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GPS Design Timeline

NAVSTAR = NAVigation System
with Timing and Ranging
Always-on, instant global
positioning

Development began in 1973
First satellites launched 1978

User equip tests 1980

1983: Korean Air 007 shot down by
Soviet Union

— Plane had strayed a considerable
distance into Soviet airspace

— Led US Pres. Reagan to mandate
future civilian use of GPS



GPS User Hardware — Old!




GPS User Hardware — Modern!




Different Modes of Use

Navigation

* |[nstantaneous

e Single station

* Original intended use

* Accuracy
— Few meters

— Sub-meter w/differential
corrections

Surveying

Usually post-process
Usually multi-station
Science or survey

Accuracy
— 1-2 cm at worst
— 1-2 mm at best

Also “seismology”



Basic Principles: Surveying

Requires data from n > 4 satellites, m > 2 receivers
— Point positioning approaches work with 1 receiver

Requires continuous tracking over time
Post-processed but real-time being developed

Use pseudorange and carrier phase measurements
from each satellite to receiver

Orbits of satellites fixed or estimated

Clock error on satellites estimated or differenced out
Estimate receiver position (X,Y,Z) and clock error
Model a wide variety of path delays and other effects



Positioning By Ranging 1

A 2D example: If you know you are a certain distance from Boise, your
position could be anywhere on the circle.



Positioning By Ranging 2
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With two distances, you know you are at one of two points.



Positioning By Ranging 3
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With three digt‘anae_s, _yeﬁ(now you are in Denver.
In 3D the circles become spheres, and with three distances you still
have two possible locations — one on the surface and one out in space.



GPS Positioning

Measure position by measuring ranges to
satellites

— A few satellites can serve an unlimited number of
users on the ground, anywhere in the world

How do we know where satellites are?

— They broadcast their positions (orbits) in a
navigation message

— (or) someone gives us precise orbits
Measured ranges are called pseudoranges

High-precision GPS uses the phase of the GPS
carrier signal to measure changes in range



Why call it a “pseudorange”?

Range is the distance from satellite to
receiver, plus path delays.

Pseudorange is distance plus effects of clock
errors

The terminology has old roots in navigation.
— VLBl and GPS are pseudoranging; SLR is ranging

Geometric range p is true distance.
P=p + c*(clock errors) + c*(path delays)



Evolving Satellites

1970s-1980s: smaller, relatively simple 2000s: big, more complex



SateIIit Constellation

Peter H. Dana 9/22/98




Satellite Constellation Facts

Nominally 4 satellites (SVs) in each of 6 equally
spaced orbital planes (now 5 in each plane).

Orbital planes inclined 55° from equator.
Nearly circular orbits R = 26,600 km ~ 4R
Orbital period is 11h 58m, two orbits per
sidereal day

Sidereal day is length of day defined by when
stars appear in same place in sky

— Differs from rotational day because of motion of
earth around the sun.



Orbits

e (Can estimate orbits or fix orbits to pre-determined values

* Representation of orbit
— Broadcast: Keplerian elements + time-dependent corrections
— Tabular file of XYZ satellite positions
— Trajectory: initial conditions + integrate equations of motion
(needed to estimate orbits)
* |In practice, highly precise orbits are available from the IGS
— Ultra-Rapid: includes predict-ahead for real time use
— Rapid: Available next day
— Final: Available in <2 weeks



Keplerian Elements

* An elliptical orbit and the
position of a body can be
described by 6 parameters
(Keplerian elements)

Argument of pgriapsis — Semi-major axis

Celestial body

True anomaly / v

-~ . — Eccentricity
Longitude of ascending node Reference__ FOUF ang|es Shown at |eft
direction

e Earth is not a point mass,
7y Inclination so satellite orbits are not
Ascending node exaCtly e”|pt|ca|

— Other forces also perturb
orbit

Plane of reference



Satellite Ground Tracks
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24 hours of GPS Data skytracks

North North

West East East

South South

Southern California Fairbanks

These are the paths you would see in the sky if you could see the satellites



GPS Signal Structure

 Three frequencies at L-band, L1, L2, and L5
— L1 at 154*10.23 MHz (~19 cm)
— L2 at 120*10.23 MHz (~24 cm)
— L5 at 115*10.23 MHz (~25 cm)

* Codes Modulated (phase modulation) onto each carrier
— P-code at 10.23 MHz on L1 + L2

— C/A (Coarse Acquisition) code at 1.023 MHz on L1 + L2 (new
L2C)

— Navigation message at 50 bits per second

* P and C/A codes are types of pseudo-random noise
(PRN) codes



Types of sighal modulation
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L1 CARRIER 1575.42 MHz

WAMAWAAAAIM L1 SIGNAL
C/A CODE 1.023MHz

JUCT AT )Q ® ior
NAV/SYSTEM DATA 50 Hz

@ Modulo 2 Sum

P-CODE 10.23 MHz

L2 CARRIER 1227.6 MHz
AWM L2 SIGNAL

GPS SATELLITE SIGNALS

P H DANA 493




Precision of Observations

| " ’ e Code “chip length” is the
distance associated with
] each bit of the code.

