
Lecture 19: Proxy-Server Based Firewalls

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 24, 2022
5:14pm

©2022 Avinash Kak, Purdue University

Goals:

� The SOCKS protocol for anonymizing proxy servers

� Socksifying application clients

� The Dante SOCKS server

� Perl and Python scripts for accessing an internet server through

a SOCKS proxy

� Squid for controlling access to web resources (and for web caching)

� The Harvest system for information gathering, indexing, and searching

� How to construct an SSH tunnel through a web proxy

CONTENTS

Section Title Page

19.1 Firewalls in General (Again) 3

19.2 SOCKS 7

19.2.1 SOCKS4 versus SOCKS5 10

19.2.2 Interaction Between a SOCKS Client and a SOCKS Server 11

19.2.3 Socksifying a Client-Side Application 16

19.3 Dante as a SOCKS Proxy Server 20

19.3.1 Configuring the Dante Proxy Server 23

19.3.2 Configuring SOCKS Clients 32

19.3.3 Anonymity Check 35

19.3.4 Perl and Python Scripts for Accessing an Internet 36
Server through a danted Proxy

19.4 The SQUID Proxy Server 48

19.4.1 Starting, Stopping, and Configuring the Squid Proxy Server 52

19.5 HARVEST: A System for Information Gathering 60
and Indexing

19.5.1 What Does Harvest Really Do? 61

19.5.2 Harvest: Gatherer 63

19.5.3 Harvest: Broker 66

19.5.4 How to Create a Gatherer? 68

19.5.5 How to Create a Broker? 77

19.6 Constructing an SSH Tunnel Through an HTTP Proxy 83

19.7 Homework Problems 88

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.1 FIREWALLS IN GENERAL (AGAIN)

� To expand on what was mentioned at the beginning of Lecture

18, firewalls can be designed to operate at any of the following

three layers in the TCP/IP protocol stack:

– the Transport Layer (example: packet filtering with

iptables)

– the Application Layer (example: HTTP Proxy)

– the layer between the Application Layer and the Transport

Layer (example: SOCKS proxy)

� Firewalls at the Transport Layer examine every packet, check

its IP headers and its higher-level protocol headers (in order to

figure out, say, whether it is a TCP packet, a UDP packet, an

ICMP packet, etc.) to decide whether or not to let the packet

through and to determine whether or not to change any of the

header fields. [See Lecture 18 on how to design a packet filtering

firewall.]

� A firewall at the Application Layer examines the requested

session for whether they should be allowed or disallowed based

3

Computer and Network Security by Avi Kak Lecture 19

on where the session requests are coming from and the purpose

of the requested sessions. Such firewalls are built with the help

of what are known as proxy servers.

� For truly application layer firewalls, you’d need a separate

firewall for each different type of service. For example, you’d

need separate firewalls for HTTP, FTP, SMTP, etc. Such

firewalls are basically access control declarations built into the

applications themselves. As a network admin, you enter such

declarations in the server config files of the applications.

� A more efficient alternative consists of using a protocol between

the application layer and the transport layer – this is sometimes

referred to as the shim layer – to trap the application-level

calls from intranet clients for connection to the servers in the

internet. [The shim layer corresponds to the Session Layer in the 7-layer

OSI model of the TCP/IP protocol stack. See Lecture 16 for the OSI

model.] As to what I mean by intranet, it is the same thing as a

LAN (Local Area Network), meaning a local network of

computers connected to the rest of the internet through a

gateway machine (which is more commonly called a router).

� Using a shim layer protocol, a proxy server can monitor all

session requests that are routed through it in an

application-independent manner to check the requested

sessions for their legitimacy. In this manner, only the proxy

4

Computer and Network Security by Avi Kak Lecture 19

server, serving as a firewall, would require direct

connectivity to the internet and the local intranet can ”hide”

behind the proxy server. The computers in the internet at

large would not even know about the existence of your machine

in the local intranet behind the firewall.

� Proxy servers in general, both at the application layer and at

the shim layer, can easily be programmed to give anonymity to

the clients who reach out to the service providers in the wider

internet through such proxies. When a proxy is used in this

manner, it may also be referred to as an anonymizing proxy.

� Some folks like to use anonymizing proxies for privacy reasons.

Let’s say you want to visit a web site but you do not wish for

that site to know your IP address, you can route your access

through a third-party anonymizing proxy.

� There are free publicly available proxy servers that you can use

for such purpose. Check them out by entering a string like

“public proxy server” in a search engine window. You can also

use publicly available scanners to search for publicly available

proxy servers within a specific IP range.

� In addition to achieving firewall security, a proxy server

operating at the application layer or the shim layer can carry

out data caching (this is particularly true of HTTP proxy

5

Computer and Network Security by Avi Kak Lecture 19

servers) that can significantly enhance the speed at which the

clients download information from the servers. If the gateway

machine contains a current copy of the resource requested, in

general it would be faster for a client to download that copy

instead of the version sitting at the remote host.

� The SOCKS protocol (RFC 1928) is commonly used for

designing shim layer proxy servers.

� A transport layer firewall based on packet filtering (as presented

in Lecture 18) and an application or shim layer firewall

implemented with the help of a proxy server of the type

presented in this lecture often coexist for enhanced security.

[You may choose the former for low-level control over the traffic and then use proxies

for additional high-level control within specific applications and to take advantage of

centralized logging and caching made possible by proxy servers.]

6

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.2 SOCKS

� SOCKS is referred to as a generic proxy protocol for TCP/IP

based network applications.

� SOCKS, an abbreviation of “SOCKetS”, consists of two

components: A SOCKS client and a SOCKS server.

� It is the socks client that is implemented between the

application layer and the transport layer; the socks server is

implemented at the application layer.

� The socks client wraps all the network-related system calls

made by a host with its own socket calls so that the host’s

network calls get sent to the socks server at a designated port,

usually 1080. This step is usually referred to as socksifying

the client call.

� The socks server checks the session request made by the

socksified LAN client for its legitimacy and then forwards the

request to the server on the internet. Any response received

back from the server is forwarded back to the LAN client.

7

Computer and Network Security by Avi Kak Lecture 19

� For an experimental scenario where we may use SOCKS,

imagine that one of your LAN machines has two ethernet

interfaces (eth0 and eth1) and can therefore act as a gateway

between the LAN and the internet. We will assume that the

rest of the LAN is on the same network as the eth0 interface

and that the eth1 interface talks directly the internet. A

SOCKS based proxy server installed on the gateway machine

can accomplish the following:

– The proxy server accepts session requests from SOCKS

clients in the LAN on a designated port. If a request does

not violate any security policies programmed into the proxy

server, the proxy server forwards the request to the internet.

Otherwise the request is blocked. This property of a proxy

server to receive its incoming LAN-side requests for different

types of services on a single port and to then forward the

requests onwards into the internet to specific ports on

specific internet hosts is referred to as port forwarding.

Port forwarding is also referred to as tunneling.

– The proxy server replaces the source IP address in the

connection requests coming from the LAN side with with its

own IP address. [So the servers on the internet side cannot see the actual IP

addresses of the LAN hosts making the connection requests. In this manner, the hosts in the

LAN can maintain complete anonymity with respect to the internet.] This ploy is

frequently used by business organizations to hide the internal

details of their intranets. [Lest you become overly impressed with this ability of

8

Computer and Network Security by Avi Kak Lecture 19

SOCKS to hide the hosts on the LAN side, note that this is exactly what is accomplished by an

ordinary router that carries out NAT (network address translation). Consider, for example, a

router for a LAN in which private IP addresses are used for the hosts. An example of such a

router would be the one used by Purdue’s PAL3 WiFi network that assigns Class A private

addresses to the hosts in the LAN. If your laptop is connected to the internet through PAL3,

folks on the outside will not see the IP address of your laptop. The PAL3 WiFi router will strip

off the private IP address in the packets emanating from your laptop and replace it with the

network address of the router. However, what you get with a SOCKS proxy is that

your IP address would remain hidden even when it is a public address.]

– In addition to making it easy to apply ACL (Access Control

List) rules to the traffic emanating from the LAN, routing all

network traffic through a proxy server as described above

also makes it easy to centrally log all internet bound traffic

and the caching of web services.

9

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.2.1 SOCKS4 versus SOCKS5

� Version 4 (usually referred to as SOCKS4) lacks client-server

authentication. On the other hand, version 5 (usually referred

to as SOCKS5) includes built-in support for a variety of

authentication methods.

� SOCKS5 also includes support for UDP. So a SOCKS5 server

can also serve as a UDP proxy for a client in an intranet.

� Additionally, with SOCKS4, the clients are required to resolve

directly the IP addresses of the remote hosts (meaning to carry

out a DNS lookup for the remote hosts). SOCKS5 is able to

move DNS name resolution to the proxy server that, if

necessary, can access a remote DNS server.

10

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.2.2 Interaction Between a SOCKS Client
and a SOCKS Server

� To see how a socks client (more precisely speaking, a socksified

client) interacts with a socks server, let’s say that the client

wants to access an HTTP server in the internet.

� The first part of the interaction is similar to what happens

between an SSH client and an SSH server — the server needs to

authenticate the client. This interaction is described below.

� The socks client opens a TCP connection with the socks server

on the server’s port 1080. The client sends a “Client

Negotiation” packet suggesting a set of different authentication

methods that the server could use vis-a-vis the client. This

packet consists of the following fields:

Client Negotiation: VER NMETHOD METHODS

1 1 1-255

with the one-byte VER devoted to the version number (SOCKS4

or SOCKS5), the one-byte NMETHOD devoted to the number of

methods that will be listed subsequently for client-server

authentication, and, finally, a listing of those methods by their

ID numbers, with each ID number as a one-byte integer value.

11

Computer and Network Security by Avi Kak Lecture 19

[The value 0x00 in METHODS field means no authentication needed, the value 0x01 means

authentication according to the GSSAPI (Generic Security Services Application Programming

Interface), 0x02 means a user-name/password based authentication, a value between 0x03 and 0x7E

defines a method according to the IANA naming convention, and the 0x80 through 0xFE values are

reserved for private methods. (IANA stands for the Internet Assigned Numbers Authority) Note if

the method number returned by the socks server is 0xFF, that means that the server has refused the

method offered by the client. Also note that GSSAPI (RFC 2743) is meant to make it easier to add

client-server authentication to an application as the modern practice is to expect all security software

vendors to provide this API in addition to any proprietary APIs. For example, if you wanted to use

Kerberos for client-server authentication, you could write your authentication code to GSSAPI.]

� If the socks proxy server accepts the client packet, it responds

back with a two-byte “Server Negotiation” packet:

Server Negotiation: VER METHOD

1 1

where the METHOD field is the authentication method that the

server wishes to use. The socks server then proceeds to

authenticate the LAN client using the specified method.

