Lecture 2: Discrete Distributions, Normal Distributions

Chapter 1

Reminders

- Course website:
- www. stat.purdue.edu/~xuanyaoh/stat350
- Office Hour: Mon 3:30-4:30, Wed 4-5
- Bring a calculator, and copy Tables I - III.
- Start Hw\#1 now.
- Due by beginning of Next Fri class

Exercise 1

$$
f(x)=\left\{\begin{array}{cc}
2 e^{-2 x} & x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- Is this a density? Check the 3 properties

Exponential Distribution

- In fact, any variable x with density:

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad \lambda>0\right.
$$

is said to have an exponential distribution. Important!!!

- Exponentials model the "lifetime" or "lifespan" of many real life phenomena.

Terminology

- If variable x has an exponential density function $f(x)$, we say that x is exponentially distributed
- Or x has an exponential distribution
- What about a uniform density (see example (1) on Pg 29, Notes)? Normal? Etc.
- We say x is uniformly/normally/other-ly distributed
- Or x has a normal/uniform/other distribution

Discrete Distributions

- Discrete variables are treated similarly but are called mass functions instead of densities
- Example: toss a (fair) dice
- X can take any discrete value $1,2,3,4,5$, or 6
- Suppose you can throw a dice forever, you can imagine that you will get each number $1 / 6$ of the time
- The mass function will be a table, instead of a curve.
- What is the mass function of tossing a single dice?

Answer:

x	1	2	3	4	5	6
$p(x)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

Mass functions

- Similar to density functions, the mass function follows 3 properties:

1. $p(x) \geq 0$
2. $\sum p(x)=1$ - Summation over all possible x values
3. For any two numbers a and b with $a<b$, the proportion of values between a and b (inclusive)

$$
=p(a)+\ldots . .+p(b)
$$

Another example-tossing a coin

- Suppose you toss a coin 10 times. Let $x=$ the number of heads in 10 tosses.
- What are the possible values of x ?
- What is the mass function? (We'll come back to this later)
- Here x actually follows a Binomial Distribution
- x has a Binomial mass function
- x is Binomially distributed

Specific distributions

- We now look at several important distributions
- Continuous
- Normal
- Discrete
- Binomial
- Poisson

1.4 Normal distribution

- Back to continuous distributions...
- A very special kind of continuous distribution is called a Normal distribution. It's density function is:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad \text { where } \sigma>0,-\infty<x<\infty
$$

- where μ and σ are specific parameters of the function.

Normal distribution

- Most widely encountered distribution: lots of real life phenomena such as errors, heights, weights, etc
- Chapter 5: how to use the normal distribution to approximate many other distributions (Central Limit Theorem)
- Particularly useful when using sums or averages!

Normal Density Function

- Verifies 2 properties
$-f(x)$ is indeed nonnegative
- Area under the curve is indeed 1 (can't integrate normally but it does integrate to 1)
- Bell-shaped and Unimodal
- Centered at μ
- σ controls the spread
- Larger σ, wider distribution
- Smaller o, taller and narrower
- Distance from μ to point of inflection

Finding probabilities for normal data

- Tables for a normal distribution with $\mu=0$ and $\sigma=1$ are available
- First learn how to find out different probabilities for the the standard normal
- Then we'll learn to convert ANY normal distribution to a standard normal and find the corresponding probability

Standard Normal Distribution

- Gets special "letter", z or z-score
- Always has $\mu=0$ and $\sigma=1$, so:

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}, \quad \text { where }-\infty<x<\infty
$$

- Again, we can't integrate but we have the Z table that gives us probabilities for specific areas of the z-curve.
- See table I or the front cover of the text.

TABLE A: STANDARD NORMAL PROBABILITIES (CONTINUED)

