\}, X=R^{n} \quad F: X \times Y \rightarrow R^{K n} \\
& F(1, x)=\left[x_{1}, \ldots, x_{n}, \ldots, \quad 0, \ldots, 0\right] \\
& F(i, x)=\left[0, \ldots, 0, x_{1}, \ldots, x_{n}, 0, \ldots, 0\right] \\
& F(K, x)=\left[0, \ldots, 0, \ldots, \quad x_{1}, \ldots, x_{n}\right]
\end{aligned}
$$

Now $\mathbf{w}=\left[\mathbf{w}_{1} ; \ldots ; \mathbf{w}_{k}\right]$, and $\mathbf{w} F(y, \mathbf{x})=\mathbf{w}_{\mathbf{y}} \mathbf{x}$

Multiclass classification

Learning a multiclass classifier:
Find \mathbf{w} such that for all training items ($\mathbf{x}, \mathrm{y}_{\mathrm{i}}$)

$$
y_{i}=\operatorname{argmax}_{y} \mathbf{w F}(y, \mathbf{x})
$$

Equivalently, for all ($\mathbf{x}, \mathrm{y}_{\mathrm{i}}$) and all $\mathrm{k} \neq \mathrm{i}$:

$$
\mathbf{w} F\left(y_{i}, \mathbf{x}\right)>\mathbf{w} F\left(y_{k}, \mathbf{x}\right)
$$

Linear multiclass classifier decision boundaries

Decision boundary between C_{k} and C_{j} :

The set of points where $f_{k}(\mathbf{x})=f_{j}(\mathbf{x})$.

$$
f_{k}(\mathbf{x})=f_{j}(\mathbf{x})
$$

Spelling out $f(\mathbf{x})$:

$$
\mathbf{w}_{k} \mathbf{x}+\mathbf{w}_{k 0}=\mathbf{w}_{j} \mathbf{x}+\mathbf{w}_{j 0}
$$

Reordering the terms:

$$
\left(\mathbf{w}_{k}-\mathbf{w}_{j}\right) \mathbf{x}+\left(\mathbf{w}_{k 0}-w_{j 0}\right)=0
$$

Multi-class Perceptrons

Multi-class perceptrons

- One-vs-others framework:

We keep one weight vector \mathbf{w}_{c} for each class c

- Decision rule: $\mathrm{y}=\operatorname{argmax}{ }_{c} \mathbf{w}_{\mathrm{c}} \cdot \mathbf{x}$
- Update rule: suppose example from class c gets misclassified as c'
- Update for \mathbf{c} [the class we should have assigned]: $\mathbf{w}_{\mathrm{c}} \leftarrow \mathbf{w}_{\mathrm{c}}+\eta \mathbf{x}$
- Update for \mathbf{c}^{\prime} [the class we mistakenly assigned]: $\mathbf{w}_{\mathbf{c}^{\prime}} \leftarrow \mathbf{w}_{\mathrm{c}^{\prime}}-\eta \mathbf{n}$
- Update for all classes other than \mathbf{c} and c^{\prime} : n o change

One-Hot vectors as target representation

One-hot vectors:

Instead of representing labels as k categories $\{1,2, \ldots, \mathrm{k}\}$, represent each label as a \mathbf{k}-dimensional vector where one element is 1 , and all other elements are 0 :

$$
\text { class } 1 \text { => }[1,0,0, \ldots, 0] \quad \text { class } 2=>[0,1,0, \ldots ., 0] \ldots \text { class } k=>[0,0,0, \ldots, 1]
$$

Each example (in the data) is now a vector $\vec{y}_{\mathrm{i}}=\left[y_{i 1}, \ldots . y_{\mathrm{ij}}, . ., y_{\mathrm{y}_{\mathrm{ik}}}\right]$ where

$$
y_{i j}= \begin{cases}1 & \mathrm{ith}^{\text {th }} \text { example is from class } \mathrm{j} \\ 0 & \mathrm{ith}^{\text {th }} \text { example is NOT from class } \mathrm{j}\end{cases}
$$

Example: if the first example is from class 2, then $\vec{y}_{1}=[0,1,0]$

From one-hot vectors to probabilities

Note that we can interpret \vec{y} as a probability over class labels:
For the correct label of $\mathrm{x}_{\mathbf{i}}: y_{i j}=$ True value of $P\left(\right.$ class $\left.j \mid \vec{x}_{i}\right)$, because the true probability is always either 1 or 0 !

