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GPS	Design	Timeline	
•  NAVSTAR	=	NAVigaEon	System	

with	Timing	and	Ranging	
•  Always-on,	instant	global	

posiEoning	
•  Development	began	in	1973	
•  First	satellites	launched	1978	
•  User	equip	tests	1980	
•  1983:	Korean	Air	007	shot	down	by	

Soviet	Union	
–  Plane	had	strayed	a	considerable	

distance	into	Soviet	airspace	
–  Led	US	Pres.	Reagan	to	mandate	

future	civilian	use	of	GPS	



GPS	User	Hardware	–	Old!	



GPS	User	Hardware	–	Modern!	



Different	Modes	of	Use	

Naviga&on	
•  Instantaneous	
•  Single	staEon	
•  Original	intended	use	
•  Accuracy	

–  Few	meters	
–  Sub-meter	w/differenEal	
correcEons	

Surveying	
•  Usually	post-process	
•  Usually	mulE-staEon	
•  Science	or	survey	
•  Accuracy	

–  1-2	cm	at	worst	
–  1-2	mm	at	best	

•  Also	“seismology”	



Basic	Principles:	Surveying	
•  Requires	data	from	n	≥	4	satellites,	m	≥	2	receivers	

–  Point	posiEoning	approaches	work	with	1	receiver	
•  Requires	conEnuous	tracking	over	Eme	
•  Post-processed	but	real-Eme	being	developed	
•  Use	pseudorange	and	carrier	phase	measurements	
from	each	satellite	to	receiver	

•  Orbits	of	satellites	fixed	or	esEmated	
•  Clock	error	on	satellites	esEmated	or	differenced	out	
•  EsEmate	receiver	posiEon	(X,Y,Z)	and	clock	error	
•  Model	a	wide	variety	of	path	delays	and	other	effects	



PosiEoning	By	Ranging	1	

A 2D example: If you know you are a certain distance from Boise, your 
position could be anywhere on the circle. 



PosiEoning	By	Ranging	2	

With two distances, you know you are at one of two points. 



PosiEoning	By	Ranging	3	

With three distances, you know you are in Denver. 
In 3D the circles become spheres, and with three distances you still 

have two possible locations – one on the surface and one out in space. 



GPS	PosiEoning	
•  Measure	posiEon	by	measuring	ranges	to	
satellites	
– A	few	satellites	can	serve	an	unlimited	number	of	
users	on	the	ground,	anywhere	in	the	world	

•  How	do	we	know	where	satellites	are?	
– They	broadcast	their	posiEons	(orbits)	in	a	
naviga&on	message	

–  (or)	someone	gives	us	precise	orbits	

•  Measured	ranges	are	called	pseudoranges	
•  High-precision	GPS	uses	the	phase	of	the	GPS	
carrier	signal	to	measure	changes	in	range	



Why	call	it	a	“pseudorange”?	

•  Range	is	the	distance	from	satellite	to	
receiver,	plus	path	delays.	

•  Pseudorange	is	distance	plus	effects	of	clock	
errors	

•  The	terminology	has	old	roots	in	navigaEon.	
– VLBI	and	GPS	are	pseudoranging;	SLR	is	ranging	

•  Geometric	range	ρ	is	true	distance.	
•  P	=	ρ	+	c*(clock	errors)	+	c*(path	delays)	



Evolving	Satellites	

1970s-1980s: smaller, relatively simple 2000s: big, more complex 



Satellite	ConstellaEon	



Satellite	ConstellaEon	Facts	
•  Nominally	4	satellites	(SVs)	in	each	of	6	equally	
spaced	orbital	planes	(now	5	in	each	plane).	

•  Orbital	planes	inclined	55°	from	equator.	
•  Nearly	circular	orbits	R	=	26,600	km	~	4RE	
•  Orbital	period	is	11h	58m,	two	orbits	per	
sidereal	day	

•  Sidereal	day	is	length	of	day	defined	by	when	
stars	appear	in	same	place	in	sky	
– Differs	from	rotaEonal	day	because	of	moEon	of	
earth	around	the	sun.	