� After the authentication step, the socks client then sends the

socks proxy server a request stating what service it wants at

what address in the internet and at which port. This message,

called the “Client Request” message consists of the following

fields:

Client Request: VER CMD RSV ATYP DST.ADDR DST.PORT

1 1 1 1 variable 2

12

Computer and Network Security by Avi Kak Lecture 19

where the 1-byte CMD field contains one of three possible

values: 0x01 for “CONNECT”, 0x02 for “BIND”, 0x03 for

“UDP Associate”. [The ATYP field stands for the “Address Type” field. It takes one of

three possible values: 0x01 for IPv4 address, 0x02 for domain name, and 0x03 for IPv6 address. As

you’d expect, the length of the target address that is stored in the DST.ADDR field depends on what

address type is stored in the ATYP field. An IPv4 address is 4 bytes long; on the other hand, an

IPv6 address 8 bytes long. Finally, the DST.PORT fields stores the the port number at the

destination address. The RSV field means “Reserved for future use.”]

� The client always sends a CONNECT (value of the 1-byte CMD

field) request to the socks proxy server after the client-server

authentication is complete. However, for services such as FTP, a

CONNECT request is followed by a BIND request. [The BIND

request means that the client expects the remote internet server to want to establish a separate

connection with the client. Under ordinary circumstances for a direct FTP service, a client first

makes what is known as a control connection with the remote FTP server and then expects the FTP

server to make a separate data connection with the client for the actual transfer of the file requested

by the client. When the client establishes the control connection with the FTP server, it informs the

server as to which address and the port the client will be expecting to receive the data file on.]

� After receiving the “Client Request” packet, the proxy server

evaluates the request taking into account the address of the

client on the LAN side, the target of the remote host on the

internet side and other access control rules typical of firewalls.

� If the client is not allowed the type of access it has requested,

13

Computer and Network Security by Avi Kak Lecture 19

the proxy server drops the connection to the client. Otherwise,

the proxy server sends one or two replies to the socks client.

[The socks server sends to the client two replies for BIND requests and one reply for

CONNECT and UDP requests.] These replies, different in the value of

the REP field (and possibly other fields depending on the success

or failure of the connection with the remote server) are called

the “Server Reply” are according to the following format:

Server Reply: VER REP RSV ATYP BND.ADDR BND.PORT

1 1 1 1 variable 2

where the BND.ADDR is the internet-side IP address of the socks

proxy server; it is this address that the remote server will

communicate with. Similarly, BND.PORT is the port on the

proxy server machine that the remote server sends the

information to.

� The REP field can take one of the following ten different values:

0x00: successful connection with the remote server

0x01: SOCKS proxy error

0x02: connection disallowed by the remote server

0x03: network not accessible

0x04: remote host not accessible

0x05: connection request with remote host refused

0x06: timeout (TTL expired)

0x07: SOCKS command not supported

0x08: address type not supported

0x09 through 0xFF: not defined

14

Computer and Network Security by Avi Kak Lecture 19

� If the connection between the proxy server and the remote

server is successful, the proxy server forwards all the data

received from the remote server to the socks client and vice

versa for the duration of the session.

� About the security of the data communication between the

socks server and the remote service provider, note that since

socks works independently of the application-level protocols, it

can easily accommodate applications that use encryption to

protect their traffic. To state a case in point, as far as the

socks server is concerned, there is no difference between an

HTTP session and an HTTPS session. Since, after establishing

a connection, a socks proxy server doesn’t care about the nature

of the data that shuttles back and forth between a client and

the remote host in the internet, such a proxy server is also

referred to as a circuit-level proxy.

15

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.2.3 Socksifying a Client-Side Application

� Turning a client-side application (such as a web browser, an

email client, and so on) into a socks client is referred to as

socksifying the client.

� For what is perhaps the most commonly used implementation

of the SOCKS protocol, Dante, this is accomplished as simply

as by calling

socksify name_of_your_client_application

provided you have installed the Dante client in the machine on

which you are trying to execute the above command. [If you are on

a Ubuntu machine, you can install both the Dante server and the Dante client directly through your

packet manager. Just search for the sting “dante” in the packet manager’s search window. Or just

use the command apt-get for doing the same.]

� Let’s say you are unable to directly access an FTP server in the

internet because of the packet-level firewall rules in the gateway

machine, you might be allowed to route the call through the

proxy server running on the same machine by

socksify ftp url_to_the_ftp_resource

16

Computer and Network Security by Avi Kak Lecture 19

� For another example, to run your web browser (say, the Firefox

browser) through a socks proxy server, you would invoke

socksify firefox

By the way, when you socksify Firefox in this manner, you must

keep the browser’s connection settings at the commonly used

“Directly connect to internet” in the panel for

Edit-Preferences-Advanced-Network-Settings. You do NOT

have to be logged in as root to socksify a browser in this

manner. [According to Michael Shuldman of Inferno Nettverk that

created Dante, you can get your Firefox browser to work through a

socks server by just clicking on the “Manual Proxy Configuration” tab

in the window that comes up for

Edit-Preferences-Advanced-Network-Settings and entering the IP

address and the port for the socks proxy server.]

� In Section 19.3.4, I will present an example of socksifying a

user-created application program. There I’ll show custom Perl

and Python clients – DemoExptClient.pl and

DemoExptClient.py – that can engage in an interactive session

with custom Perl and Python servers running on a remote host

in the internet. Ordinarily, the command-line invocation you’d

make on the LAN machine would be something like this:

DemoExptClient.pl moonshine.ecn.purdue.edu 9000

DemoExptClient.py moonshine.ecn.purdue.edu 9000

assuming that the hostname of the remote machine is

moonshine. ecn.purdue.edu and that port 9000 is assigned to the

17

Computer and Network Security by Avi Kak Lecture 19

server script running on that machine. In order to route this

call through the socks server (assuming you are running the

Dante proxy server) on your local gateway machine, all you’d

need to do is to make one of the two calls shown below:

socksify DemoExptClient.pl moonshine.ecn.purdue.edu 9000

socksify DemoExptClient.py moonshine.ecn.purdue.edu 9000

� The call to socksify as shown above invokes a shell script of

that name (that resides in /usr/bin/ in a standard install of

Dante). Basically, all it does is to set the LD_PRELOAD

environment variable to the libdsocks library that resides in

the libdsocks.so dynamically linkable file. [Visit the following URL

to see how you can change — for good or for bad — the behavior of a previously compiled

program just by changing the value of the LD PRELOAD environment variable knowingly for

yourself or surreptitiously for others:]

https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/

� By setting the LD_PRELOAD environment variable (assuming your

platform allows it), ‘socksify’ saves you from the trouble of

having to recompile your client application so as to redirect the

system networking calls to the proxy server. [As explained in the

‘README.usage’ document that comes with the Dante install, this only works with non-setuid

applications. The LD PRELOAD environment variable is usually ignored by setuid applications. When a

previously written client application can be compiled and linked to dynamically, you can socksify it

by linking it with the libdsocks shared library by supplying the linking command with the

18

https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/

Computer and Network Security by Avi Kak Lecture 19

‘-ldsocks’ option assuming that the file libdsocks.so is at the standard location (otherwise, you

must provide the pathname to this location with the ‘-L pathname’ option). If such dynamic linkage

is not possible, you can always resort to static recompilation of your client application. See the file

‘README.usage’ mentioned above for further information on how to do this.]

� All of the presentation so far has been from a Linux perspective.

There is an implementation of the socks protocol, called

SocksCAP, that enables Windows based TCP and UDP

networking clients to traverse a socks firewall. Visit

http://www.socks.permeo.com/ for further information.

19

http://www.socks.permeo.com/

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.3 DANTE AS A SOCKS PROXY
SERVER

� Dante, available from http://www.inet.no/dante/, is a popularly

used implementation of the socks protocol. The current version

of Dante (the version you download through your Synaptic Package Manager) is 1.1.19.

Visit http://www.inet.no/dante/doc for links to documentation

pages for Dante. [As mentioned earlier, If you are on a Ubuntu machine, you can install

both the Dante server and the Dante client directly through your packet manager. Just search for the

sting “dante” in the packet manager’s search window. Or, just use the command apt-get for doing

the same.]

� A standard install of Dante will give you the following

configuration files:

/etc/danted.conf the server configuration file

/etc/dante.conf the client configuration file

� Start the server by executing:

sudo danted

20

http://www.inet.no/dante/
http://www.inet.no/dante/doc

Computer and Network Security by Avi Kak Lecture 19

You can verify that the server is running by executing in a

command line ‘ps aux | grep dante’ that will return

something like the following:

nobody 55430 0.3 0.0 26816 3700 pts/4 S+ 17:08 0:00 danted

nobody 55431 0.0 0.0 26816 2028 pts/4 S+ 17:08 0:00 dante

nobody 55432 0.0 0.0 27220 2288 pts/4 S+ 17:08 0:00 dante

nobody 55433 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55434 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55435 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55436 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55437 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55438 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55439 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55440 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55441 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55442 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55443 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55444 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55445 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55446 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55447 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55448 0.0 0.0 26912 1792 pts/4 S+ 17:08 0:00 dante

nobody 55449 0.0 0.0 27872 2816 pts/4 S+ 17:08 0:00 dante

Although you can stop the server by executing in a command

line ‘/etc/init.d/danted stop’, should that not kill all the

processes above, you can also invoke ‘killall danted’.

[According to Michael Shuldman of Inferno Nettverk, not killing all the child

processes when you terminate the main server process is less disruptive to the socks

clients. If you kill the main server process because, say, you want to upgrade your

Dante server, the still-alive child server processes would continue to serve the socks

clients that are already connected. Subsequently, after you restart the main server

process, any new clients would be handled by the new server process and its children,

whereas the old clients would continue to be served by the previously created child

server processes. For further information, see

http://www.inet.no/dante/doc/faq.html#processes_do_not_die.]

21

http://www.inet.no/dante/doc/faq.html#processes_do_not_die

Computer and Network Security by Avi Kak Lecture 19

� Although you would normally start up the Dante server as

indicated above, when you are first learning socks, you would be

better off firing up the executable directly with the ‘-d’ option

so that it comes up in the debug mode. The command line for

this in the standard Ubuntu install of Dante is

sudo danted -d5

Note that the option is ‘-d’ and NOT ‘-D’. The former stands

for “debug mode” and the latter for“detach mode” for running

the Dante server in the background. The integer value 5 that is

supplied for the ‘-d’ option sets the debugging level. You can

set this value to 0, which would imply no debugging. When you

bring up the server with the command string shown above, you

can actually see the server setting up the child processes for

accepting requests from the socks clients, the server reaching

out to a DNS server for IP lookups, and then finally accessing

the services requested by the client. See Section 19.12 for a

small example.

� However, before you fire up the server in any manner at all,

you’d want to edit the server configuration file

/etc/danted.conf and the client configuration file

/etc/dante.conf. The next couple of sections address this issue.

22

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.3.1 Configuring the Dante Proxy Server

� For our educational exercise, we will assume that our socks

proxy server based firewall is protecting a 192.168.1.0/24

intranet and that the interface that connects the firewall

machine with the internet is eth0. We will therefore not worry

about client-server authentication here.

� The server config file, /etc/danted.conf, consists of three

sections:

– Server Settings

– Rules

– Routes

� With regard to the options in the “Server Settings” section of

the config file:

logoutput: Where the log messages should be sent to.

internal: The IP address associated with the proxy server (I

chose 127.0.0.1) and the port it will monitor (1080 by

default). What is needed is the IP address of the host on

which the proxy server is running. Since my proxy clients

23

Computer and Network Security by Avi Kak Lecture 19

will be on the same machine as the proxy server, it makes

sense to use the loopback address for the proxy server.

external: The IP address that all outgoing connections from

the server should use:

– This will ordinarily be the IP address of the interface on

which the proxy server will be communicating with rest of

the internet.

