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Markov Processes

Introduction

Introduction to MDPs

Markov decision processes formally describe an environment
for reinforcement learning

Where the environment is fully observable

i.e. The current state completely characterises the process

Almost all RL problems can be formalised as MDPs, e.g.

Optimal control primarily deals with continuous MDPs
Partially observable problems can be converted into MDPs
Bandits are MDPs with one state
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Markov Processes

Markov Property

Markov Property

“The future is independent of the past given the present”

Definition

A state St is Markov if and only if

P [St+1 | St ] = P [St+1 | S1, ...,St ]

The state captures all relevant information from the history

Once the state is known, the history may be thrown away

i.e. The state is a sufficient statistic of the future
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Markov Processes

Markov Property

State Transition Matrix

For a Markov state s and successor state s ′, the state transition
probability is defined by

Pss′ = P
[
St+1 = s ′ | St = s

]
State transition matrix P defines transition probabilities from all
states s to all successor states s ′,

to

P = from

P11 . . . P1n
...
Pn1 . . . Pnn


where each row of the matrix sums to 1.
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Markov Processes

Markov Chains

Markov Process

A Markov process is a memoryless random process, i.e. a sequence
of random states S1, S2, ... with the Markov property.

Definition

A Markov Process (or Markov Chain) is a tuple 〈S,P〉
S is a (finite) set of states

P is a state transition probability matrix,
Pss′ = P [St+1 = s ′ | St = s]
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Markov Processes

Markov Chains

Example: Student Markov Chain
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Markov Processes

Markov Chains

Example: Student Markov Chain Episodes
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Sample episodes for Student Markov
Chain starting from S1 = C1

S1,S2, ...,ST

C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep

C1 FB FB C1 C2 C3 Pub C1 FB FB
FB C1 C2 C3 Pub C2 Sleep
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Markov Processes

Markov Chains

Example: Student Markov Chain Transition Matrix
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P =



C1 C2 C3 Pass Pub FB Sleep

C1 0.5 0.5
C2 0.8 0.2
C3 0.6 0.4
Pass 1.0
Pub 0.2 0.4 0.4
FB 0.1 0.9
Sleep 1


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Markov Reward Processes

MRP

Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition

A Markov Reward Process is a tuple 〈S,P,R, γ〉
S is a finite set of states

P is a state transition probability matrix,
Pss′ = P [St+1 = s ′ | St = s]

R is a reward function, Rs = E [Rt+1 | St = s]

γ is a discount factor, γ ∈ [0, 1]
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Markov Reward Processes

MRP

Example: Student MRP
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Markov Reward Processes

Return

Return

Definition

The return Gt is the total discounted reward from time-step t.

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1

The discount γ ∈ [0, 1] is the present value of future rewards

The value of receiving reward R after k + 1 time-steps is γkR.

This values immediate reward above delayed reward.

γ close to 0 leads to ”myopic” evaluation
γ close to 1 leads to ”far-sighted” evaluation



Lecture 2: Markov Decision Processes

Markov Reward Processes

Return

Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards

Avoids infinite returns in cyclic Markov processes

Uncertainty about the future may not be fully represented

If the reward is financial, immediate rewards may earn more
interest than delayed rewards

Animal/human behaviour shows preference for immediate
reward

It is sometimes possible to use undiscounted Markov reward
processes (i.e. γ = 1), e.g. if all sequences terminate.
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Markov Reward Processes

Value Function

Value Function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return
starting from state s

v(s) = E [Gt | St = s]
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Markov Reward Processes

Value Function

Example: Student MRP Returns

Sample returns for Student MRP:
Starting from S1 = C1 with γ = 1

2

G1 = R2 + γR3 + ...+ γT−2RT

C1 C2 C3 Pass Sleep v1 = −2− 2 ∗ 1
2
− 2 ∗ 1

4
+ 10 ∗ 1

8
= −2.25

C1 FB FB C1 C2 Sleep v1 = −2− 1 ∗ 1
2
− 1 ∗ 1

4
− 2 ∗ 1

8
− 2 ∗ 1

16
= −3.125

C1 C2 C3 Pub C2 C3 Pass Sleep v1 = −2− 2 ∗ 1
2
− 2 ∗ 1

4
+ 1 ∗ 1

8
− 2 ∗ 1

16
... = −3.41

C1 FB FB C1 C2 C3 Pub C1 ... v1 = −2− 1 ∗ 1
2
− 1 ∗ 1

4
− 2 ∗ 1

8
− 2 ∗ 1

16
...