Orbits	

•  Can	esEmate	orbits	or	fix	orbits	to	pre-determined	values	
•  RepresentaEon	of	orbit	

–  Broadcast:	Keplerian	elements	+	Eme-dependent	correcEons	
–  Tabular	file	of	XYZ	satellite	posiEons	
–  Trajectory:	iniEal	condiEons	+	integrate	equaEons	of	moEon	

(needed	to	esEmate	orbits)	

•  In	pracEce,	highly	precise	orbits	are	available	from	the	IGS	
–  Ultra-Rapid:	includes	predict-ahead	for	real	Eme	use	
–  Rapid:	Available	next	day	
–  Final:	Available	in	<2	weeks	



Keplerian	Elements	
•  An	ellipEcal	orbit	and	the	
posiEon	of	a	body	can	be	
described	by	6	parameters	
(Keplerian	elements)	
–  Semi-major	axis	
–  Eccentricity	
–  Four	angles	shown	at	les	

•  Earth	is	not	a	point	mass,	
so	satellite	orbits	are	not	
exactly	ellipEcal.	
–  Other	forces	also	perturb	
orbit	



Satellite	Ground	Tracks	



24	hours	of	GPS	Data	skytracks	

Southern California Fairbanks 

These are the paths you would see in the sky if you could see the satellites 



GPS	Signal	Structure	
•  Three	frequencies	at	L-band,	L1,	L2,	and	L5	

–  L1	at	154*10.23	MHz	(~19	cm)	
–  L2	at	120*10.23	MHz	(~24	cm)	
–  L5	at	115*10.23	MHz	(~25	cm)	

•  Codes	Modulated	(phase	modulaEon)	onto	each	carrier	
–  P-code	at	10.23	MHz	on	L1	+	L2	
–  C/A	(Coarse	AcquisiEon)	code	at	1.023	MHz	on	L1	+	L2	(new	
L2C)	

–  NavigaEon	message	at	50	bits	per	second	

•  P	and	C/A	codes	are	types	of	pseudo-random	noise	
(PRN)	codes	



Types	of	signal	modulaEon	

Amplitude 
Modulation (AM) 

Frequency 
Modulation (FM) 

Phase 
Modulation (PM) 



Satellite	Signals	



Precision	of	ObservaEons	

•  Code	“chip	length”	is	the	
distance	associated	with	
each	bit	of	the	code.	
–  C/A:	293	m	

•  Repeats	every	~300	km	

–  P:	29.3	m	

•  Carrier	wavelength	is	
analogous	to	chip	length	
==	2-3	orders	of	
magnitude	more	precise	

“chip length” 



Denial	of	Accuracy	
•  US	DoD	can	reduce	accuracy	for	real-Eme	civilian	users	
•  (S/A)	SelecEve	Availability	–	on	from	1990s	to	late	
1990s	
–  Epsilon	(introduce	errors	in	navigaEon	message)	
–  Dither	(introduce	rapid	variaEon	in	SV	clocks)	
– Military	receivers	have	special	chips	to	undo	this	

•  (A/S)	AnE-Spoofing	–	on	since	1994	
–  EncrypEon	of	P-code	
–  Prevents	“the	enemy”	from	imitaEng	(spoofing)	GPS	signal		
– Modern	receivers	get	around	this	encrypEon	in	various	ways	
(including	a	near-reverse-engineering	in	one	case).	