Can we define a classifier such that our hypotheses form a distribution?
i.e. $\hat{y}_{i j}=$ Estimated value of $P\left(\right.$ class $\left.j \mid \vec{x}_{i}\right), \quad 0 \leq \hat{y}_{j} \leq 1, \quad \sum_{j=1}^{c} \hat{y}_{j}=1$

Note that the perceptron defines a real vector $\left[\mathbf{w}_{1} \mathbf{x}_{\mathbf{i}}, \ldots ., \mathbf{w}_{\mathrm{k}} \mathbf{x}_{\mathrm{i}}\right] \in \mathrm{R}^{\mathrm{k}}$
We want to turn $\mathbf{w}_{j} \mathbf{x}_{i}$ into a probability P (class $\mid \mathbf{x}_{i}$) that is large when $\mathbf{w}_{j} \mathbf{x}$ is large.
Trick: exponentiate and renormalize! This is called the softmax function:

$$
\hat{y}_{i j}=\underset{j}{\operatorname{softmax}}\left(\vec{w}_{\ell} \cdot \vec{x}_{i}\right)=\frac{e^{\vec{w}_{j} \cdot \vec{x}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{x}_{i}}}
$$

Added benefit: this is a differentiable function, unlike argmax

Softmax defines a distribution

The softmax function is defined as:

$$
\hat{y}_{i j}=\underset{j}{\operatorname{softmax}}\left(\vec{w}_{\ell} \cdot \vec{x}_{i}\right)=\frac{e^{\overrightarrow{w_{j}} \cdot \vec{x}_{i}}}{\sum_{\ell=1}^{c} e^{\overrightarrow{w_{f}} \cdot \vec{x}_{i}}}
$$

Notice that this gives us

$$
0 \leq \hat{y}_{i j} \leq 1, \quad \sum_{j=1}^{c} \hat{y}_{i j}=1
$$

Therefore we can interpret $\hat{y}_{i j}$ as an estimate of $P\left(\right.$ class $\left.j \mid \vec{x}_{i}\right)$.

Differentiable Perceptrons (Binary case)

Differentiable Perceptron

- Also known as a "one-layer feedforward neural network," also known as "logistic regression." Has been re-invented many times by many different people.
- Basic idea: replace the non-differentiable decision function

$$
y^{\prime}=\operatorname{sign}\left(\vec{w}^{T} \vec{x}\right)
$$

with a differentiable decision function

$$
y^{\prime}=\tanh \left(\vec{w}^{T} \vec{x}\right)
$$

Differentiable Perceptron

- Suppose we have n training vectors, \vec{x}_{1} through \vec{x}_{n}. Each one has an associated label $y_{i} \in\{-1,1\}$. Then we replace the true loss function,

$$
L\left(y_{1}, \ldots, y_{n}, \vec{x}_{1}, \ldots, \vec{x}_{n}\right)=\sum_{i=1}^{n}\left(y_{i}-\operatorname{sign}\left(\vec{w}^{T} \vec{x}_{i}\right)\right)^{2}
$$

with a differentiable error

$$
L\left(y_{1}, \ldots, y_{n}, \vec{x}_{1}, \ldots, \vec{x}_{n}\right)=\sum_{i=1}^{n}\left(y_{i}-\tanh \left(\vec{w}^{T} \vec{x}_{i}\right)\right)^{2}
$$

Why Differentiable?

