Lecture 19 Introduction to ANOVA

STAT 512 Spring 2011

Background Reading

KNNL: 15.1-15.3, 16.1-16.2

Topic Overview

- Categorical Variables
- Analysis of Variance
- Lots of Terminology
- An ANOVA example

Categorical Variables

• To this point, with the exception of the last lecture, all explanatory variables have been quantitative; e.g. comparing X = 3 to X = 5 makes sense numerically

• For *categorical* or *qualitative* variables there is no 'numerical' labeling; or if there is, it isn't meaningful.

Example

• Five medical treatments – ten subjects on each treatment.

- Goal: Compare the treatments in terms of their effectiveness
 - If there were two treatments, what would we use?

ANOVA

• ANOVA = Analysis of Variance

• Compare means among treatment groups, without assuming any parametric relationships (regression does assume such a relationship).

• Example: Price vs. Sales Volume

Regression Model

ANOVA Model

KEY DIFFERENCE: No assumption is made about the manner in which Price and Sales Volume are related.

Similarities to Regression

Assumptions on errors identical as to regression

• We assume each population is normal and the variances are identical. We also assume independence.

• Can get "predicted values" for each group, as well as CI's.

Differences

• No specific relationship is assumed.

• Goal becomes: look for differences among the groups.

Terminology

- We may refer to any qualitative predictor variable as a *factor*.
- Each factor has a certain number of *levels*.
- Experimental factors are "set" or "assigned" to the experimental units; observational factors are characteristics of the experimental units that cannot be assigned.

Terminology (2)

- Factors are *qualitative* if they represent traits that could not be placed in some logical numerical order.
 - GENDER, BRAND, DRUG
- Factors are *quantitative* if levels are described by numerical quantities on an equal interval scale.
 - AGE, TEMPERATURE

Terminology (3)

- A *Treatment* is a specific experimental condition (determined by factors and levels of each factor).
- The *Experimental Unit* (Basic Unit of Study) is the smallest unit to which a treatment can be assigned.
- A design is called *balanced* if each treatment is replicated the same number of times (i.e. same number of EU's per treatment).

Examples

Five medications – each used for 10 subjects

- Medication is an experimental factor; EU is the subject (person) receiving the medication.
- There are five treatments, which may or may not have any logical "ordering"
- Design is balanced (generally) since we are able to assign the treatments.

Ten age groups – 50 subjects

• Age is an observational, quantitative factor; subject is again the EU; Design is probably not balanced

Examples (2)

Blood Type

- Observational factor
- Qualitative factor
- Again design probably not balanced

Brand of Product

- Observational, qualitative factor
- Design likely balanced by arrangement

Multiple Factors

- With two or more factors, each combination of levels is generally called a *treatment* combination
- Can treat as single variable if desired
- Example: Blood Type * Medication
 - 4 blood types
 - 5 medications
 - 20 treatment combinations

Crossed Factors

- Two factors are *crossed* if all factor combinations are represented.
- Example: Blood Type * Medication

	1	2	3	4	5
A	XX	XX	XX	XX	XX
В	XX	XX	XX	XX	XX
AB	XX	XX	XX	XX	XX
О	XX	XX	XX	XX	XX

Note: This type of table is called a *design* chart.

Nested Factors

- One factor has levels that are unique to a given level of another factor
- Example: Plant * Operator

Plant #1	Plant #2	Plant #3
Op #1	Op #4	Op #7
Op #2	Op #5	Op #8
Op #3	Op #6	Op #9

• We say: Operators are nested within manufacturing plants.

Control Groups

• Often a *control* or *placebo* treatment is used. This treatment is more of a "standard" than a treatment, as it is the case of no treatment at all.

 Comparing treatments to controls can be a very effective way of showing that a treatment is effective.

Fixed vs. Random Factors

- For the most part, we will consider only *fixed effect models* in this class. A factor is called *fixed* because the levels are chosen in advance of the experiment and we were interested in differences in response among those specific levels.
- Note: *Random* factors will need to be treated differently, since their levels are chosen randomly from a large population of possible levels.

Randomization

- Completely separate concept from random effects.
- In an experimental study, generally want to avoid any potential bias in the design by randomizing treatments to experimental units whenever possible.
- Randomization may be *constrained*.
 Example: Have 100 people, 50 men and 50 women. Randomly assign each of the 5 treatments to 10 men and 10 women.

Experimental Designs

- Completely Randomized Design
- Factorial Experiments
- Randomized Complete Block Designs
- Nested Designs
- Repeated Measures Designs
- Incomplete Block Designs
- We'll discuss some of these. More thorough experimental design course: STAT 514.

Example

- Kenton Food Company Example (p685)
- Compare four different package designs (numbered 1, 2, 3, 4 in no particular order)
- Response: # of cases sold
- 20 stores, but one was destroyed by fire during the study; 19 observations
- SAS file: kenton.sas

Data

Design 1	Design 2	Design 3	Design 4
11	12	23	27
17	10	20	33
16	15	18	22
14	19	17	26
15	11		28

Scatter Plot

ANOVA Code (SAS)

```
proc glm data=kenton;
  class design;
  model cases=design;
  means design /bon lines cldiff;
```

- Class statement identifies ALL categorical variables (separate by spaces as in model)
- Means statement requests comparisons of the group means (lots of options)

Output

Source	DF	SS	MS	F Value	<u> </u>
Model	3	588	196	18.59	<.0001
Error	15	158	10.5		
Total	18	746			

R-Square	Coeff Var	Root MSE	cases Mean
0.788055	17.43042	3.247563	18.63158

Output (2)

Bonferroni (Dunn) t Tests for cases NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

Alpha 0.05
Error Degrees of Freedom 15
Error Mean Square 10.54667
Critical Value of t 3.03628

Comparisons significant at the 0.05 level are indicated by ***.

Output (3)

design		Difference		Simultaneous 95%				
Co	omp	pariso	n	Means		Confid	dence Li	mits
4	-	3	7	700	1.	.085	14.315	***
4	-	1	12	600	6	.364	18.836	***
4	-	2	13	.800	7	.564	20.036	***
3	_	4	-7	700	- 14	.315	-1.085	***
3	_	1	4	900	- 1 .	.715	11.515	
3	_	2	6	100	-0	.515	12.715	
1	-	4	-12	600	-18	.836	-6.364	***
1	_	3	-4	900	-11,	.515	1.715	
1	_	2	1.	200	-5	.036	7.436	
2	_	4	-13	.800	-20	.036	-7.564	***
2	_	3	-6	.100	-12	.715	0.515	
2	-	1	- 1	200	-7.	.436	5.036	

Output (4)

Group	Mean	N	design	
Α	27.200	5	4	
В	19.500	4	3	
В				
В	14.600	5	1	
В				
В	13.400	5	2	

Assumptions

Should always check normality, constancy of variance assumptions

Plots to check these are as before

No obvious problems for this dataset

Residual Plot

Normal QQ Plot

Upcoming in Lecture 20...

- ANOVA Model I (Cell Means)
- Sections 16.3 16.6