Binary code PRN — C/A 293 m
* Repeats every ~300 km

WWWWAWAMAA - - P 20.3m

Carier wave . .
* Carrier wavelength is

W\ANVVWVW\A/WV\/\AA/W analogous to chip length

BPSK modulated signal —— 2_3 Orders Of
magnitude more precise




Denial of Accuracy

 US DoD can reduce accuracy for real-time civilian users

* (S/A) Selective Availability — on from 1990s to late
1990s
— Epsilon (introduce errors in navigation message)
— Dither (introduce rapid variation in SV clocks)
— Military receivers have special chips to undo this
* (A/S) Anti-Spoofing — on since 1994
— Encryption of P-code
— Prevents “the enemy’ from imitating (spoofing) GPS signal

— Modern receivers get around this encryption in various ways
(including a near-reverse-engineering in one case).



Pseudo-Random Noise

* Computers cannot generate true random
numbers, but can generate a sequence of
numbers with random statistical properties.
— But the sequence can be repeated exactly
— Begin with some starting value, then perform a

series of operations

* C/A code has 1023 bits, repeats 1000 times
per second

* P code has a lot of bits, repeats every 266.4
days; each SV gets a 7-day piece of code



Code Correlation for Ranging

GPS C/A Code Chips (Rows = PRN Signal Numbers 1-32)

Peter H. Dana GM&96
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A Short Repeating PRN Code Sample

Partial Correlation of Identical Receiver and Satellite PRN Codes
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Full Correlation (Code-Phase Lock) of Receiver and Satellite PRIN Codes

Receiver generates a copy of the (known) code and correlates with the received code



Pseudorange Observation Model

* The correlation time shift gives an estimate of
the travel time, which is the fundamental
pseudorange measurement.

— Travel time = (time of reception) — (time of
transmission)

e P°=(T-T°)c
— T =receiver clock reading at reception

— T° = satellite clock reading at transmission
— ¢ = speed of light = 299792458 m/s



Accounting for Clock Biases

* Clock bias or clock error?
— Error == mistake
— Error == bias, measurement error
— Error == estimate of uncertainty in the above
* VLBI “removed” clock errors by using ultra-
stable hydrogen maser clocks
— VLBI actually models clock biases as quadratic

* GPS must estimate receiver clock bias (and
satellite clock bias for high precision work)



Observation Model with Clocks

¢+ PS=(T-TS)c
—T=t+71 |Tt| <1 millisecond
—T=t+7° |t | is small (Cesium or Rubidium clocks)

— t, t° are true receive, transmit times, t are clock errors
e Substituting
— P =[(t+7T) - (t2+71°)]cC
—P=(t-t)c+(t—-71°)c
— P> =p3(t,t%) + (T —7°)c
* p>(t,t°) is range from receiver at receive time to
satellite at transmit time:

05105 = (¥ () = 3(0)) + (¥ () =30 + (%) - 20))




Light Time Equation

* The transmission time is ~0.07 sec. To evaluate the
geometric range we need to map the satellite
position back to the transmission time. But we start
out knowing only the receive time. We can solve this
problem iteratively:

t(SO) =t=(T-1) First guess: Transmit time = receive time
S S
£ g P (t’t(O))
M C Next iteration: Correct for satellite
S S position based on the transmit time
S —¢ P (t’t(l)) estimated from the previous iteration.
2~ "

C



Set of Simplified Observ. Equations

* Now, generalize to multiple satellites. We use a
superscript to identify each satellite (don’ t
confuse with an exponent). Later we will have
to use a subscript to keep track of multiple

receivers:

— PO = [ (xM = x)2 + () —y)2 + (21 - 2)?
— PR = (x2) = x)2 + (y@ —y)? + (22 — 2)?
— PG = (xB)=x)2 + (yB) = y)2 + (203) — 2)2 |
— P@) = [ (x4 = x)2 + (y3) —y)2 + (z8) = 2)2

/2 + ct — cti)
/2 + ct - ct?
/2 + ct - ct®
/2 + ct — ct¥

X, Y, Z, T. receiver position and clock error



Linearizing Nonlinear Equations

* There are simple ways to
solve systems of linear
equations, like matrix
inversion or least squares.
But we have a nonlinear
problem. One approach is
to linearize, or construct a
linear approximation to the
non-linear problem. We can
do that with Taylor’ s
theorem (Taylor Series)

f"(a)
2!

(x —a)*

(z —a) H




Linearizing Part 2

 We approximate by
taking just the linear
terms of the Taylor
Series.

* We linearize about tangent
approximate values

(a,b)
 Partial derivatives are

|

computed at (a,b) a

) )
f(e.y) ~ £ (@.8) + S0 (a,b) (e — ) + % (a,b) (y— ).