- Why do we want a differentiable loss function?

$$
L\left(y_{1}, \ldots, y_{n}, \vec{x}_{1}, \ldots, \vec{x}_{n}\right)=\sum_{i=1}^{n}\left(y_{i}-\tanh \left(\vec{w}^{T} \vec{x}_{i}\right)\right)^{2}
$$

- Answer: because if we want to improve it, we can adjust the weight vector in order to reduce the error:

$$
\vec{w}=\vec{w}-\eta \nabla_{\vec{w}} L
$$

- This is called "gradient descent." We move \vec{w} "downhill," i.e., in the direction that reduces the value of the loss L .

Differential Perceptron

The weights get updated according

Differentiable Perceptrons (Multi-class case)

Differentiable Multi-class perceptrons

Same idea works for multi-class perceptrons. We replace the nondifferentiable decision rule $\mathrm{c}=\operatorname{argmax}_{\mathrm{c}} \mathbf{w}_{c} \cdot \mathbf{x}$ with the differentiable decision rule $\mathrm{c}=\operatorname{softmax}_{\mathrm{c}} \mathbf{w}_{c} \cdot \mathbf{x}$, where the softmax function is defined as

Softmax:

$$
p(c \mid \vec{x})=\frac{e^{\vec{w}_{c} \cdot \vec{x}}}{\sum_{k=1}^{\# \text { classes }} e^{\vec{w}_{k} \cdot \vec{x}}}
$$

Differentiable Multi-Class Perceptron

- Then we can define the loss to be:

$$
L\left(y_{1}, \ldots, y_{n}, \vec{x}_{1}, \ldots, \vec{x}_{n}\right)=-\sum_{i=1}^{n} \ln p\left(c=y_{i} \mid \vec{x}_{i}\right)
$$

- And because the probability term on the inside is differentiable, we can reduce the loss using gradient descent:

$$
\vec{w}=\vec{w}-\eta \nabla_{\vec{w}} L
$$

Gradient descent on softmax

$\hat{y}_{i j}$ is the probability of the $j^{\text {th }}$ class for the $i^{\text {th }}$ training example:

$$
\hat{y}_{i j}=\underset{j}{\operatorname{softmax}}\left(\vec{w}_{\ell} \cdot \vec{x}_{i}\right)=\frac{e^{\vec{w}_{j} \cdot \vec{x}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{x}_{i}}}
$$

Computing the gradient of the loss involves the following term (for all items i, all classes j and m, and all input features k):

$$
\frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(\hat{y}_{i j}-\hat{y}_{i j}{ }^{2}\right) x_{i k} & m=j \\
-\hat{y}_{i j} \hat{y}_{i m} x_{i k} & m \neq j
\end{array}\right.
$$

$w_{m k}$ is the weight that connects the $k^{\text {th }}$ input feature to the $m^{\text {th }}$ class label $x_{i k}$ is the value of the $k^{\text {th }}$ input feature for the $i^{\text {th }}$ training token
$\hat{y}_{i m}$ is the probability of the $m^{\text {th }}$ class for the $i^{\text {th }}$ training token
The dependence of $\hat{y}_{i j}$ on $w_{m k}$ for $m \neq j$ is weird, and people who are learning this for the first time often forget about it. It comes from the denominator of the softmax.

Cross entropy loss

Training a Softmax Neural Network

All of that differentiation is useful because we want to train the neural network to represent a training database as well as possible. If we can define the training error to be some function L, then we want to update the weights according to

$$
w_{m k}=w_{m k}-\eta \frac{\partial L}{\partial w_{m k}}
$$

So what is L ?