– You can also directly name the interface (such as eth0)

that the proxy server will use for all outgoing connections,

which is what I have done. It will now automatically use

the IP address associated with that interface. This is

convenient for DHCP assigned IP addresses.

– About using a fictitious IP address for all outgoing

connections from the server, it probably won’t work since

– at least ordinarily — your outgoing interface (eth0,

eth1, wlan0, etc) can only work with a legal IP address

that an upstream router can understand. [It appears that

the only way to take advantage of the anonymity offered by a socks

server is if you route your personal outgoing traffic through a socks

server run by a third party. Now the recipients of your traffic will

see the IP address of that party.]

– If for some reason (that is difficult to understand) you use

a socks proxy behind a home or a small-business router,

24

Computer and Network Security by Avi Kak Lecture 19

you won’t gain any anonymity from the outgoing IP

address used by the SOCKS server since the router will

translate the outgoing (the source) IP address into what is

assigned to router by the ISP anyway.

method: Methods are for authenticating the proxy clients.

Remember that a socks server and a socks client do not have

to be on the same machine or even on the same local

network.

user.privileged: If client authentication requires that some

other programs be run, the system would need to run them

with certain specified privileges. For that purpose, you can

create a user named proxy if you wish and set this option

accordingly. Ignore it for now since we will not be doing any

client authentication. [According to Michael Shuldman of Inferno

Nettverk, when the server is used in a production setting, it would need to run

“at least temporarily” with an effective ID of 0 (that is, as root) in order to read

the system password file (which would be the /etc/shadow for Linux) so that it

can later verify the passwords provided by the socks clients. This becomes

particularly necessary if you chose ‘method: username’ for the previous

option.] [To elaborate on the “at least temporarily” phrase, let’s say that

user.privileged is set to root and user.notprivileged is set to nobody,

the server will run with the default privileges of nobody all the time except when

the server needs to, for example, authenticate a client on the basis of the

passwords in, say, /etc/shadow. At that moment, the server would elevate its

privileges to the root level, extract the needed information from system password

file, and then revert back to the default privilege level of nobody.]

25

Computer and Network Security by Avi Kak Lecture 19

user.notprivileged: This specifies as to what

read/write/execute privileges the server should be set to

when running in the default non-privileged mode. Set it to

nobody which means that the server would have no

permissions at all with respect all the other files in the

system.

� Rules: There are two kinds of rules:

– Rules, first kind: There are rules that control as to which

socks clients are allowed to talk to the proxy server. These

are referred to as client rules. All such rules have the

client prefix as in

client pass {

from: 127.0.0.0/24 port 1-65535 to: 0.0.0.0/0

}

client pass {

from: 192.168.1.0/24 port 1-65535 to: 0.0.0.0/0

}

client block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

These rules say to allow all local socks clients on the same

machine and all socks clients on the local LAN to talk to the

SOCK proxy server on this machine. The third rule says to

deny access to all other socks clients. Note that “to:” in

these rules is the address on which the socks server will

accept a connection request from a socks client. And, of

26

Computer and Network Security by Avi Kak Lecture 19

course, as you’d expect, “from:” is the source IP address of

the client.

– Rules, the second kind: These are rules that control as to

what remote services the proxy server can be asked to talk to

(in the rest of the internet) by a socks client. These rules do

NOT carry the client prefix. Be careful here since how

you set up these rules may dictate whether or not the

proxy server can successfully carry out DNS lookups. The

comment statements in the danted.conf file recommend that

you include the first of the four rules shown below for this

section. But if you do, your proxy server will not be able

talk to the local DNS server. In my danted.conf file, these

rules look like:

Comment out the next rule since otherwise local DNS will not work

#block {

from: 0.0.0.0/0 to: 127.0.0.0/8

log: connect error

#}

pass {

from: 127.0.0.0/24 to: 0.0.0.0/0

protocol: tcp udp

}

pass {

from: 192.168.1.0/24 to: 0.0.0.0/0

protocol: tcp udp

}

block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

The second rule says that any local socks client will be able

to call on any service anywhere for a TCP or UDP service.

27

Computer and Network Security by Avi Kak Lecture 19

The third rule does the same for any socks client in the local

LAN. The fourth rule blocks all other socks client requested

services. Note that “to:” in these rules is the final

destination of the request from a socks client. And “from:”

carries the same meaning as before — it is the source address

of a socks client.

� In the second set of rules shown above (the ones without the

client prefix), it is possible to allow and deny specific services

with regard to specific client source addresses and client final

destination addresses. See the official /etc/danted.conf file for

examples.

� The third and final section of the /etc/danted.conf file deals

with the route to be taken if proxy server chaining is desired.

The route specifies the name of the next upstream socks server.

� The internal and external option settings mentioned earlier

in this section are for the “normal” mode of operation of a

proxy server — the mode in which the clients access the services

in the rest of the internet through a proxy server. However,

there is another mode in which such proxy servers can be used

— the reverse proxy mode. In the reverse mode, you may

offer, say, an HTTP server in a private network but with the

traffic to your HTTP server directed through a Dante proxy

server. You could, for example, use a SOCKS server front-end

28

Computer and Network Security by Avi Kak Lecture 19

to control access to the private server. [You might ask: Why not use

HTTPD’s access control settings directly? While that may be true for an HTTP

server, what if I wanted to control access to the server described in Section 19.3.4?

Instead of having to write all the additional authentication and access-control code

myself for that server, I could use a Dante server as a reverse proxy and achieve the

same results with very little additional effort.] When a Dante server is used

as a reverse proxy, the meanings of internal and external

options become reversed, as you’d expect. [The fact that a Dante

server can be used as a reverse proxy was brought to my attention by

Michael Shuldman of Inferno Nettverk.]

An Example of the /etc/danted.conf Server Config File

A sample danted.conf that I use for demonstrating SOCKS

#

See the actual file /etc/danted.conf in your own installation of

Dante for further details.

####################### ServerSettings ##########################

server will log both via syslog, to stdout and to /var/log/lotsoflogs

logoutput: syslog stdout /var/log/lotsoflogs

internal: 127.0.0.1 port = 1080

All outgoing connections from the server will use the IP address

195.168.1.1

external: eth0 # See page 23 for what it means to run

a SOCKS server behind a home router

List acceptable methods for authentication in the order of

preference. A method not set here will never be selected.

If the method field is not set in a rule, the global method is

filled in for that rule. Client authentication method:

29

Computer and Network Security by Avi Kak Lecture 19

method: username none

The following is unnecessary if not doing authentication. When

doing something requiring privilege, it will use the userid "proxy".

user.privileged: proxy

When running as usual, it will use the unprivileged userid of:

user.notprivileged: nobody

Do you want to accept connections from addresses without dns info?

What about addresses having a mismatch in dnsinfo?

srchost: nounknown nomismatch

############################ RULES ############################

There are two kinds and they work at different levels.

#

#===================== rules checked first ====================

Allow our clients, also shows an example of the port range.

client pass {

from: 192.168.1.0/24 port 1-65535 to: 0.0.0.0/0

}

client pass {

from: 127.0.0.0/8 port 1-65535 to: 0.0.0.0/0

}

client block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

#================== the rules checked next ===================

pass {

from: 192.168.1.0/24 to: 0.0.0.0/0

protocol: tcp udp

}

pass {

from: 127.0.0.0/8 to: 0.0.0.0/0

protocol: tcp udp

}

pass {

from: 0.0.0.0/0 to: 127.0.0.0/8

protocol: tcp udp

}

30

Computer and Network Security by Avi Kak Lecture 19

block {

from: 0.0.0.0/0 to: 0.0.0.0/0

log: connect error

}

See /etc/danted.conf of your installation for additional

examples of such rules.

31

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.3.2 Configuring SOCKS Clients

� The client configuration file /etc/dante.conf regulates the

behavior of a socksified client.

� At the beginning of the client configuration file,

/etc/dante.conf, you are asked if you want to run the socksified

client with the debug option turned on.

� All the other significant rules in the client config file are route

rules, that is rules that carry the route prefix.

� The first of these route rules lets you specify that you want to

allow for “bind” connections coming in from outside. The

“bind” command allows incoming connections for protocols like

FTP in which the local client first makes a control connection

with a remote server and the remote server then makes a

separate connection with the client for data transfer:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

command: bind

}

32

Computer and Network Security by Avi Kak Lecture 19

� See the official /etc/dante.conf file in your own installation of

Dante for other examples of the route rules that allow a client

to directly carry out the DNS lookup on the localhost or by

directly reaching out to a remote DNS server.

� Whereas the previous route rule for the “bind” command, the

next route rule tells the client where the SOCKS proxy server is

located and what port the server will be monitoring. This rule

also tells the client that the server supports TCP and UDP

services, both SOCKS4 and SOCKS5 protocols, and that the

server does not need any authentication:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

protocol: tcp udp # server supports tcp and udp.

proxyprotocol: socks_v4 socks_v5 # server supports socks v4 and v5.

method: none #username # we are willing to authenticate via

method ‘‘none’’, not ‘‘username’’.

}

� The “from:” and “to:” in the previous rule are the IP address

ranges for the client source addresses and the client final

destination addresses for the remote services requested through

the proxy server. In order to allow for the final destination

addresses to be expressed as symbolic hostnames, we now

include the next route rule:

route {

from: 0.0.0.0/0 to: . via: 127.0.0.1 port = 1080

protocol: tcp udp

proxyprotocol: socks_v4 socks_v5

33

Computer and Network Security by Avi Kak Lecture 19

method: none #username

}

� Shown below is an example of the

/etc/dante.conf SOCKS Client Config File:

A sample dante.conf that I use for demonstrating SOCKS clients

#

See the actual file /etc/dante.conf in your own installation of

Dante for further details.

#debug: 1

Allow for "bind" for a connection initiated by a remote server

in response to a connection by a local client:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

command: bind

}

Send client requests to the proxy server at the address shown:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

protocol: tcp udp # server supports tcp and udp.

proxyprotocol: socks_v4 socks_v5 # server supports socks v4 and v5.

method: none #username # we are willing to authenticate via

method "none", not "username".

}

Same as above except that the remote services may now be named

by symbolic hostnames:

route {

from: 0.0.0.0/0 to: . via: 127.0.0.1 port = 1080

protocol: tcp udp

proxyprotocol: socks_v4 socks_v5

method: none #username

}

34

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.3.3 Anonymity Check

� How can you be certain that when you go through a proxy

server, your IP address will not be visible to the remote host?

� A common way to check for your anonymity is to visit a web

site (of course, through the proxy server) that displays your IP

address in the browser window. (An example of such a web site

would be http://hostip.info.)

� This is usually sufficient check of anonymity for SOCKS proxy

servers, but not for HTTP proxy servers. (HTTP Proxy

Servers are presented starting with Section 19.4.)