= −3.20
FB FB FB C1 C2 C3 Pub C2 Sleep
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Markov Reward Processes

Value Function

Example: State-Value Function for Student MRP (1)
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Markov Reward Processes

Value Function

Example: State-Value Function for Student MRP (2)
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Markov Reward Processes

Value Function

Example: State-Value Function for Student MRP (3)
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Markov Reward Processes

Bellman Equation

Bellman Equation for MRPs

The value function can be decomposed into two parts:

immediate reward Rt+1

discounted value of successor state γv(St+1)

v(s) = E [Gt | St = s]

= E
[
Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s

]
= E [Rt+1 + γ (Rt+2 + γRt+3 + ...) | St = s]

= E [Rt+1 + γGt+1 | St = s]

= E [Rt+1 + γv(St+1) | St = s]
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Markov Reward Processes

Bellman Equation

Bellman Equation for MRPs (2)

v(s) = E [Rt+1 + γv(St+1) | St = s]

v(s) 7!s

v(s0) 7!s0
r

v(s) = Rs + γ
∑
s′∈S
Pss′v(s ′)
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Markov Reward Processes

Bellman Equation

Example: Bellman Equation for Student MRP
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Markov Reward Processes

Bellman Equation

Bellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

v = R+ γPv

where v is a column vector with one entry per state

v(1)
...

v(n)

 =

R1
...
Rn

+ γ

P11 . . . P1n
...
P11 . . . Pnn


v(1)

...
v(n)


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Markov Reward Processes

Bellman Equation

Solving the Bellman Equation

The Bellman equation is a linear equation

It can be solved directly:

v = R+ γPv
(I − γP) v = R

v = (I − γP)−1R

Computational complexity is O(n3) for n states

Direct solution only possible for small MRPs

There are many iterative methods for large MRPs, e.g.
Dynamic programming
Monte-Carlo evaluation
Temporal-Difference learning
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Markov Decision Processes

MDP

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

Definition

A Markov Decision Process is a tuple 〈S,A,P,R, γ〉
S is a finite set of states

A is a finite set of actions

P is a state transition probability matrix,
Pa
ss′ = P [St+1 = s ′ | St = s,At = a]

R is a reward function, Ra
s = E [Rt+1 | St = s,At = a]

γ is a discount factor γ ∈ [0, 1].
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Markov Decision Processes

MDP

Example: Student MDP
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Markov Decision Processes

Policies

Policies (1)

Definition

A policy π is a distribution over actions given states,

π(a|s) = P [At = a | St = s]

A policy fully defines the behaviour of an agent

MDP policies depend on the current state (not the history)

i.e. Policies are stationary (time-independent),
At ∼ π(·|St),∀t > 0
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Markov Decision Processes

Policies

Policies (2)

Given an MDP M = 〈S,A,P,R, γ〉 and a policy π

The state sequence S1, S2, ... is a Markov process 〈S,Pπ〉
The state and reward sequence S1,R2,S2, ... is a Markov
reward process 〈S,Pπ,Rπ, γ〉
where

Pπs,s′ =
∑
a∈A

π(a|s)Pa
ss′

Rπs =
∑
a∈A

π(a|s)Ra
s
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Markov Decision Processes

Value Functions

Value Function

Definition

The state-value function vπ(s) of an MDP is the expected return
starting from state s, and then following policy π

vπ(s) = Eπ [Gt | St = s]

Definition

The action-value function qπ(s, a) is the expected return
starting from state s, taking action a, and then following policy π

qπ(s, a) = Eπ [Gt | St = s,At = a]
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Markov Decision Processes

Value Functions

Example: State-Value Function for Student MDP
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s]