z	. 00	. 01	. 02	. 03	. 04	. 05	.06	.07	. 08	. 09
0.0	5000	. 5040	. 5080	. 5120	5160	. 5199	. 5239	. 5279	5319	5359
0.1	5398	5438	. 5478	. 5517	. 5557	5596	. 5636	. 5675	5714	5753
0.2	5793	. 5832	. 5871	.5910*	. 5948	5987	. 6026	,6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	6879
0.5	. 6915	. 6950	. 6985	.7019	:7054	. 7038	.7123	,7157	.7190	. 7224
0.6	. 7257	. 7291	. 7324	.7357	. 7389	. 7422	.7454	.7486.	.7517	.7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	.7764	. 7794	. 7823	. 7852
0.8^{1}	. 7881	. 7910	. 7939	.7967	. 7995	. 8023	.8051	, 8078	8106	8133
0.9	.8159	. 8186	. 8212	.8238	. 8264	8289	. 8315	. 8340	8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	.8531	. 8554	. 8577	. 8599	. 8521
1.1	. 8643	8065	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 88.49	. 8869	. 8888	.8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9065	.9082	. 9099	. 9115	. 9131	. 9147	9162	. 9177
1.4	. 9192	.9207	. 9222	. 9236	. 9251	. 9265	9279	. 5292	9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	9382	. 9394	. 9406	. 9418	9429	. 2441
1.6	9452	9463	. 9474	. 9484	9495	. 9505	,9515	. 7525	9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 2599	. 9608	, 9616	9625	. 9633
1.8	,9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	9699	. 9706
1.9	. 9713	9719	. 9726	.9732	. 9738	. 9744	. 9750	. 9756	9761	. 9767
20	. 9772	. 9778	. 9783	. 9788	9793	. 9798	. 9803	. 9608	. 9812	9817
2.1	. 9821	. 9828	. 9830	. 9834	9838	. 9842	. 9846	. 9850	. 9854	9857
2.2	.9861	. 9864	. 9863	. 9871	. 9875	. 9878	. 9881	. 9884	.9887	9890
2.3	. 9893	9896	. 9898	, 9901	.9904	. 9906	. 9909	. 9911	. 9913	9916
2.4	. 9918	9920	. 9922	. 9925	9927	. 9929	- 9931	. 9992	. 9934	9936
2.5	. 9938	9940	. 9941	. 9943	9945	. 9946	.9948	. 9949	. 9951	9152
2.6	. 9953	9955	. 9956	. 9957	9959	. 9960	. 9961	,9962	.9963	9964
27	. 9965	9966	. 9967	;9968	9969	. 9970	.9971	9972	. 9973	9974
2.8	. 9974	9975	9976	9977	9977	. 9978	. 9979	9979	. 9980	9981
29	. 9981	5982	. 9982	. 8983	. 9984	.9984	9985	. 9985	. 9986	9986
3.0	. 9987	9987	. 9987	.9988	9988	. 9989	. 9999	. 9989	. 9990	9990
3.1	. 9990	9991	. 9991	. 9991	9992	. 9992	. 9998	. 9992	. 9999	9993
3.2	. 9993	. 9993	. 9994	. 9999	9994	. 9994	. 9994	. 99995	. 99995	9995
3.3	. 9995	9995	. 9995	. 9996	9996	. 9996	9996	. 9996	. 9996	9997
3.4	. 9997	9997	. 9997	. 9997	9997	. 9997	. 9997	. 9997	. 9997	9998

Examples

- What proportion of observations on a standard normal variable Z take values
-less than 2.2 ?
.9861, or say, 98.61%
- greater than -2.05 ?
97.98\%

What about backwards?

- If I give you a probability, can you find the corresponding z value?
\rightarrow called percentiles
- What is the z-score for the $25^{\text {th }}$ percentile of the $\mathrm{N}(0,1)$ curve?
-0.67
$-90^{\text {th }}$ percentile?
1.28

Standardizing

- We can convert any normal to a standard normal distribution
- To do this, just subtract the mean and divide by the standard deviation
- z -score - standardized value of x (how many standard deviations from the mean)

$$
z=\frac{x-\mu}{\sigma}
$$

Standardizing

- Put differently...
- Suppose we want the area between a and b for x
- This is exactly the same area between a^{*} and b^{*} for z, - where a^{*} is the a standardized and b^{*} is b standardized

$$
\int_{a}^{b} f(x) d x=\int_{a^{*}}^{b^{*}} f(z) d z
$$

Standard Normal Distribution

- The standardized values for any distribution always have mean o and standard deviation 1.
- If the original distribution is normal, the standardized values have normal distribution with mean o and standard deviation 1
- Hence, the standard normal distribution is extremely important, especially it's corresponding Z table.
- Remember we can do this forward or backward (using percentiles)

Practice

- In 2000 the scores of students taking SATs were approximately normal with mean 1019 and standard deviation 209. What percent of all students had the SAT scores of:
- at least 820? (limit for Division I athletes to compete in their first college year)

> 82.89\%

- between 720 and 820 ? (partial qualifiers)

$$
9.47 \%
$$

- How high must a student score in order to place in the top $\mathbf{2 0 \%}$ of all students taking the SAT?

$$
1195
$$

- Berry's score was the 68th percentile, what score did he receive?

Connection between Normal Distribution and Discrete Populations ...

- Self reading: page 40-41 in text
- Hw question in section 1.4

When you go home

- Review sections 1.3 (mass function) and 1.4 , and the last part of section 1.4"The normal Distribution and Discrete Populations"
- Self study: section 1.5 (not covered in exams)
- Hw\#1 and Lab\#1
- due by the beginning of next Friday
- Read sections 1.6 and 2.1