� Even when an HTTP proxy server does not send the

HTTP_X_FORWARDED_FOR field to the remote server, it may still

send the HTTP_VIA and HTTP_PROXY_CONNECTION fields that

may compromise your privacy.

� When an HTTP proxy server does not send any of these fields

to the remote server, it is usually called an elite or a

high-anonymity proxy server.

35

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.3.4 Perl and Python Scripts for Accessing
an Internet Server Through the danted Proxy

� To understand the scripts shown in this section, please keep

straight the meaning to be associated with each of the following:

– an internet server, means a server running somewhere in the

internet;

– a client that wants to interact with the internet server;

– the socks proxy server (dantd, naturally); and

– a socksified client, which comes into existence when the

network calls made by an otherwise ordinary client are

meant to be routed through a socks proxy server.

� Ordinarily, when socks in not involved, you will run the client

program on your machine and this program will talk to the

internet server on some remote machine.

� For the demonstration in this section, we will assume that both

the Dante socks client and the Dante socks server are running

36

Computer and Network Security by Avi Kak Lecture 19

on the same machine — we will refer to that machine as the

client machine. With the Dante socks server running on the

client machine, we want to route all of the client’s

communication with the remote application server through the

socks server on the client machine.

� With regard to the internet server that I’ll use for the

demonstration in this section, its purpose will be to display a

set of server-side commands to the client, and have the client

choose one of the commands. The internet server will then

execute the command on its side and send the output back to

the client.

� In what follows, I’ll first show the Perl version of the internet

server used in this demonstration. That will be followed by the

Python version of the same. Both these programs are taken

from Chapter 15 of my book “Scripting with Objects.”

� In the Perl server shown below, Lines (C) through (F) of the

script create a server socket on port 9000. The special symbol

SOMAXCONN in line (D), defined in one of the low-level socket

libraries used by the high-level module IO::Socket, stands

for the system-dictated maximum number of client connections

that the server socket can wait on at any given time. [The value of

this special constant was 128 for the Linux machine on which I executed the server script

shown.] The call to the constructor in lines (C) through (F) also

37

Computer and Network Security by Avi Kak Lecture 19

sets Reuse option to 1. This is useful during debugging since it

allows immediate reuse of the port that is supposed to be

monitored by the server after the server process is killed and

then started again in quick succession. If you don’t set the

Reuse option as shown, a restart of the server process will not

succeed as long as the various buffers assigned to the server

process during its previous run are not cleared out.

� With regard to what actually is accomplished by the server

script shown below, on account of the call to accept() in line

(I), it waits patiently for client requests for connections with the

server. A client request causes accept() to spit out a socket

handle that becomes the value of the variable $client_soc.

The server can now read the client messages through this socket

handle and send information to the client through the same

socket handle. The first thing the server does is to send the

client a welcome message in line (J) where the variable $0 will

be bound to the name of the server script.

� The rest of the server code shown below is to figure out which

command was selected by the client, to execute the command

on the server side, and to then send the output back to the

client. This is done in lines (N) through (a) of the script.

#!/usr/bin/env perl

DemoExptServer.pl

This code from Chapter 15 of the book "Scripting with Objects"

38

Computer and Network Security by Avi Kak Lecture 19

by Avinash Kak

use strict;

use warnings;

use IO::Socket; #(A)

use Net::hostent; #(B)

my $server_soc = IO::Socket::INET->new(LocalPort => 9000, #(C)

Listen => SOMAXCONN, #(D)

Proto => ’tcp’, #(E)

Reuse => 1); #(F)

die "No Server Socket" unless $server_soc; #(G)

print "[Server $0 accepting clients]\n"; #(H)

while (my $client_soc = $server_soc->accept()) { #(I)

print $client_soc "Welcome to $0; type help for command list.\n"; #(J)

my $hostinfo = gethostbyaddr($client_soc->peeraddr); #(K)

my $clientport = gethostbyaddr($client_soc->peerport);

printf "\n[Connect from %s]\n",

$hostinfo ? $hostinfo->name : $client_soc->peerhost; #(L)

printf "[Client used the port %s]\n\n",

$clientport ? $clientport : $client_soc->peerport;

print $client_soc "Command? "; #(M)

while (<$client_soc>) { #(N)

next unless /\S/; #(O)

printf " client entered command: %s\n", $_;

if (/quit|exit/i) { last; } #(P)

elsif (/date|time/i) { printf $client_soc "%s\n",scalar localtime;} #(Q)

elsif (/ls/i) { print $client_soc ‘ls -al 2>&1‘; } #(R)

elsif (/pwd/i) { print $client_soc ‘pwd 2>&1‘;} #(S)

elsif (/user/i) { print $client_soc ‘whoami 2>&1‘; } #(T)

elsif (/rmtilde/i) { system "rm *~"; } #(U)

else { #(V)

print $client_soc "Commands: quit exit date ls pwd user rmtilde\n"; #(W)

}

} continue { #(X)

print $client_soc "Command? "; #(Y)

} #(Z)

close $client_soc; #(a)

}

� As you can see, the internet server shown above monitors port

9000. When a client checks in, the server first welcomes the

client and then, in an infinite loop, asks the client to enter one

of the following commands: quit, exit, date, time, ls, pwd,

user, and rmtilde. Except for the last, these are system

functions that are ordinary invoked on the command line in

Unix and Linux system. The last, rmtilde calls the system

39

Computer and Network Security by Avi Kak Lecture 19

function rm to remove all files in the directory in which the

server is running whose names end in a tilde.

� Shown next is the Python version of the server: The module

sys imported in line (A) is needed for terminating the script

with a call to sys.exit(1) in line (N) should something go

wrong while trying to create a server socket, and for gaining

access to the name of the server by calling sys.argv[0] in the

messages composed in lines (O) and (R). The module socket

imported in line (B) is needed for constructing a server socket in

line (G). The modules time, os, and commands imported in

lines (C), (D), and (E) are required for the execution of the

various commands made available by the server to a remote

client. As shown in line (F), the server script monitors the same

port as the previous Perl script, that is, port 9000.

#!/usr/bin/env python

DemoExptServer.py

This code is from Chapter 15 of the book "Scripting with Objects"

by Avinash Kak

import sys #(A)

import socket #(B)

import time #(C)

import os #(D)

import commands #(E)

port = 9000 #(F)

try:

server_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(G)

server_sock.bind((’’, port)) #(H)

server_sock.listen(5) #(I)

except socket.error, (value, message): #(J)

if server_sock: #(K)

40

Computer and Network Security by Avi Kak Lecture 19

server_sock.close() #(L)

print "Could not establish server socket: " + message #(M)

sys.exit(1) #(N)

print "[Server %s accepting clients]" % sys.argv[0] #(O)

while 1: #(P)

(client_sock, address) = server_sock.accept() #(Q)

client_sock.send("Welcome to %s; type help for command list." \

% sys.argv[0]) #(R)

client_name, client_port = client_sock.getpeername() #(S)

print "Client %s connected using port %s " % (client_name, client_port) #(T)

client_sock.send("\nCommand? ") #(U)

while 1: #(V)

client_line = ’’ #(W)

while 1: #(X)

client_byte = client_sock.recv(1) #(Y)

if client_byte == ’\n’ or client_byte == ’\r’: #(Z)

break #(a)

else: #(b)

client_line += client_byte #(c)

if client_line.isspace() or client_line == ’’: #(d)

client_sock.send(’\nCommand? ’) #(e)

elif client_line == ’quit’ or client_line == ’exit’: #(f)

break #(g)

elif client_line == ’date’ or client_line == ’time’: #(h)

client_sock.send(time.ctime()) #(i)

client_sock.send(’\nCommand? ’) #(j)

elif ’ls’ in client_line: #(k)

client_sock.send(commands.getoutput("ls -al"))

client_sock.send(commands.getstatusoutput("ls -al")[1]) #(l)

client_sock.send(’\nCommand? ’)

elif ’pwd’ in client_line: #(m)

client_sock.send(commands.getoutput("pwd 2>&1")) #(n)

client_sock.send(’\nCommand? ’)

elif ’user’ in client_line: #(o)

client_sock.send(commands.getoutput("whoami 2>&1")) #(p)

client_sock.send(’\nCommand? ’)

elif ’rmtilde’ in client_line: #(q)

os.system("rm *~") #(r)

client_sock.send(’\nCommand? ’)

else: #(s)

client_sock.send(#(t)

"Commands: quit exit date ls pwd user rmtilde") #(u)

client_sock.send("\nCommand? ")

client_sock.close() #(v)

� I’ll next present the client scripts, one for Perl and the other for

Python, both taken from my book “Scripting with Objects.”

41

Computer and Network Security by Avi Kak Lecture 19

� Shown below is the Perl version of the client script: A client

must not use a line-input-based operator for reading the

messages received from the server and, if the server messages

are meant to be displayed on the client terminal as soon as they

are received, the client must also override the default flushing

behavior of the output buffer associated with STDOUT. By

default, the output buffer is flushed only when a line terminator

is received. The statement in line (M) of the script shown next

would cause each transmission received from the server to be

displayed on the client’s terminal immediately. This client

interacts with either of the two servers shown previously in an

interactive session. The server prompts the client to enter one of

the permissible commands and the server then executes that

command.

� Note also that the client script shown below uses two separate

processes for reading from the server and for writing to the

server. While the parent process takes care of reading the

server’s messages and displaying those on the client’s terminal,

the child process takes care of writing to the server the

information entered on the keyboard of the client. The

statement in line (J) of the script creates a child process. The

call to fork() returns in the parent process the PID (process

ID) of the child process if the child process was created

successfully. The value returned by fork() in the child process is

0. The call to fork() returns undef in the parent process if

the child process could not be created successfully.

42

Computer and Network Security by Avi Kak Lecture 19

#!/usr/bin/env perl

DemoExptClient.pl

This code from Chapter 15 of the book "Scripting with Objects"

by Avinash Kak

use strict;

use warnings

use IO::Socket; #(A)

die "usage: $0 host port" unless @ARGV == 2; #(B)

my ($host, $port) = @ARGV; #(C)

my $socket = IO::Socket::INET->new(PeerAddr => $host, #(D)

PeerPort => $port, #(E)

Proto => "tcp", #(F)

)

or die "can’t connect to port $port on $host: $!"; #(G)

$SIG{INT} = sub { $socket->close; exit 0; }; #(H)

print STDERR "[Connected to $host:$port]\n"; #(I)

spawn a child process

my $pid = fork(); #(J)

die "can’t fork: $!" unless defined $pid; #(K)

Parent process: receive information from the remote site:

if ($pid) { #(L)

STDOUT->autoflush(1); #(M)

my $byte; #(N)

while (sysread($socket, $byte, 1) == 1) { #(O)

print STDOUT $byte; #(P)

}

kill("TERM", $pid); #(Q)

} else { #(R)

Child process: send information to the remote site:

my $line; #(S)

while (defined ($line = <STDIN>)) { #(T)

print $socket $line; #(U)

}

}

� Shown next is a Python version of the client script shown

above: As in the Perl script, we fork off a child process that

takes care of the sending part of the communication link,

43

Computer and Network Security by Avi Kak Lecture 19

while the parent process takes care of the receiving part. In

Python you can create a child process by calling os.fork().