Linearizing Our Equations

* We linearize our equations about approximate
values (x,, Yo, 2, To)

oP JoP oP oP
P(x,y,z,T7) = P(x,,Y,,24,T,) + E(x - xo) + @(y - yo) + a—z(z - zo) + E(r - ‘L’O)

oP oP oP oP
P(x,y,2,T7) = P(x,,Y,25,Ty) + —Ax + —Ay + —Az+ —AT
ox ay 0z ot

oP oP oP oP
P(x,y,2,7) = P(x,,y,,24-Ty) = a—Ax + —Ay+—Az+ —AT
X

Jy 0z ot

oP 0P oP oP
observed — L computed = —Ax + —Ay + —AZ + —AT
ox ey o ot



Observation Model

* To solve these equations, we need to write
them in the form of an observation model.

— Observations = Model + measurement noise

° Pobserved = P(x,y,z,1:) TV

Pobserved = Pcom uted + £AX + ﬁA}’ + £AZ + £AT +Vv
g ox dy 0z ot
oP oP oP oP
Pobserved - Pcomputed = —Ax + —Ay + —AZ + —AT + Vv
0x oy oz ot

Ax
_(oP 9P 9P P\ Ay

ox dy dz Ot) Az
AT

AP + v




Matrix Equation

* |tis easier to deal with this equation if we
write it as a matrix equation:

(APD)
AP?
AP®

AP

[ gP®O  gp®  Hp® ﬁp(n\
ox oy 0z ot
oP*  oP®  oP®  op?
ox dy 0z ot
) ) ) o
0xX oy 0z ot
oP® 9P 9P gp™

\ ox oy 0z ot

[ V(l)\
(2)

(3)

(4)
/



Evaluate the Partial Derivatives

—b=Ax+v

 This is often written in matrix form like

A is called the “Design matrix~

™\

These have the form
of trig functions, and
can also be written in
terms of the azimuth
to the satellite and
the inclination of the
satellite above the
horizon.

— If p(i) = [ (Xo — X(i))z + (yo _ y(i))z + (Zo _ Z(i))z ]1/2
( X, — 5D Yo - y(l) Z, - e \
C
pa) 2 pa) 2 pa) 2 '\
xo—x() yo_y<> ZO—Z() )
,0(2) 3 p<2> 3 p(2> 3
xo—x() )’o—y() ZO—Z() )
p<3) 4 ,0(3) 4 p(3> 4
xo_x() )’o—)’() ZO—Z() )
\ p<4) p<4> ,0(4) )




Solving the Equations

* |f there are 4 observations exactly, then the
system of equations can be solved exactly:

—b=Ax+v =» x =A'b (nhoisev=0isassumed)

* |n general, we will have more than 4 satellites
observed at a time. So how do we find the
“best” solution. Least squares!

— Least squares solution minimizes the sum of
squares of residuals, that is

— Find the x that gives the minimum v'v.



Least Squares Solution

* The least squares solution, for equally
weighted data, is

—x = (ATA)1ATb
* This assumes that (ATA)? exists. It will exist as

long as there are 4 or more satellites located
in distinct directions in the sky. Two satellites

located in exactly the same place would count
as one.



Biases and Errors

Suppose we know what the
measurement errors are. How would

these known errors bias our estimates 10}
of position (and clock bias)? ] A
0.8

— v, = (ATA)1ATY
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— You might use this to determine — 06] ]
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whether a newly discovered error has a < F A ’/
I

big impact on your estimated $oal : :
parameters, but in general you would B ; .

simply want to correct the data! 0.2 ; R " \
- A 17 N
In reality, you don’ t know the N L //, \\\ ....................... 1

0.0

measurement errors, but you may know TR B s e
their statistical properties. For example, X

you may know that the mean
measurement error is 0, with In this case:

uncertainty o, and that the Expectation: E(v) =0
measurement errors follow a Gaussian Covariance: C = E(wT) = o2/
or normal distribution.




Covariance Matrix

 The covariance is given as a (symmetric)
matrix. For the problem we have just solved,

— C, = G3(ATA)!
— o is the data noise. (ATA)! relates only to the
geometry.

* Orin terms of the components:

(6> o, o, o)

Yz G)’ T

2
o,
2
G Gzy GZ GZT
O

o. O,

< T




Local Coordinates

* You can also transform the XYZ coordinates to
local coordinates (east, north, height). We’ |l
leave the equations for that for later. But if
you take just the coordinates part of the
covariance, you get:

e en e
p) 2
CL =0 O’ne Gn Onh
2
\Ore Om  On



DOPs — Dilution of Precision

* Your handheld GPS probably reports a number called
“PDOP”, which stands for “Position Dilution of

Precision”. These are other DOPs as well, which all give
measures of how the satellite geometry maps into
position or time precision.
— VDOP =,
— HDOP =(0,.% + 0,%)1/?
— PDOP = (Oez n Onz n th)m PDOP > 5 considered poor
— GDOP = (0,? + 0, + 0, + c?0, )1/
— TDOP = o,

 Multiply PDOP by measurement precision to get
uncertainty in 3D position.