Training: Maximize the probability of the training data Remember, the whole point of that denominator in the softmax function is that it allows us to use softmax as

$$
\hat{y}_{i j}=\text { Estimated value of } P\left(\text { class } j \mid \vec{x}_{i}\right)
$$

Suppose we decide to estimate the network weights $w_{m k}$ in order to maximize the probability of the
 training database, in the sense of
$w_{m k}$
$=\operatorname{argmax} P$ (training labels \mid training feature vectors)

Training: Maximize the probability of the training data Remember, the whole point of that denominator in the softmax function is that it allows us to use softmax as

$$
\hat{y}_{i j}=\text { Estimated value of } P\left(\text { class } j \mid \vec{x}_{i}\right)
$$

If we assume the training tokens are independent, this is:

$$
=\underset{w}{w_{m k}} \operatorname{argmax} \prod_{i=1}^{n} P\left(\text { reference label of the } i^{t h} \text { token } \mid i^{\text {th }} \text { feature vector }\right)
$$

Training: Maximize the probability of the training data Remember, the whole point of that denominator in the softmax function is that it allows us to use softmax as

$$
\hat{y}_{i j}=\text { Estimated value of } P\left(\text { class } j \mid \vec{x}_{i}\right)
$$

OK. We need to create some notation to mean "the reference label for the $i^{\text {th }}$ token." Let's call it
 $j(i)$.

$$
w_{m k}=\underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} P(\operatorname{class} j(i) \mid \vec{f})
$$

Training: Maximize the probability of the training data
Wow, Cool!! So we can maximize the probability of the training data by just picking the softmax output corresponding to the correct class $j(i)$, for each token, and then multiplying them all together:

$$
w_{m k}=\underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} \hat{y}_{i, j(i)}
$$

So, hey, let's take the logarithm, to get rid of that nasty product operation.

$$
w_{m k}=\underset{w}{\operatorname{argmax}} \sum_{i=1}^{n} \ln \hat{y}_{i, j(i)}
$$

Training: Minimizing the negative log probability

So, to maximize the probability of the training data given the model, we need:

$$
w_{m k}=\underset{w}{\operatorname{argmax}} \sum_{i=1}^{n} \ln \hat{y}_{i, j(i)}
$$

If we just multiply by (-1), that will turn the max into a min. It's kind of a stupid thing to do---who cares whether you're minimizing L or maximizing - L, same thing, right? But it's standard, so what
 the heck.

$$
\begin{aligned}
& w_{m k}=\underset{w}{\operatorname{argmin}} L \\
& L=\sum_{i=1}^{n}-\ln \hat{y}_{i, j(i)}
\end{aligned}
$$

Training: Minimizing the negative log probability

Softmax neural networks are almost always trained in order to minimize the negative log probability of the training data:

$$
\begin{aligned}
& w_{m k}=\underset{w}{\operatorname{argmin}} L \\
& L=\sum_{i=1}^{n}-\ln \hat{y}_{i, j(i)}
\end{aligned}
$$

This loss function, defined above, is called the
 cross-entropy loss. The reasons for that name are very cool, and very far beyond the scope of this course. Take CS 446 (Machine Learning) and/or ECE 563 (Information Theory) to learn more.

Differentiating the cross-entropy

$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}\left(\hat{y}_{i m}-y_{i m}\right) x_{i k}
$$

Interpretation:
Increasing $w_{m k}$ will make the error worse if

- $\hat{y}_{i m}$ is already too large, and $x_{i k}$ is positive

- $\hat{y}_{i m}$ is already too small, and $x_{i k}$ is negative

Putting it all together

Summary: Training Algorithms You Know

1. Naïve Bayes with Laplace Smoothing:

$$
P\left(x_{k}=a \mid \text { class } j\right)=\frac{\text { \#tokens of class } \left.j \text { with } x_{k}=a\right)+1}{(\# \text { tokens of class } j)+\left(\# \text { possible values of } x_{k}\right)}
$$

2. Multi-Class Perceptron: If example \vec{x}_{i} of class j is misclassified as class m , then

$$
\begin{aligned}
\vec{w}_{j} & =\vec{w}_{j}+\eta \vec{x}_{i} \\
\vec{w}_{m} & =\vec{w}_{m}-\eta \vec{x}_{i}
\end{aligned}
$$