The script makes this call in line (S). Since the client-side script

will always be on (provided the server has not shut down its side

of the connection), we need to be able to take down the client

by a keyboard-generated interrupt (as generated by pressing

Ctrl-C). This can be done by associating an appropriate signal

handler with the SIGINT signal. Signal handlers in Python are

specified by the signal() method of the signal module.

Line (R) of the script associates the signal handler of lines (N)

through (Q) with the SIGINT signal.

#!/usr/bin/env python

DemoExptClient.py

This code from Chapter 15 of the book "Scripting with Objects"

by Avinash Kak

import sys #(A)

import socket #(B)

import os #(C)

import signal #(D)

if len(sys.argv) < 3: #(E)

sys.exit("Need at least two command line arguments, the " +

"first naming the host and the second the port")

host, port = sys.argv[1], int(sys.argv[2]) #(F)

try:

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(G)

sock.connect((host, port)) #(H)

except socket.error, (value, message): #(I)

if sock: #(J)

sock.close() #(K)

print "Could not establish a client socket: " + message #(L)

sys.exit(1) #(M)

def sock_close(signum, frame): #(N)

global sock #(O)

sock.close #(P)

sys.exit(0) #(Q)

44

Computer and Network Security by Avi Kak Lecture 19

signal.signal(signal.SIGINT, sock_close) #(R)

spawn a child process

child_pid = os.fork(); #(S)

if child_pid == 0: #(T)

Child process: send information to the remote site:

while 1: #(U)

line = sys.stdin.readline() #(V)

sock.send(line) #(W)

else: #(X)

Parent process: receive information from the remote site:

while 1: #(Y)

byte = sock.recv(1) #(Z)

if byte == ’’: break #(a)

sys.stdout.write(byte) #(b)

sys.stdout.flush() #(c)

os.kill(child_pid, signal.SIGKILL) #(d)

� Before proceeding further with the demonstration described in

this section, download either the Perl versions or the Python

versions of the scripts from the lecture notes website and play

with them on your own machines. Fire up the server on your

own or a friend’s machine and the client on another machine. If

the server is running on a machine with the internet address

xxx.yyy.www.zzz, the client can interact with it with a command

like ‘DemoExptClient.py xxx.yyy.www.zzz 9000’. If the server machine

has a symbolic hostname, you can also use that name in place of

xxx.yyy.www.zzz in the command line on the client side.

� Assuming you have played with the server and client scripts as

described in the previous bullet, we are ready for the

demonstration that shows the client interacting with the

internet server through a socks proxy server.

45

Computer and Network Security by Avi Kak Lecture 19

� For the demonstration, I will run the server on

moonshine.ecn.purdue.edu by invoking one of the following two

commands:

DemoExptServer.pl

DemoExptServer.py

� Now we socksify the client by using one of the following

command lines:

socksify DemoExptClient.pl moonshine.ecn.purdue.edu 9000

socksify DemoExptClient.py moonshine.ecn.purdue.edu 9000

� The above call will work the same as when you tried the client

script without socksification. As a user on the client side, you

should notice no difference between the socksified call and the

unsocksified call.

� Of course, before you make the above invocation to socksify

you must fire up the danted server on the client machine. As

mentioned in Section 19.3, to easily see the client requests going

through the proxy server, start up the socks server with a

command line like:

sudo /usr/sbin/danted -d 1

46

Computer and Network Security by Avi Kak Lecture 19

When you bring up the socks server in this debugging mode

(with the debugging level set to 1), you can actually see it

making DNS queries and eventually talking to the internet

server on behalf of the socks client. Of course, as previously

mentioned, for “production” purposes you’d fire up the proxy

server by

sudo /etc/init.d/danted start

and stop it by

sudo /etc/init.d/danted stop

47

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.4 SQUID

� If your primary interest is in controlling access to web (HTTP,

HTTPS) and FTP resources, you can use the very popular

Squid proxy for that. As with SOCKS, Squid can also be used

as an anonymizing proxy server.

� For home, small business, or enterprise level applications, it is

easy to configure Squid to do the following:

– Through a combination of ACL (Access Control List) and

http access directives in the config file to control who is allowed to
connect with the proxy from what IP addresses.

– To designate a list of domains that would remain blocked for all
access through the proxy. [Let’s say you are running a small business and you

want all access to, say, Netflix denied, you can easily do with a single line directive in the

config file.]

– You can easily designate the times during the day, or even during a
week, when the proxy should allow certain types of access, with the

access remaining closed at other times.

� Let’s consider the following home application of Squid: As you

know, modern technologies have made raising kids even more

challenging than what used to be case. Now, in addition to

48

Computer and Network Security by Avi Kak Lecture 19

worrying about their physical whereabouts, you also have to

worry about their whereabouts in cyberspace. With a Squid

proxy running on one of your home machines, you could block

access to a list of websites that you don’t want your kids to

visit. And you could also designate a set of websites that the

kids would be able to visit only during specific times of the

day. You would be able to all of this with a just a couple of

directives in the config file of the proxy server.

� Although very easy to use for access control, Squid is also

widely deployed by ISP’s for web caching.

� You can install Squid on your own Linux laptop for personal

web caching for an even faster response than an ISP can

provide. Web caching means that if you make repeated requests

to the same web page and there exists a web proxy server

between you and the source of the web page, the proxy server

will send a quick request to the source to find out if the web

page was changed since it was last cached. If not, the proxy

server will send out the cached page. [This can result in considerable

speedup in web services especially for the downloading of popular web pages. A popular web site is

likely to be accessed by a large number of customers more or less constantly.]

� Squid supports ICP (Internet Cache Protocol, RFC2186, 2187),

HTCP (Hyper Text Caching Protocol), CARP (Cache Array

Routing Protocol), and WCCP (Web Cache Coordination

49

Computer and Network Security by Avi Kak Lecture 19

Protocol).

� On account of the protocols mentioned above, you can link up

the Squid proxy serves running at different places a network

through parent-child and sibling relationships. If a child

cache cannot find an object, it passes on the request to the

parent cache. If the parent cache itself does not have the object,

it fetches and caches the object and then passes it to on to the

child cache that made the original request. Sibling caches are

useful for load distribution. Before a query goes to the parent

cache, the query is sent to adjacent sibling caches.

� Since Squid is a caching proxy server, it must avoid returning to

the clients objects that are out of date. So it automatically

expires such objects. You can set the refresh time in the

configuration file to control how quickly objects are expired.

� To the best of my understanding, the more recent versions of

the Squid proxy only maintain an in-memory cache for the web

objects. [The older versions used to dump the web objects in disk files that were typically

stored in the directories /var/spool/squid or /var/spool/squid3]

� Squid was originally derived from the Harvest project. More

on that in Section 19.5.

50

Computer and Network Security by Avi Kak Lecture 19

� The home page for Squid:

http://www.squid-cache.org/

� Windows has its own version of web proxy for caching internet

objects and for performance acceleration of web services. It is

called the Microsoft Internet Security and Acceleration Server

(ISA Server).

51

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.4.1 Starting, Stopping, and Configuring
the Squid Proxy Server

Listed in this subsection are the steps for installing, running, and

configuring the Squid proxy for fun and profit. I have summarized

this information from the following two sources:

https://help.ubuntu.com/lts/serverguide/squid.html.en

https://phoenixnap.com/kb/setup-install-squid-proxy-server-ubuntu

I have installed the Squid proxy both in the laptop that I use for

my classroom demos and on moonshine.ecn.purdue.edu. My

classroom demos of Squid involve both these installs of Squid.

Here are the steps:

1. Obviously, you would first need to install Squid. The recommended

approach is to call

sudo apt-get update

to ensure that your Ubuntu install is up-to-date and to then invoke

sudo apt-get install squid

2. After you have installed Squid as shown above, start by changing the

settings in your browser so that all outgoing requests for webpages are
routed through a Squid proxy running at port 3128. For that,

52

https://help.ubuntu.com/lts/serverguide/squid.html.en
https://phoenixnap.com/kb/setup-install-squid-proxy-server-ubuntu

Computer and Network Security by Avi Kak Lecture 19

� go to the Network Setting page from the ”Preferences” page of
Firefox

� In the ”Connection Settings” dialog window, click on

Manual Proxy Configuration

� and enter the following values:

HTTP Proxy: 127.0.0.1 Port: 3128

� and then check the box for

"Use this proxy for all protocols"

The entry “HTTP Proxy: 127.0.0.1 Port: 3128” shown above
applies only if you are going to be running the Squid proxy on your

personal machine — which, in my case, would be my research laptop. It
is more impressive to give a classroom demo with the proxy running on
a different machine. For such demos, I change that string to

“HTTP Proxy: moonshine.ecn.purdue.edu Port: 3128”. Also note
that while 3128 is the default port for the Squid proxy, you can

designate any port that is available.

3. Next start the Squid proxy by

sudo systemctl start squid

4. You can check the status of Squid by

sudo systemctl status squid

5. If you want the Squid proxy to come up automatically at system start
up, execute the command

sudo systemctl enable squid

6. On the other hand, if you had previously enabled auto start for Squid
at system startup time and you want to disable that, execute

53

Computer and Network Security by Avi Kak Lecture 19

sudo systemctl disable squid

7. To stop the Squid proxy, execute

sudo systemctl stop squid

8. If the proxy is already running, but you want to restart it, because you
made changes to the config file:

sudo systemctl restart squid

or

sudo systemctl restart squid.service

By the way, you must restart the proxy after any change to the config

file.

9. That takes me to the subject of customizing the configuration with

which you run the proxy server. The config file is

/etc/squid/squid.conf

Before you make any changes to the file, make a copy of the original by

sudo cp /etc/squid/squid.conf /etc/squid/squid.conf.original

and make that copy read-only by:

sudo chmod a-w /etc/squid/squid.conf.original

You are going to need the ”sudo” privilege to edit this file. When I
want to change this file, I invoke

sudo emacs -nw /etc/squid/squid.conf

54

Computer and Network Security by Avi Kak Lecture 19

10. The default port for Squid is 3128. If you want to change it, you would
need to edit the line ”http port 3128” that is just below the comment

line ”Squid normally listens to port 3128”

11. Search for the lines that start with ”acl localnet”. By uncommenting
and editing some of those line, make sure you have something like the

following at the BOTTOM of the ACL section of the config file:

acl localnet src 10.0.0.0/8

acl localnet src 192.168.0.0/24

These would allow anyone from Class A and Class C private addresses

to connect with your proxy. If you want only a single other host to be
able to use your proxy, you can set that up by something like at the

BOTTOM of the ACL section:

acl localnet src 192.168.0.7

An alternative is to give a name to the range of IP addresses from

which you want your proxy to accept requests with a directive like the
following at the BOTTOM of the ACL section of the config file:

acl my_net_for_proxy_service src 192.168.0.0/24

and add the following at the TOP of the http access section of the

config file:

http_access allow my_net_for_proxy_service

In the squid.conf file that I use, the following four directives are

lumped together:

acl localnet src 10.0.0.0/8

acl localnet src 192.168.0.0/24

acl my_net_for_proxy_service src 10.0.0.0/8

http_access allow my_net_for_proxy_service

55

Computer and Network Security by Avi Kak Lecture 19

Note that the semantics of the directive in the first line are the not
same as in the third line. The first line would only apply if the host on

which the proxy is installed also has a 10.xx.xx.xx address. On the
other hand, the directives in the third and fourth lines apply for all

incoming requests whose source IP addresses are in the 10.0.0.0/8
range. [One can give two types of in-class demos with Squid: with the Squid proxy installed

on the laptop itself and with the Squid proxy installed on a remote server whose symbolic

name is, in my case, moonshine.ecn.purdue.edu and whose IP address is 128.46.144.123. For the

proxy on moonshine to accept a request from my laptop in the classroom, I need the last two

directives shown above. My laptop is always on the Purdue WiFi system with a class A private

IP address in the range 10.0.0.0/8.]