Pseudo-Random	Noise	
•  Computers	cannot	generate	true	random	
numbers,	but	can	generate	a	sequence	of	
numbers	with	random	staEsEcal	properEes.	
– But	the	sequence	can	be	repeated	exactly	
– Begin	with	some	starEng	value,	then	perform	a	
series	of	operaEons	

•  C/A	code	has	1023	bits,	repeats	1000	Emes	
per	second	

•  P	code	has	a	lot	of	bits,	repeats	every	266.4	
days;	each	SV	gets	a	7-day	piece	of	code	



Code	CorrelaEon	for	Ranging	

Receiver generates a copy of the (known) code and correlates with the received code 



Pseudorange	ObservaEon	Model	
•  The	correlaEon	Eme	shis	gives	an	esEmate	of	
the	travel	Eme,	which	is	the	fundamental	
pseudorange	measurement.	
– Travel	Eme	=	(Eme	of	recepEon)	–	(Eme	of	
transmission)	

•  PS	=	(T	–	TS)c	
– T	=	receiver	clock	reading	at	recepEon	
– TS	=	satellite	clock	reading	at	transmission	
– c	=	speed	of	light	=	299792458	m/s	



AccounEng	for	Clock	Biases	
•  Clock	bias	or	clock	error?	

– Error	==	mistake	
– Error	==	bias,	measurement	error	
– Error	==	esEmate	of	uncertainty	in	the	above	

•  VLBI	“removed”	clock	errors	by	using	ultra-
stable	hydrogen	maser	clocks	
– VLBI	actually	models	clock	biases	as	quadraEc	

•  GPS	must	esEmate	receiver	clock	bias	(and	
satellite	clock	bias	for	high	precision	work)		



ObservaEon	Model	with	Clocks	
•  PS	=	(T	–	TS)c	

–  T	=	t	+	τ
–  TS	=	tS	+	τS	
–  t,	tS	are	true	receive,	transmit	Emes,	τ	are	clock	errors	

•  SubsEtuEng	
–  PS	=	[(t	+	τ)	–	(tS	+	τS)]c	
–  PS	=	(t	-	tS)c	+	(τ	–	τS)c	
–  PS	=	ρS(t,tS)	+	(τ	–	τS)c	

•  ρS(t,tS)	is	range	from	receiver	at	receive	Eme	to	
satellite	at	transmit	Eme:	

€ 

ρS (t, t S ) = xS (t S ) − x(t)( )
2

+ yS (t S ) − y(t)( )
2

+ zS (t S ) − z(t)( )
2

|τ|	≤	1	millisecond	

|τS|	is	small	(Cesium	or	Rubidium	clocks)	



Light	Time	EquaEon	
•  The	transmission	Eme	is	~0.07	sec.	To	evaluate	the	
geometric	range	we	need	to	map	the	satellite	
posiEon	back	to	the	transmission	Eme.	But	we	start	
out	knowing	only	the	receive	Eme.	We	can	solve	this	
problem	iteraEvely:	

  

€ 

t(0)
S = t = (T − τ)

t(1)
S = t −

ρS (t,t(0)
S )

c

t(2)
S = t −

ρS (t,t(1)
S )

c
!

First guess: Transmit time = receive time 

Next iteration: Correct for satellite 
position based on the transmit time 
estimated from the previous iteration.  



Set	of	Simplified	Observ.	EquaEons	

•  Now,	generalize	to	mulEple	satellites.	We	use	a	
superscript	to	idenEfy	each	satellite	(don’t	
confuse	with	an	exponent).	Later	we	will	have	
to	use	a	subscript	to	keep	track	of	mulEple	
receivers:	
– P(1)	=	[	(x(1)	–	x)2	+	(y(1)	–	y)2	+	(z(1)	–	z)2	]1/2	+	cτ	–	cτ(1)	
– P(2)	=	[	(x(2)	–	x)2	+	(y(2)	–	y)2	+	(z(2)	–	z)2	]1/2	+	cτ	–	cτ(2)	
– P(3)	=	[	(x(3)	–	x)2	+	(y(3)	–	y)2	+	(z(3)	–	z)2	]1/2	+	cτ	–	cτ(3)	
– P(4)	=	[	(x(4)	–	x)2	+	(y(3)	–	y)2	+	(z(3)	–	z)2	]1/2	+	cτ	–	cτ(4)	

x, y, z, τ: receiver position and clock error 



Linearizing	Nonlinear	EquaEons	
•  There	are	simple	ways	to	

solve	systems	of	linear	
equaEons,	like	matrix	
inversion	or	least	squares.	
But	we	have	a	nonlinear	
problem.	One	approach	is	
to	linearize,	or	construct	a	
linear	approximaEon	to	the	
non-linear	problem.	We	can	
do	that	with	Taylor’s	
theorem	(Taylor	Series)		

f(x)	=	



Linearizing	Part	2	

•  We	approximate	by	
taking	just	the	linear	
terms	of	the	Taylor	
Series.	