3. Softmax Neural Net: for all weight vectors (correct or incorrect),

$$
\begin{aligned}
& \vec{w}_{m}=\vec{w}_{m}-\eta \nabla_{\vec{w}_{m}} L \\
&=\vec{w}_{m}-\eta\left(\hat{y}_{i m}-y_{i m}\right) \vec{x}_{i}
\end{aligned}
$$

Summary: Perceptron versus Softmax

Softmax Neural Net: for all weight vectors (correct or incorrect),

$$
\vec{w}_{m}=\vec{w}_{m}-\eta\left(\hat{y}_{i m}-y_{i m}\right) \vec{x}_{i}
$$

Notice that, if the network were adjusted so that

$$
\hat{y}_{i m}=\left\{\begin{array}{lc}
1 & \text { network thinks the correct class is } m \\
0 & \text { otherwise }
\end{array}\right.
$$

Then we'd have

$$
\left(\hat{y}_{i m}-y_{i m}\right)=\left\{\begin{array}{cc}
-2 & \text { correct class is } m, \text { but network is wrong } \\
2 & \text { network guesses } m, \text { but it's wrong } \\
0 & \text { otherwise }
\end{array}\right.
$$

Summary: Perceptron versus Softmax

Softmax Neural Net: for all weight vectors (correct or incorrect),

$$
\vec{w}_{m}=\vec{w}_{m}-\eta\left(\hat{y}_{i m}-y_{i m}\right) \vec{x}_{i}
$$

Notice that, if the network were adjusted so that

$$
\hat{y}_{i m}=\left\{\begin{array}{lc}
1 & \text { network thinks the correct class is } m \\
0 & \text { otherwise }
\end{array}\right.
$$

Then we get the perceptron update rule back again (multiplied by 2 , which doesn't matter):

$$
\vec{w}_{m}=\left\{\begin{array}{cc}
\vec{w}_{m}+2 \eta \vec{x}_{i} & \text { correct class is } m, \text { but network is wrong } \\
\vec{w}_{m}-2 \eta \vec{x}_{i} & \text { network guesses } m, \text { but it's wrong } \\
\vec{w}_{m} & \text { otherwise }
\end{array}\right.
$$

Summary: Perceptron versus Softmax

So the key difference between perceptron and softmax is that, for a perceptron,

$$
\hat{y}_{i j}=\left\{\begin{array}{lc}
1 & \text { network thinks the correct class is } j \\
0 & \text { otherwise }
\end{array}\right.
$$

Whereas, for a softmax,

$$
0 \leq \hat{y}_{i j} \leq 1, \quad \sum_{j=1}^{c} \hat{y}_{i j}=1
$$

Summary: Perceptron versus Softmax

...or, to put it another way, for a perceptron,

$$
\hat{y}_{i j}=\left\{\begin{array}{cc}
1 & \text { if } j=\underset{1 \leq \ell \leq c}{\operatorname{argmax}} \vec{w}_{\ell} \cdot \vec{x}_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

Whereas, for a softmax network,

$$
\hat{y}_{i j}=\underset{j}{\operatorname{softmax}}\left(\vec{w}_{\ell} \cdot \vec{x}_{i}\right)
$$

Appendix: How to differentiate the softmax

How to differentiate the softmax: 3 steps

Unlike argmax, the softmax function is differentiable. All we need is the chain rule, plus three rules from calculus:

1. $\frac{\partial}{\partial w}\left(\frac{a}{b}\right)=\left(\frac{1}{b}\right) \frac{\partial a}{\partial w}-\left(\frac{a}{b^{2}}\right) \frac{\partial b}{\partial w}$
2. $\frac{\partial}{\partial w}\left(e^{a}\right)=\left(e^{a}\right) \frac{\partial a}{\partial w}$
3. $\frac{\partial}{\partial w}(w f)=f$