12. Squid also has the notion of ”Safe ports”, these being the only ports
that Squid will forward. That is, if an incoming request received by the

proxy server is for one of these ports at the destination server, it will let
that request through. If the port requested at the destination port is

outside of the designated Safe ports, they would not go through the
server. If you suppose you want your proxy to forward only the HTTP

and HTTPS requests, you would need to make sure that for the
Safe ports, only the following entries exist in your squid.conf file:

acl Safe_ports port 80

acl Safe_ports port 443

13. Here is a feature that can be very useful if you are raising kids and you

want to limit their access to the web to certain times of the day: Insert
the following directives at the BOTTOM of the ACL section of the
config file:

acl my_net_for_proxy_service src 192.168.0.0/24

acl access_hours time M T W T F 18:00-20:00

And add the following to the TOP of the http access section:

http_access allow my_net_for_proxy_service access_hours

56

Computer and Network Security by Avi Kak Lecture 19

14. For the same purpose as indicated above, you can also ask Squid to
block certain websites. The easiest way to do this is by adding the

following two lines just below where you see the string ”INSERT YOUR
OWN RULE(S) HERE” in the config file:

acl toblock dstdomain .facebook.com .twitter.com

http_access deny toblock

Starting the domain names with a dot means that you also want to
block any webpages coming from the subdomains of the main domain.

15. I believe you are also allowed to sudo-create a text file and place the

names of all the domains you want blocked in the text file. For
example, I could create a file with a name something like ”blocked.acl”

and enter in it the following sorts of strings:

.facebook.com

.twitter.com

To make the config file aware of the entries in your ”blocked.acl” file,
make the following entry at the BOTTOM of the ACL section

acl blocked_websites dstdomain \/etc/squid/blocked.acl"

and make the following entry at the TOP of the http access section:

http_access deny blocked_websites

16. You can also make the use of your proxy server subject to password

based authentication of the clients. See the instructions at the
phoenixnap.com link shown previously.

17. To see Squid doing its job, run the following command in a terminal

window:

sudo tail -f /var/log/squid/access.log

57

Computer and Network Security by Avi Kak Lecture 19

What makes this log file particularly useful is that it shows whether an
object was doled out from the cache or obtained from the origin server.

The access.log file uses the following format for its entries

timestamp elapsed client action/code size method URI ident ...

Here are a couple of lines from the entries in the file

access.log:

1553697116.978 20197 127.0.0.1 TCP_TUNNEL/200 7560 CONNECT collect.tealiumiq.com:443 - HIER_DIRECT/52.204.169.33

1553697095.737 735 127.0.0.1 TCP_MISS/301 1040 GET http://ibm.biz/dsgcheck - HIER_DIRECT/129.33.26.222 text/html

1553697094.969 14 127.0.0.1 TCP_MISS_ABORTED/000 0 GET http://www.research.ibm.com/favicon.ico - HIER_DIRECT/129.34.20.3

1553697095.108 107 127.0.0.1 TCP_MISS/200 3858 GET http://1.www.s81c.com/common/v18/css/tables.css - HIER_DIRECT/2600:1407:21:294

1553697096.949 337 127.0.0.1 TCP_MISS/200 194130 GET http://www.research.ibm.com/university/images/leadspace_1.j

1553700599.774 0 127.0.0.1 TCP_DENIED/403 4018 CONNECT www.facebook.com:443 - HIER_NONE/- text/html

where the first entry for the timestamp is unix time — it is the

number of seconds from Jan 1, 1970. The action TCP MISS means

that the internet object requested was NOT in the cache and

had to be fetched from the remote server. The action TCP TUNNEL

is forwarding requests to the destination server through a

CONNECT tunnel which is typically used for forwarding the

messages during the handshaking part of the SSL protocol. [As

to what is meant by a TUNNEL here, see

https://wiki.squid-cache.org/Features/HTTPS. Also see Section 19.6 of this

lecture.] By the way, when you see TCP HIT for action, that

means that a valid copy of the object was found in the cache

and retrieved from it. Similarly TCP REFRESH HIT means that an

expired copy of the object was found in the cache. When that

happens, Squid makes an If-Modified-Since request to the

58

https://wiki.squid-cache.org/Features/HTTPS

Computer and Network Security by Avi Kak Lecture 19

origin server. If the response from the origin server is

Not-Modified, the cached object is returned to the client. See

the following link for the meanings associated with these and

other tags in the access.log log file:

https://wiki.squid-cache.org/SquidFaq/SquidLogs#access.log_native_format_in_detail

18. In old days, we would also do

sudo tail -f /var/log/squid/cache.log

to see how the web objects were being cached or doled out.

However, in the limited amount of time I have had to play with

Squid, I am not able to get anything useful out of this cache log.

It seems to me — hopefully I am not entirely off the mark on

this — that the more recent versions of Squid only do

in-memory caching. My guess is that the cache log is meant

only for a disk based cache.

59

https://wiki.squid-cache.org/SquidFaq/SquidLogs#access.log_native_format_in_detail

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.5 HARVEST: A SYSTEM FOR
INFORMATION GATHERING AND

INDEXING

� Since Squid was borne out of the Harvest project and since the Harvest

project has played an influential role in the design of web-based search
engines, I believe you need to know about Harvest.

� You can download Harvest from http://sourceforge.net. Download
the source tarball in any directory (on my Linux laptop, this directory is

named harvest). Unzip and untar the archive. Installation is very easy
and, as in most cases, involves only the following three steps as root:

./configure

make

make install

By default, this will install the configuration files and the

executables in a directory called /usr/local/harvest. Set

the environment variable HARVEST_HOME to point to this

directory. So if you say ’echo $HARVEST_HOME’, you should get

/usr/local/harvest

60

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.5.1 What Does Harvest Really Do?

� Harvest gathers information from designated sources that may be reside
on your own hard disk (it could be all of your local disk or just certain

designated directories and/or files) or specified sources on the web in
terms of their root URL’s.

� Harvest then creates an efficiently searchable index for the gathered

information. Ordinarily, an index is something you see at the end of a
textbook. It is the keywords and key-phrases arranged alphabetically

with pointers to where one would find them in the text book. An
electronic index does the same thing — it is an efficiently searchable
database of keywords and key-phrases along with pointers to the

documents that contains them. More formally, an index is an
associative table of key-value pairs where the keys are the words and

the values the pointers to documents that contain those words.

� Eventually, Harvest serves out the index through an index server. A
user interacts with the index server through a web interface.

� The index server in Harvest is called a broker. (Strictly speaking, a
Harvest broker first constructs the index and then serves it

out through a web interface.)

� Just as you can download the Google tool for setting up a search facility
for all of the information you have stored on the hard disk of a Windows

61

Computer and Network Security by Avi Kak Lecture 19

machine, you can do the same on a Linux machine with Harvest.

62

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.5.2 Harvest: Gatherer

� Briefly speaking, a Gatherer’s job is to scan and summarize the

documents.

� Each document summary produced by a Gatherer is a SOIF

object. SOIF stands for Summary Object Interchange Format.

Here is a very partial list of the SOIF document attributes:

Abstract, Author, Description, File-Size,

Full-Text, Gatherer-Host, Gatherer-Name, Gatherer-

Port, Gatherer-Version, Update-Time, Keywords,

Last-

Modification-Time, MD5, Refresh Rate,

Time-to-Live, Title, Type,

� Before a Gatherer scans a document, it determines its type and

makes sure that the type is not in a stoplist. Files named

stoplist.cf and allowlist.cf play important roles in the

functioning of a Gatherer. You would obviously not want

audio, video, bitmap, object code, etc., files to be summarized,

at least not in the same manner as you’d want files containing

ASCII characters to be summarized.

63

Computer and Network Security by Avi Kak Lecture 19

� Gatherer sends the document to be summarized to the

Essence sub-system. It is Essence that has the competence to

determine the type of the document. If the type is acceptable

for summarization, it then applies a type-specific summary

extraction algorithm to the document. The executables that

contain such algorithms are called summarizers; these

filenames end in the suffix .sum.

� The Essence system recognizes a document type in three ways:

(1) by URL naming heuristics; (2) by file naming heuristics;

and, finally, (3) by locating identifying data within a file, as

done by the Unix file command. These three type recognition

strategies are applied to a document in the order listed here.

� A Gatherer makes its SOIF objects available through the

gatherd

daemon server on a port whose default value is 8500.

� When you construct a Gatherer, it is in the form of a directory

that contains two scripts

RunGatherer

RunGatherd

The first script, RunGatherer, starts the process of gathering

the information whose root nodes are declared in the Gatherer

64

Computer and Network Security by Avi Kak Lecture 19

configuration file. If you are trying to create an index for your

entire home directory (that runs into, say, several gigabytes), it

could take a couple of hours for the RunGatherer to do its job.

� When the first script, RunGatherer, is done, it automatically

starts the gatherd server daemon. For a database collected by

a previous run of RunGatherer, you’d need to start the server

daemon gatherd manually by running the script RunGatherd.

65

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.5.3 Harvest: Broker

� As mentioned previously, a Broker first constructs an index from

the SOIF objects made available by the gatherd server daemon

and serves out the index on a port whose default value is 8501.

� By default, Harvest uses Glimpse as its indexer. The programs

that are actually used for indexing are

/usr/local/harvest/lib/broker/glimpse

/usr/local/harvest/lib/broker/glimpseindex

Note that /usr/local/harvest/ is the default installation

directory for the Harvest code.,

� When glimpse is the indexer, the broker script RunBroker

calls on the following server program

/usr/local/harvest/lib/broker/glimpseserver

to serve out the index on port 8501.

� See the User’s Manual for how to use other indexers with

Harvest. Examples of other indexers would be WAIS (both

freeWAIS and commercial WAIS) and SWISH. The User’s

Manual is located at

66

Computer and Network Security by Avi Kak Lecture 19

DownLoadDirectory/doc/pdf/manual.pdf

DownLoadDirectory/doc/html/manual.html

67

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.5.4 How to Create a Gatherer?

� Let’s say I want to create a gatherer for my home directory on

my Linux laptop. This directory occupies about 3 gigabytes of

space. The steps for doing so are described below.

� We will call this gatherer KAK_HOME_GATHERER.