The action-value function can similarly be decomposed,

qπ(s, a) = Eπ [Rt+1 + γqπ(St+1,At+1) | St = s,At = a]
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for V π

v⇡(s) 7!s

q⇡(s, a) 7!a

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for Qπ

v⇡(s0) 7!s0

q⇡(s, a) 7!s, a

r

qπ(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′vπ(s ′)
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for vπ (2)

v⇡(s0) 7!s0

v⇡(s) 7!s

r

a

vπ(s) =
∑
a∈A

π(a|s)

(
Ra

s + γ
∑
s′∈S
Pa
ss′vπ(s ′)

)
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation for qπ (2)

q⇡(s, a) 7!s, a

q⇡(s0, a0) 7!a0

r

s0

qπ(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′

∑
a′∈A

π(a′|s ′)qπ(s ′, a′)
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Markov Decision Processes

Bellman Expectation Equation

Example: Bellman Expectation Equation in Student MDP
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+ 0.5 * 10
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Markov Decision Processes

Bellman Expectation Equation

Bellman Expectation Equation (Matrix Form)

The Bellman expectation equation can be expressed concisely
using the induced MRP,

vπ = Rπ + γPπvπ

with direct solution

vπ = (I − γPπ)−1Rπ
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Markov Decision Processes

Optimal Value Functions

Optimal Value Function

Definition

The optimal state-value function v∗(s) is the maximum value
function over all policies

v∗(s) = max
π

vπ(s)

The optimal action-value function q∗(s, a) is the maximum
action-value function over all policies

q∗(s, a) = max
π

qπ(s, a)

The optimal value function specifies the best possible
performance in the MDP.
An MDP is “solved” when we know the optimal value fn.
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Markov Decision Processes

Optimal Value Functions

Example: Optimal Value Function for Student MDP

6 8 10

06

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

v*(s) for γ =1



Lecture 2: Markov Decision Processes

Markov Decision Processes

Optimal Value Functions

Example: Optimal Action-Value Function for Student MDP
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Markov Decision Processes

Optimal Value Functions

Optimal Policy

Define a partial ordering over policies

π ≥ π′ if vπ(s) ≥ vπ′(s), ∀s

Theorem

For any Markov Decision Process

There exists an optimal policy π∗ that is better than or equal
to all other policies, π∗ ≥ π,∀π
All optimal policies achieve the optimal value function,
vπ∗(s) = v∗(s)

All optimal policies achieve the optimal action-value function,
qπ∗(s, a) = q∗(s, a)
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Markov Decision Processes

Optimal Value Functions

Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s, a),

π∗(a|s) =

{
1 if a = argmax

a∈A
q∗(s, a)

0 otherwise

There is always a deterministic optimal policy for any MDP

If we know q∗(s, a), we immediately have the optimal policy
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Markov Decision Processes

Optimal Value Functions

Example: Optimal Policy for Student MDP
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Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for v∗

The optimal value functions are recursively related by the Bellman
optimality equations:

v⇤(s) 7!s

q⇤(s, a) 7!a

v∗(s) = max
a

q∗(s, a)
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Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for Q∗

q⇤(s, a) 7!s, a

v⇤(s
0) 7!s0

r

q∗(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′v∗(s

′)
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Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for V ∗ (2)

v⇤(s
0) 7!s0

v⇤(s) 7!s

a

r

v∗(s) = max
a
Ra

s + γ
∑
s′∈S
Pa
ss′v∗(s

′)
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Markov Decision Processes

Bellman Optimality Equation

Bellman Optimality Equation for Q∗ (2)

q⇤(s
0, a0) 7!a0

r

q⇤(s, a) 7!s, a

s0

q∗(s, a) = Ra
s + γ

∑
s′∈S
Pa
ss′max

a′
q∗(s

′, a′)
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Markov Decision Processes

Bellman Optimality Equation

Example: Bellman Optimality Equation in Student MDP
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Markov Decision Processes

Bellman Optimality Equation

Solving the Bellman Optimality Equation

Bellman Optimality Equation is non-linear

No closed form solution (in general)