•  We	linearize	about	
approximate	values	
(a,b)	

•  ParEal	derivaEves	are	
computed	at	(a,b)	



Linearizing	Our	EquaEons	

•  We	linearize	our	equaEons	about	approximate	
values	(x0,	y0,	z0,	τ0)	

€ 

P(x,y,z,τ ) = P(x0,y0,z0,τ 0) +
∂P
∂x

x − x0( ) +
∂P
∂y

y − y0( ) +
∂P
∂z

z − z0( ) +
∂P
∂τ

τ − τ 0( )

P(x,y,z,τ ) = P(x0,y0,z0,τ 0) +
∂P
∂x

Δx +
∂P
∂y

Δy +
∂P
∂z
Δz +

∂P
∂τ

Δτ

P(x,y,z,τ ) − P(x0,y0,z0,τ 0) =
∂P
∂x

Δx +
∂P
∂y

Δy +
∂P
∂z
Δz +

∂P
∂τ

Δτ

Pobserved − Pcomputed =
∂P
∂x

Δx +
∂P
∂y

Δy +
∂P
∂z
Δz +

∂P
∂τ

Δτ



ObservaEon	Model	
•  To	solve	these	equaEons,	we	need	to	write	
them	in	the	form	of	an	observaEon	model.	
– ObservaEons	=	Model	+	measurement	noise	

•  Pobserved	=	P(x,y,z,τ)	+	v	

€ 

Pobserved = Pcomputed +
∂P
∂x

Δx +
∂P
∂y

Δy +
∂P
∂z
Δz +

∂P
∂τ

Δτ + v

Pobserved − Pcomputed =
∂P
∂x

Δx +
∂P
∂y

Δy +
∂P
∂z
Δz +

∂P
∂τ

Δτ + v

ΔP =
∂P
∂x

∂P
∂y

∂P
∂z

∂P
∂τ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Δx
Δy
Δz
Δτ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

+ v



Matrix	EquaEon	

•  It	is	easier	to	deal	with	this	equaEon	if	we	
write	it	as	a	matrix	equaEon:	

€ 

ΔP (1)

ΔP (2)

ΔP (3)

ΔP (4 )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=

∂P(1)

∂x
∂P(1)

∂y
∂P(1)

∂z
∂P(1)

∂τ
∂P(2)

∂x
∂P(2)

∂y
∂P(2)

∂z
∂P(2)

∂τ
∂P(3)

∂x
∂P(3)

∂y
∂P(3)

∂z
∂P(3)

∂τ
∂P(4 )

∂x
∂P(4 )

∂y
∂P(4 )

∂z
∂P(4 )

∂τ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

Δx
Δy
Δz
Δτ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

+

v(1)

v(2)

v(3)

v(4 )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 



Evaluate	the	ParEal	DerivaEves	

•  This	is	osen	wriyen	in	matrix	form	like	
– b	=	Ax	+	v 	 	A	is	called	the	“Design	matrix”	
–  If	ρ(i)		=	[	(x0	–	x(i))2	+	(y0	–	y(i))2	+	(z0	–	z(i))2	]1/2	

€ 

A =

x0 − x
(1)

ρ(1)
y0 − y

(1)

ρ(1)
z0 − z

(1)

ρ(1)
c

x0 − x
(2)

ρ(2)
y0 − y

(2)

ρ(2)
z0 − z

(2)

ρ(2)
c

x0 − x
(3)

ρ(3)
y0 − y

(3)

ρ(3)
z0 − z

(3)

ρ(3)
c

x0 − x
(4 )

ρ(4 )
y0 − y

(4 )

ρ(4 )
z0 − z

(4 )

ρ(4 )
c

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

These have the form 
of trig functions, and 
can also be written in 
terms of the azimuth 
to the satellite and 

the inclination of the 
satellite above the 

horizon. 