� To create this gatherer, I’ll log in as root and do the following:

cd $HARVEST_HOME (this is /usr/local/harvest)

cd gatherers

mkdir KAK_HOME_GATHERER (As already noted, this will also be the

name of the new gatherer)

cd KAK_HOME_GATHERER

mkdir lib (’lib’ will contain the configuration files

used by the gatherer. See explanation

below.)

mkdir bin (’bin’ will contain any new summarizers

you may care to define for new document

types.)

cd lib

cp $HARVEST_HOME/lib/gatherers/*.cf .

cp $HARVEST_HOME/lib/gatherers/magic .

68

Computer and Network Security by Avi Kak Lecture 19

� The last two steps listed above will deposit the following files in

the lib directory of the gatherer directory:

bycontent.cf

byname.cf

byurl.cf

magic

quick-sum.cf

stoplist.cf

allowlist.cf

� About the first three files listed above, these three files are to

help the Essence system to figure out the type of a document.

The bycontent.cf file contains the content parsing heuristics

for type recognition by Essence. Similarly, the file byname.cf

contains the file naming heuristics for type recognition; and the

file byurl.cf contains the URL naming heuristics for type

recognition. Essence uses the above three files for type

recognition in the following order: byurl.cf, byname.cf, and

bycontent.cf. Note that the second column in the

bycontent.cf is the regex that must match what would be

returned by calling the Unix command ’file’ on a document.

� About the file magic, the numbers shown at the left in this file

69

Computer and Network Security by Avi Kak Lecture 19

are used by the Unix ’file’ command to determine the type of a

file. The ’file’ command must presumable find a particular

string at the byte location given by the magic number in order

to recognize a file type. The bytes that are found starting at the

magic location must correspond to the entry in the third

column of this file.

� About the file quick-sum.cf, this file contains some regexes

that can be used for determining the values for some of the

attributes needed for the SOIF summarization produced by

some of the summarizers.

� About the file stoplist.cf, it contains a list of file object

types that are rejected by Essence. So there will be no SOIF

representations produced for these object types.

� For my install of Harvest, I found it easier to use an

allowlist.cf file to direct Essence to accept only those

document types that are placed in allowlist.cf. However,

now you must now supply Essence with the ’-allowlist’ flag.

This flag is supplied by including the line

Essence-Options: -allowlist

in the header section of the KAK_HOME_GATHERER.cf config file

to be described below.

70

Computer and Network Security by Avi Kak Lecture 19

� Now do the following:

cd .. (this puts you back in KAK_HOME_GATHERER directory)

For now, ignore the bin sub-directory in the gatherer directory.

The bin directory is for any new summarizers you may create.

� Now copy over the configuration file from one of the “example”

gatherers that come with the installation:

cp ../example-4/example-4.cf KAK_HOME_GATHERER.cf

In my case, I then edited the KAK_HOME_GATHERER.cf file so

that it had the functionality that I needed for scanning my home

directory on the laptop. My KAK_HOME_GATHERER.cf looks like

#

KAK_HOME_GATHERER.cf - configuration file for a Harvest Gatherer

#

It is possible list 23 options below before you designate RootNodes

and LeafNodes. See page 38 of the User’s Manual for a list of these

options.

Note that the default for TTL is one month and for Refresh-Rate

is one week. One week equals 604800 seconds. I have set TTL

to three years and the Refresh-Rate to one month.

Post-Summarising did not work for me. When I run RunGatherer

I get the error message in log.errors that essence cannot parse

the rules file listed against this option below.

Gatherer-Name: Avi Kak’s Gatherer for All Home Files

Gatherer-Port: 8500

Access-Delay: 0

Top-Directory: /usr/local/harvest/gatherers/KAK_HOME_GATHERER

Debug-Options: -D40,1 -D64,1

Lib-Directory: ./lib

71

Computer and Network Security by Avi Kak Lecture 19

Essence-Options: --allowlist ./lib/allowlist.cf

Time-To-Live: 100000000

Refresh-Rate: 2592000

#Post-Summarizing: ./lib/myrules

Note that Depth=0 means unlimited depth of search.

Also note that the content of the RootNodes element needs to be

in a single line:

<RootNodes>

file:///home/kak/ Search=Breadth Depth=0 Access=FILE \

URL=100000,mydomain-url-filter HOST=10,mydomain-host-filter

</RootNodes>

� Similarly, copy over the scripts RunGatherer and RunGatherd

from one of the example gatherers into the

KAK_HOME_GATHERER directory. You would need to edit at

least two lines in RunGatherer so that the current directory

is pointed to. You’d also need to edit the last line of

RunGatherd for the same reason. My RunGatherer script

looks like

#!/bin/sh

HARVEST_HOME=/usr/local/harvest; export HARVEST_HOME

The following sets the local disk cache for the gatherer to 500 Mbytes.

HARVEST_MAX_LOCAL_CACHE=500; export HARVEST_MAX_LOCAL_CACHE

The path string added at the beginning is needed by essence to

to locate the new summarizer ScriptFile.sum

PATH=${HARVEST_HOME}/gatherers/KAK_HOME_GATHERER/bin:\

${HARVEST_HOME}/bin:${HARVEST_HOME}/lib/gatherer:${HARVEST_HOME}/lib:$PATH

export PATH

72

Computer and Network Security by Avi Kak Lecture 19

NNTPSERVER=localhost; export NNTPSERVER

cd /usr/local/harvest/gatherers/KAK_HOME_GATHERER

sleep 1

‘rm -rf data tmp log.*‘

sleep 1

exec Gatherer "KAK_HOME_GATHERER.cf"

and my RunGatherd script looks like

#!/bin/sh

#

RunGatherd - Exports the KAK_HOME_GATHERER Gatherer’s database

#

HARVEST_HOME=/usr/local/harvest; export HARVEST_HOME

PATH=${HARVEST_HOME}/lib/gatherer:${HARVEST_HOME}/bin:$PATH; export PATH

exec gatherd -d /usr/local/harvest/gatherers/KAK_HOME_GATHERER/data 8500

Note that I have included the command

’rm -rf tmp data log.* in the RunGatherer script for

cleanup before a new gathering action.

� Similarly, copy over the filter files

mydomain-url-filter

mydomain-host-filter

from the example-5 gatherer into the KAK_HOME_GATHERER

directory. Both of these files are mentioned against the

RootNode in the gatherer configuration file

KAK_HOME_GATHERER.cf. My mydomain-url-filter file

looks like

73

Computer and Network Security by Avi Kak Lecture 19

URL Filter file for ’mydomain’

#

Here ’URL’ really means the pathname part of a URL. Hosts and ports

dont belong in this file.

#

Format is

#

Allow regex

Deny regex

#

Lines are evaulated in order; the first line to match is applied.

#

The files names that are denied below will not even be seen by the

essence system. It is more efficient to stop files BEFORE the

gatherer extracts information from them. Compared to this action by

mydomain-url-filter, when files are stopped by the entries in

byname.cf, bycontent.cf, and byurl.cf, that happens AFTER the

information is extracted from those files by the gatherer.

Deny \.gif$ # don’t retrieve GIF images

Deny \.GIF$ # #

Deny \.jpg$ # #

Deny \.JPG$ # #

Deny /\..+ # don’t index dot files

Deny \.pl\. # don’t index OLD perl code

Deny \.py\. # don’t index OLD python code

Deny /home/kak/tmp # don’t index files in my tmp

Deny ~$ # don’t index tilde files

Deny /, # don’t index comma files

Allow .* # allow everything else.

and my mydomain-host-filter file looks like

Host Filter file for ’mydomain’

#

Format is

#

Allow regex

74

Computer and Network Security by Avi Kak Lecture 19

Deny regex

#

Lines are evaulated in order; the first line to match is applied.

#

’regex’ can be a pattern for a domainname, or IP addresses.

#

Allow .*\.purdue\.edu # allow hosts in Purdue domain

#Allow ^10\.128\. # allow hosts in IP net 10.128.0.0

Allow ^144\.46\. # allow hosts in IP net 144.46.0.0

Allow ^192\.168\. # allow hosts in IP net 192.168.0.0

Deny .* # deny all others

� Apart from the fact that you may wish to create your own

summarizers (these would go into the bin directory of your

gatherer, you are now ready to run the RunGatherer.

� You can check the output of the gatherd daemon that is

automatically started by the RunGatherer script after it has

done its job by

$HARVEST_HOME/bin/gather localhost 8500 | more

assuming that the database collected is small enough. You can

also try

cd data

$HARVEST_HOME/lib/gatherer/gdbmutil stats PRODUCTION.gdbm

This will return the number of SOIF objects collected by the

gatherer.

75

Computer and Network Security by Avi Kak Lecture 19

� As already mentioned, if you create a new summarizers in the

bin directory of the gatherer, you also need a pathname to the

this bin directory in the RunGatherer script.

� Finally, in my case, the KAK_HOME_GATHERER had trouble

gathering up Perl and Python scripts for some reason. I got

around this problem by defining an object type ScriptFile

in the bycontent.cf configuration file in the lib directory of

the gatherer. I also defined an object type called Oldfile in

the byname.cf configuration file of the same directory. Since I

did not include the type OldFile in my allowlist.cf,

essence did not summarize any files that were of type OldFile.

However, I did include the type ScriptFile in allowlist.cf.

So I had to provide a summarizer for it in the bin directory of

the gatherer. The name of this summarizer had to be

ScriptFile.sum.

76

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.5.5 How to Create a Broker?

� Log in a root and start up the httpd server by

sudo /usr/local/apache2/bin/apachectl start

Actually, the httpd server starts up automatically in my case

when I boot up the laptop since the above command is in my

/etc/rc.local file.

� Now do the following:

cd $HARVEST_HOME/bin

CreateBroker

This program will prompt for various items of information

related to the new broker you want to create. The first it would

ask for is the name you want to use for the new broker. For

brokering out my home directory on the Linux laptop, I called

the broker KAK_HOME_BROKER. This then becomes the name of

the directory under $HARVEST_HOME/brokers for the new

broker. If you previously created a broker with the same

name, you’d need to delete that broker directory in the

$HARVEST_HOME/brokers directory. You would also need to

delete a subdirectory of that name in the $HARVEST_HOME/tmp

directory.

77

Computer and Network Security by Avi Kak Lecture 19

� Another prompt you get from the CreateBroker program is

“Enter the name of the attribute that will be displayed to the

user as one-line object description in search results

[description]:”. The ’description’ here refers to the SOIF

attribute that will be displayed in the first line when query

retrieval is displayed in the browser.

� Toward to the end of the broker creation procedure, say ’yes’ to

the prompt “Would you like to add a collection point to the

Broker now?”. This will connect the gatherd daemon process

running on port 8500 with the broker process.

� You will be prompted one more time with the same question as

listed above. Now say “no”.

� CreateBroker deposits the following executable shell file

RunBroker (Make sure you kill off any previously

running broker processes before you

do this.)

in the new broker directory.

� Now fire up the broker by

RunBroker -nocol

in the broker directory. The option ‘-nocol’ is to make certain

that the gatherer does not start collecting again when you

78

Computer and Network Security by Avi Kak Lecture 19

invoke the RunBroker command. We are obviously assuming

that you have established a gatherer separately and that it is

already up and running. If you have gathered up the

information but the server ’gatherd’ is not running to serve

out the SOIF objects, execute the RunGatherd script in the

gatherer directory. The RunBroker command starts up the

glimpseindex daemon server.