How to differentiate the softmax: step 1

First, we use the rule for $\frac{\partial}{\partial w}\left(\frac{a}{b}\right)=\left(\frac{1}{b}\right) \frac{\partial a}{\partial w}-\left(\frac{a}{b^{2}}\right) \frac{\partial b}{\partial w}$:

$$
\hat{y}_{i j}=\underset{j}{\operatorname{softmax}}\left(\vec{w}_{\ell} \cdot \vec{f}_{i}\right)=\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}
$$

$\frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left(\frac{1}{\sum_{\ell=1}^{c} e^{\vec{w}_{e} \cdot \vec{f}_{i}}}\right)\left(\frac{\partial e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\partial w_{m k}}\right)-\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{l} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{m k}}\right)$
$=\left\{\begin{array}{cc}\left(\frac{1}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}\right)\left(\frac{\partial e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\partial w_{m k}}\right)-\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{m k}}\right) & m=j \\ -\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{m k}}\right) & m \neq j\end{array}\right.$

How to differentiate the softmax: step 2

Next, we use the rule $\frac{\partial}{\partial w}\left(e^{a}\right)=\left(e^{a}\right) \frac{\partial a}{\partial w}$:

$$
\begin{aligned}
& \frac{\partial \hat{y}_{i j}}{\partial w_{m k}}= \\
& \left\{\left(\frac{1}{\sum_{\ell=1}^{c} e^{\vec{w}_{f} \cdot \overrightarrow{f_{i}}}}\right)\left(\frac{\partial e^{\overrightarrow{w_{j}} \cdot \vec{f}_{i}}}{\partial w_{m k}}\right)-\left(\frac{e^{\vec{w}_{j} \cdot \overrightarrow{f_{i}}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\overrightarrow{w_{f}} \cdot \overrightarrow{f_{i}}}\right)}{\partial w_{m k}}\right) \quad m=j\right. \\
& -\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{m k}}\right) \\
& =\left\{\begin{array}{cc}
\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\overrightarrow{w_{k}} \cdot \overrightarrow{f_{i}}}}-\frac{\left(e^{\vec{w}_{j} \cdot \vec{f}_{i}}\right)^{2}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\vec{w}_{m} \cdot \vec{f}_{i}\right)}{\partial w_{m k}}\right) & m=j \\
\left(-\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}} e^{\vec{w}_{m} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{f} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\vec{w}_{m} \cdot \vec{f}_{i}\right)}{\partial w_{m k}}\right) & m \neq j
\end{array}\right. \\
& m \neq j
\end{aligned}
$$

How to differentiate the softmax: step 3

Next, we use the rule $\frac{\partial}{\partial w}(w f)=f$:

$$
\begin{aligned}
& \frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}-\frac{\left(e^{\vec{w}_{j} \cdot \vec{f}_{i}}\right)^{2}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\vec{w}_{m} \cdot \vec{f}_{i}\right)}{\partial w_{m k}}\right) & m=j \\
\left(-\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}} e^{\vec{w}_{m} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{i} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\vec{w}_{m} \cdot \vec{f}_{i}\right)}{\partial w_{m k}}\right) & m \neq j
\end{array}\right.
\end{aligned}
$$

Differentiating the softmax

... and, simplify.

$$
\begin{gathered}
\frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left\{\begin{array}{ll}
\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}-\frac{\left(e^{\vec{w}_{j}} \cdot \vec{f}_{i}\right.}{}\right)^{2} \\
\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}
\end{array}\right) f_{i k} \quad m=j \\
\left(-\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}} e^{\vec{w}_{m} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right) f_{i k} \\
\frac{\partial \neq j}{} \\
\frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(\hat{y}_{i j}-\hat{y}_{i j}^{2}\right) f_{i k} & m=j \\
-\hat{y}_{i j} \hat{y}_{i m} f_{i k} & m \neq j
\end{array}\right.
\end{gathered}
$$