Solving	the	EquaEons	

•  If	there	are	4	observaEons	exactly,	then	the	
system	of	equaEons	can	be	solved	exactly:	
– b	=	Ax	+	v 	 	è	x	=	A-1b		(noise	v	=	0	is	assumed)	

•  In	general,	we	will	have	more	than	4	satellites	
observed	at	a	Eme.	So	how	do	we	find	the	
“best”	soluEon.	Least	squares!	
– Least	squares	soluEon	minimizes	the	sum	of	
squares	of	residuals,	that	is	

– Find	the	x	that	gives	the	minimum	vTv.	



Least	Squares	SoluEon	

•  The	least	squares	soluEon,	for	equally	
weighted	data,	is	
– x’	=	(ATA)-1ATb	

•  This	assumes	that	(ATA)-1	exists.	It	will	exist	as	
long	as	there	are	4	or	more	satellites	located	
in	disEnct	direcEons	in	the	sky.	Two	satellites	
located	in	exactly	the	same	place	would	count	
as	one.	



Biases	and	Errors	
•  Suppose	we	know	what	the	

measurement	errors	are.	How	would	
these	known	errors	bias	our	esEmates	
of	posiEon	(and	clock	bias)?	

–  vx	=	(ATA)-1ATv	
–  You	might	use	this	to	determine	

whether	a	newly	discovered	error	has	a	
big	impact	on	your	esEmated	
parameters,	but	in	general	you	would	
simply	want	to	correct	the	data!	

•  In	reality,	you	don’t	know	the	
measurement	errors,	but	you	may	know	
their	staEsEcal	properEes.	For	example,	
you	may	know	that	the	mean	
measurement	error	is	0,	with	
uncertainty	σ,	and	that	the	
measurement	errors	follow	a	Gaussian	
or	normal	distribu&on.	

In this case: 
Expectation:  E(v) = 0 
Covariance:  C = E(vvT) = σ2I 



Covariance	Matrix	
•  The	covariance	is	given	as	a	(symmetric)	
matrix.	For	the	problem	we	have	just	solved,	
– Cx	=	σ2(ATA)-1	

– σ2	is	the	data	noise.	(ATA)-1	relates	only	to	the	
geometry.	

•  Or	in	terms	of	the	components:	

€ 

Cx =σ 2

σ x
2 σ xy σ xz σ xτ

σ yx σ y
2 σ yz σ yτ

σ zx σ zy σ z
2 σ zτ

στx στy στz στ
2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 



Local	Coordinates	

•  You	can	also	transform	the	XYZ	coordinates	to	
local	coordinates	(east,	north,	height).	We’ll	
leave	the	equaEons	for	that	for	later.	But	if	
you	take	just	the	coordinates	part	of	the	
covariance,	you	get:	

€ 

CL =σ 2

σ e
2 σ en σ eh

σ ne σ n
2 σ nh

σ he σ hn σ h
2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 



DOPs	–	DiluEon	of	Precision	
•  Your	handheld	GPS	probably	reports	a	number	called	
“PDOP”,	which	stands	for	“PosiEon	DiluEon	of	
Precision”.	These	are	other	DOPs	as	well,	which	all	give	
measures	of	how	the	satellite	geometry	maps	into	
posiEon	or	Eme	precision.	
–  VDOP	=	σh	

–  HDOP	=	(σe
2 + σn

2)1/2 	
–  PDOP	=	(σe

2 + σn
2 + σh

2)1/2 	
–  GDOP	=	(σe

2 + σn
2 + σh

2 + c2στ2)1/2

–  TDOP	=	στ
•  MulEply	PDOP	by	measurement	precision	to	get	
uncertainty	in	3D	posiEon.	

PDOP > 5 considered poor 