Many iterative solution methods

Value Iteration
Policy Iteration
Q-learning
Sarsa
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Extensions to MDPs

Extensions to MDPs (no exam)

Infinite and continuous MDPs

Partially observable MDPs

Undiscounted, average reward MDPs
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Extensions to MDPs

Infinite MDPs

Infinite MDPs (no exam)

The following extensions are all possible:

Countably infinite state and/or action spaces

Straightforward

Continuous state and/or action spaces

Closed form for linear quadratic model (LQR)

Continuous time

Requires partial differential equations
Hamilton-Jacobi-Bellman (HJB) equation
Limiting case of Bellman equation as time-step → 0
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Extensions to MDPs

Partially Observable MDPs

POMDPs (no exam)

A Partially Observable Markov Decision Process is an MDP with
hidden states. It is a hidden Markov model with actions.

Definition

A POMDP is a tuple 〈S,A,O,P,R,Z, γ〉
S is a finite set of states

A is a finite set of actions

O is a finite set of observations

P is a state transition probability matrix,
Pa
ss′ = P [St+1 = s ′ | St = s,At = a]

R is a reward function, Ra
s = E [Rt+1 | St = s,At = a]

Z is an observation function,
Za
s′o = P [Ot+1 = o | St+1 = s ′,At = a]

γ is a discount factor γ ∈ [0, 1].
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Extensions to MDPs

Partially Observable MDPs

Belief States (no exam)

Definition

A history Ht is a sequence of actions, observations and rewards,

Ht = A0,O1,R1, ...,At−1,Ot ,Rt

Definition

A belief state b(h) is a probability distribution over states,
conditioned on the history h

b(h) = (P
[
St = s1 | Ht = h

]
, ...,P [St = sn | Ht = h])
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Extensions to MDPs

Partially Observable MDPs

Reductions of POMDPs (no exam)

The history Ht satisfies the Markov property

The belief state b(Ht) satisfies the Markov property

a1 a2

a1o1 a1o2 a2o1 a2o2

a1o1a1 a1o1a2 ... ... ...

a1 a2

o1 o2 o1 o2

a1 a2

... ... ...

a1 a2

o1 o2 o1 o2

a1 a2

P(s)

P(s|a1) P(s|a2)

P(s|a1o1) P(s|a1o2) P(s|a2o1) P(s|a2o2)

History tree Belief tree

P(s|a1o1a1) P(s|a1o1a2)

A POMDP can be reduced to an (infinite) history tree

A POMDP can be reduced to an (infinite) belief state tree
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Extensions to MDPs

Average Reward MDPs

Ergodic Markov Process (no exam)

An ergodic Markov process is

Recurrent: each state is visited an infinite number of times

Aperiodic: each state is visited without any systematic period

Theorem

An ergodic Markov process has a limiting stationary distribution
dπ(s) with the property

dπ(s) =
∑
s′∈S

dπ(s ′)Ps′s
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Extensions to MDPs

Average Reward MDPs

Ergodic MDP (no exam)

Definition

An MDP is ergodic if the Markov chain induced by any policy is
ergodic.

For any policy π, an ergodic MDP has an average reward per
time-step ρπ that is independent of start state.

ρπ = lim
T→∞

1

T
E

[
T∑
t=1

Rt

]
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Extensions to MDPs

Average Reward MDPs

Average Reward Value Function (no exam)

The value function of an undiscounted, ergodic MDP can be
expressed in terms of average reward.
ṽπ(s) is the extra reward due to starting from state s,

ṽπ(s) = Eπ

[ ∞∑
k=1

(Rt+k − ρπ) | St = s

]

There is a corresponding average reward Bellman equation,

ṽπ(s) = Eπ

[
(Rt+1 − ρπ) +

∞∑
k=1

(Rt+k+1 − ρπ) | St = s

]
= Eπ [(Rt+1 − ρπ) + ṽπ(St+1) | St = s]
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Extensions to MDPs

Average Reward MDPs

Questions?

The only stupid question is the one you were afraid to
ask but never did.
-Rich Sutton