� When you ran CreateBroker, that should also have spit out a

URL to an HTML file that you can bring up in the browser to

see the new searchable database. Or, in the broker directory,

you can just say

cd $HARVEST_HOME/brokers/KAK_HOME_BROKER

firefox query.html

or

firefox index.html

or

firefox stats.html

� Whether or not you can see the query form page may depend

on whether you use the URL returned by the CreateBroker

command or whether you make a direct call with

’firefox query.html’. The former uses the HTTP protocol

and therefore goes through the Apache HTTPD server, whereas

the latter would use the FILE protocol and would be handled

directly by the firefox web browser.

79

Computer and Network Security by Avi Kak Lecture 19

� Assuming you use the http protocol for seeing the query form,

let’s say you get the error number 500 (in the error_log file in

the $APACHEHOME/logs directory). This means that

$APACHEHOME/conf/httpd.conf is misconfigured. In

particular, you need the following directive in the httpd.conf

file:

ScriptAlias /Harvest/cgi-bin/ "/usr/local/harvest/cgi-bin/"

Alias /Harvest/ "/usr/local/harvest/"

<Directory "/usr/local/harvest">

Options FollowSymLinks

</Directory>

for the HTTPD server to be able to find the search.cgi that

is in the $HARVEST_HOME/cgi-bin/ directory.

� Finally, for the case of constructing an index for your own home

directory (such as my /home/kak/), you may be able to see the

search results, but clicking on an item may not return that item

in the browser. That is because of the security setting in firefox

browsers; this setting keeps the browser from displaying

anything in response to the FILE protocol (as opposed to the

HTTP protocol). You may to change the settings in the file

.mozilla/firefox/qwjvm1oo.default/user.js of your

home account for firefox to be able to show local files.

� After you have crated a new broker for a gatherer that

previously collected its database, make sure you execute the

80

Computer and Network Security by Avi Kak Lecture 19

following scripts:

RunGatherd (in the gatherer directory)

RunBroker (in the broker directory)

The former runs the gatherd daemon server to serve out the

SOIF objects on port 8500 and the latter first constructs the

index for the database and then run the glimpserver daemon

to serve out the index on port 8501.

� After you have started RunBroker, watch the cpu meter. For

the entire home directory, it may take a long time (up to 20

minutes) for the broker to create the index from the SOIF

records made available by the gatherd daemon. It is only

after the RunBroker command has finished creating an

index for the database that you can carry out any search in

the browser.

� If your scripts RunGatherd and RunBroker scripts are running

in the background, if you want to search for something that is

being doled out by Harvest, you can point your browser to

http://localhost/Harvest/brokers/KAK_HOME_BROKER/admin/admin.html

http://pixie.ecn.purdue.edu/Harvest/brokers/KAK_HOME_BROKER/query.html

� I have placed the command strings

81

Computer and Network Security by Avi Kak Lecture 19

/usr/local/harvest/gatherers/KAK_HOME_GATHERER/RunGatherd

/usr/local/harvest/brokers/KAK_HOME_BROKER/RunBroker

in /etc/rc.local so that the SOIF object server gatherd

and the index server glimpseserver will always be on when

the machine boots up.

82

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.6 CONSTRUCTING AN SSH TUNNEL
THROUGH AN HTTP PROXY

� SSH tunneling through HTTP proxies is typically carried out by

sending an HTTP request with the method CONNECT to the

proxy. The HTTP/1.1 specification reserves the method

CONNECT to enable a proxy to dynamically switch to being a

tunnel, such as an SSH tunnel (for SSH login) or an SSL tunnel

(for the HTTPS protocol). [Here are all the HTTP/1.1 methods:

GET, POST, OPTIONS, HEAD, PUT, DELETE, TRACE, and

CONNECT.]

� The two very commonly used programs that send a CONNECT

request to an HTTP proxy are corkscrew and connect.

� The first of these, corkscrew, comes as a tar ball with config,

make, and install files. You install it by calling, ‘./config’,

‘make’, and ‘make install’. My advice would be to not go

for ‘make install’. Instead, place the corkscrew executable

in the .ssh directory of your home account.

� The second of these, connect, comes in the form of a C

program, connect.c, that is compiled easily by a direct call to

83

Computer and Network Security by Avi Kak Lecture 19

gcc. Again place the executable, connect, in your .ssh

directory.

� The most convenient way to use either the corkscrew

executable or the connect executable is by creating a ‘config’

file in your .ssh directory and making ‘ProxyCommand’ calls to

these executables in the ‘config’ file. Here is my

~kak/.ssh/config file

Host=*

The ’-d’ flag in the following ProxyCommand is for debugging:

ProxyCommand ~/.ssh/connect -d -H localhost:3128 %h %p

ProxyCommand ~/.ssh/connect -H localhost:3128 %h %p

ProxyCommand ~/.ssh/corkscrew localhost 3128 %h %p

where the Host=* line means that the shown

“ProxyCommand” can be used to make an SSH connection

with all hosts. A regex can be used in place of the wildcard ’*’ if

you want to place restrictions on the remote hostnames to

which the proxycommand applies. What you see following the

keyword “ProxyCommand” is what will get invoked when

you call something like ’ssh moonshine.ecn.purdue.edu’.

For the uncommented line that is shown, this means that the

corkscrew program will be called to tunnel through Squid by

connecting with it on its port 3128. (See the manpage for

ssh_config) If you want to use connect instead of corkscrew,

comment out and uncomment the lines in the above file as

needed.

� But note that when your .ssh directory contains a ‘config’ file,

84

Computer and Network Security by Avi Kak Lecture 19

all invocations of SSH, even by other programs like ‘rsync’ and

‘fetchmail’, will be mediated by the content of the config file in

the .ssh directory.

� To get around the difficulty that may be caused by the above,

you can use the shell script ‘ssh-proxy’ (made available by Eric

Engstrom) in your .ssh directory.

� You can construct an SSH tunnel through an HTTP proxy

server only if the proxy server wants you to. Let’s say that

SQUID running on your own machine is your HTTP proxy

server. Most sites running the SQUID proxy server restrict

CONNECT to a limited number of whitelisted hosts and ports.

In a majority of cases, the proxy server will allow CONNECT

outgoing requests to go only to port 443. (This port is

monitored by HTTPS servers, such as the Purdue web servers,

for secure web communication with a browser. When you make

an HTTP request to Purdue, it goes to port 80 at the Purdue

server. However, when you make an HTTPS request, it goes to

port 443 of the server.)

� An HTTP proxy, such as SQUID, must allow the CONNECT

method to be sent out to the remote server since that is what is

needed to establish a secure communication link. I had to place

the following lines in the squid.conf file for my SQUID proxy

server to allow for an SSH tunnel:

85

Computer and Network Security by Avi Kak Lecture 19

acl SSH_port port 22 # ssh

http_access allow CONNECT SSH_port

http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

� What makes getting the corkscrew/connect based tunnels

through the SQUID proxy server to work very frustrating was

that even when you completely kill the squid process by sending

it the ’kill -9 pid’ command, and then when you try to

make an ssh login, you get the following sort of an error message

ssh_exchange_identification: Connection closed by remote host

This message holds no clue at all to the effect that the proxy

server, SQUID, has been shut down. I believe the message is

produced by the SSH client program. I suppose that from the

perspective of the client program, the proxy server is no

different from a remote server.

� To see you have made an SSH connection through the SQUID

proxy, check the latest entry in the log file

$SQUID_HOME/var/logs/access.log.

� So what is one supposed to do when the HTTP proxy server

won’t forward a CONNECT request to the remote SSH server

on, say, port 22 (the standard port that the SSH server on the

remote machine will be monitoring)?

86

Computer and Network Security by Avi Kak Lecture 19

� If the highly restrictive proxy server on your company’s premises

would not send out CONNECT requests to the SSHD standard

port 22 on the remote machine, you could try the following ploy:

You could ask the SSHD server (running on a machine like

moonshine.ecn.purdue.edu) to monitor a non-standard port

(in addition to monitoring the standard port) by:

/usr/local/sbin/sshd -p 563

where the port 563 is typically used by NNTPS. [The

assumption is that the highly restrictive HTTP proxy server

that your company might be using would allow outbound proxy

connections for ports 563 (NNTPS) and 443 (HTTPS). If 563

does not work, try 443.]

� Now, on the client side, you can place the following line in the

~/.ssh/config file:

Host moonshine.ecn.purdue.edu

ProxyCommand corkscrew localhost 3128 moonshine.ecn.purdue.edu 563

� Another approach is to use Robert MaKay’s GET/POST based

”tunnel” that uses Perl scripts at both ends of a SSH

connection. There is only one disadvantage to this method: you

have to run a server script also in addition to the client script.

But the main advantage of this method is that it does NOT

care about the CONNECT restrictions in the web proxy that

your outbound http traffic is forced to go through.

87

Computer and Network Security by Avi Kak Lecture 19

Back to TOC

19.7 HOMEWORK PROBLEMS

1. What do we mean by “shim layer” in the TCP/IP protocol

stack?

2. What is an anonymizing proxy in a network? In which layer of

the TCP/IP protocol stack does an anonymizing proxy server

belong?

3. Let’s say you are installing a SOCKS proxy for a LAN that you

are the admin for. This proxy requires that you install a

SOCKS server on a designated machine that is directly

connected to the internet and that you install the SOCKS client

software on all of the machines in the LAN. Why do you think

you need both a server and a client for the proxy to work?

4. What is the standard port assigned to the SOCKS server?

5. What are the main differences between the SOCKS4 and the

SOCKS5 implementations of the SOCKS protocol?

6. What are the essential elements of the negotiation between a

88

Computer and Network Security by Avi Kak Lecture 19

SOCKS client and a SOCKS server before the latter agrees to

forward the client’s request? How does the server tell the client

that the latter’s request cannot be granted?

7. Why is a SOCKS proxy also referred to as a “circuit level

proxy?”

8. What is meant by socksifying an application?

9. What is meant by jargon phrases such as “port forwarding” and

“tunneling”?

10. How can you make sure that when you go through an

anonymizing proxy, your IP address is not visible to the remote

server?

11. What is web caching? How is an HTTP proxy used for web

caching?

12. What is the average size of an internet object — according to

folks who compile such stats? If an ISP allocates, say, 4 Gbytes

of memory to a web caching server like Squid, what is the

maximum number of internet objects that could be stored in

such a cache? Additionally, how much RAM would you need to

89

Computer and Network Security by Avi Kak Lecture 19

hold the object index for all the objects stored in the cache?

13. If you run a web caching proxy such as Squid on your own

laptop, how would you tell your browser that it needs to route

all its requests through the proxy?

14. What is the role of a cache manager vis-a-vis a proxy server

such as Squid?

15. The option ‘-D’ given to a SOCKS server when you first bring it

up means something that is completely different from what the

same option means for a Squid server. What is the difference?

16. What historical role has the Harvest information gathering and

indexing system played in the evolution of the modern internet

search engines?

17. What does a broker do in Harvest? Also, what is the function

of a gatherer?

90