Recap: how to differentiate the softmax

- $\hat{y}_{i j}$ is the probability of the $j^{\text {th }}$ class, estimated by the neural net, in response to the $i^{\text {th }}$ training token
- $w_{m k}$ is the network weight that connects the $k^{\text {th }}$ input feature to the $m^{\text {th }}$ class label
The dependence of $\hat{y}_{i j}$ on $w_{m k}$ for $m \neq j$ is weird, and people who are learning this for the first time often forget about it. It comes from the denominator of the softmax.

$$
\begin{gathered}
\hat{y}_{i j}=\operatorname{softmax}\left(\vec{w}_{\ell} \cdot \vec{f}_{i}\right)=\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}} \\
\frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(\hat{y}_{i j}-\hat{y}_{i j}^{2}\right) f_{i k} & m=j \\
-\hat{y}_{i j} \hat{y}_{i m} f_{i k} & m \neq j
\end{array}\right.
\end{gathered}
$$

- $\hat{y}_{i m}$ is the probability of the $m^{\text {th }}$ class for the $i^{\text {th }}$ training token
- $f_{i k}$ is the value of the $k^{\text {th }}$ input feature for the $i^{\text {th }}$ training token

Appendix: How to differentiate the cross-entropy loss

Differentiating the cross-entropy

The cross-entropy loss function is:

$$
L=\sum_{i=1}^{n}-\ln \hat{y}_{i, j(i)}
$$

Let's try to differentiate it:

$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

Differentiating the cross-entropy

The cross-entropy loss function is:

$$
L=\sum_{i=1}^{n}-\ln \hat{y}_{i, j(i)}
$$

Let's try to differentiate it:

$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

...and then...

$$
\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(1-\hat{y}_{i m}\right) f_{i k} & m=j(i) \\
-\hat{y}_{i m} f_{i k} & m \neq j(i)
\end{array}\right.
$$

Differentiating the cross-entropy

 Let's try to differentiate it:$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

...and then...

$$
\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(1-\hat{y}_{i m}\right) f_{i k} & m=j(i) \\
-\hat{y}_{i m} f_{i k} & m \neq j(i)
\end{array}\right.
$$

... but remember our reference labels:

$$
y_{i j}=\left\{\begin{array}{lc}
1 & \mathrm{i}^{\text {th }} \text { example is from class } \mathrm{j} \\
0 & \mathrm{i}^{\mathrm{th}} \text { example is NOT from class } \mathrm{j}
\end{array}\right.
$$

Differentiating the cross-entropy

 Let's try to differentiate it:$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

...and then...

$$
\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}= \begin{cases}\left(y_{i m}-\hat{y}_{i m}\right) f_{i k} & m=j(i) \\ \left(y_{i m}-\hat{y}_{i m}\right) f_{i k} & m \neq j(i)\end{cases}
$$

... but remember our reference labels:

$$
y_{i j}=\left\{\begin{array}{lc}
1 & \mathrm{ith}^{\text {th }} \text { example is from class } \mathrm{j} \\
0 & \mathrm{ith}^{\text {h }} \text { example is NOT from class } \mathrm{j}
\end{array}\right.
$$

Differentiating the cross-entropy

Let's try to differentiate it:

$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

$$
\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}=\left(y_{i m}-\hat{y}_{i m}\right) f_{i k}
$$

Differentiating the cross-entropy

Let's try to differentiate it:

$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}\left(\hat{y}_{i m}-y_{i m}\right) f_{i k}
$$

Differentiating the cross-entropy

 Let's try to differentiate it:$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}\left(\hat{y}_{i m}-y_{i m}\right) f_{i k}
$$

Interpretation:
Our goal is to make the error as small as possible. So if

- $\hat{y}_{i m}$ is already too large, then we want to make
 $w_{m k} f_{i k}$ smaller
- $\hat{y}_{i m}$ is already too small, then we want to make $w_{m k} f_{i k}$ larger

$$
w_{m k}=w_{m k}-\eta \frac{\partial L}{\partial w_{m k}}
$$

