
Lecture 2: More on linear methods for regression

• Overfitting and bias-variance trade-off
• Linear basis functions models
• Sequential (on-line, incremental) learning
• Why least-squares? A probabilistic analysis
• If we have time: Regularization
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Recall: Linear and polynomial regression

• Our first assumption was that it is good to minimize sum- (or mean-)
squared error
• Algorithms that minimize this function are called least-squares
• Our second assumption was the linear form of the hypothesis class
• The terms were powers of the input variables (and possibly cross-

terms of these powers)
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Recall: Overfitting
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The higher the degree of the polynomial, the more degrees of freedom,
and the more capacity to “overfit” (think: memorize) the training data
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Recall: Typical overfitting plot
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• The training error decreases with the degree of the polynomial, i.e.
the complexity of the hypothesis
• The testing error, measured on independent data, decreases at first,

then starts increasing
• Cross-validation helps us

– Find a good hypothesis class
– Report unbiased results
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The anatomy of the error

• Suppose we have examples 〈x, y〉 where y = f(x) + ε and ε is
Gaussian noise with zero mean and standard deviation σ
• Reminder: normal (Gaussian) distribution

N (x|µ, σ2)

x

2σ

µ
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The anatomy of the error: Linear regression

• In linear regression, given a set of examples 〈xi, yi〉i=1...m, we fit a
linear hypothesis h(x) = wTx, such as to minimize sum-squared
error over the training data:

m∑
i=1

(yi − h(xi))2

• Because of the hypothesis class that we chose (linear hypotheses)
for some functions f we will have a systematic prediction error
• Depending on the data set we have, the parameters w that we find

will be different
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An example (Tom Dietterich)

• The sine is the true function
• The circles are the data points
• The straight line is the linear regression fit
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Example continued

With different sets of 20 points, we get different lines

COMP-652, Lecture 2 - September 9, 2009 8



Bias-variance analysis

• Given a new data point x, what is the expected prediction error?
• Assume that the data points are drawn independently and identically

distributed (i.i.d.) from a unique underlying probability distribution
P (〈x, y〉)
• The goal of the analysis is to compute, for an arbitrary new point x,

EP
[
(y − h(x))2

]
where y is the value of x that could be present in a data set, and the
expectation is over all all training sets drawn according to P
• We will decompose this expectation into three components
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Recall: Statistics 101

• Let X be a random variable with possible values xi, i = 1 . . . n and
with probability distribution P (X)
• The expected value or mean of X is:

E[X] =
n∑
i=1

xiP (xi)

• If X is continuous, roughly speaking, the sum is replaced by an
integral, and the distribution by a density function
• The variance of X is:

V ar[X] = E[(X − E(X))2]

= E[X2]− (E[X])2
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The variance lemma
V ar[X] = E[(X − E[X])2]

=
n∑
i=1

(xi − E[X])2P (xi)

=
n∑
i=1

(x2
i − 2xiE[X] + (E[X])2)P (xi)

=
n∑
i=1

x2
iP (xi)− 2E[X]

n∑
i=1

xiP (xi) + (E[X])2
n∑
i=1

P (xi)

= E[X2]− 2E[X]E[X] + (E[X])2 · 1
= E[X2]− (E[X])2

We will use the form:

E[X2] = (E[X])2 + V ar[X]
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Bias-variance decomposition

EP
[
(y − h(x))2

]
= EP

[
(h(x))2 − 2yh(x) + y2

]
= EP

[
(h(x))2

]
+ EP

[
y2
]
− 2EP [y]EP [h(x)]

Let h̄(x) = EP [h(x)] denote the mean prediction of the hypothesis at x,
when h is trained with data drawn from P

For the first term, using the variance lemma, we have:

EP [(h(x))2] = EP [(h(x)− h̄(x))2] + (h̄(x))2

Note that EP [y] = EP [f(x) + ε] = f(x)

For the second term, using the variance lemma, we have:

E[y2] = E[(y − f(x))2] + (f(x))2
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Bias-variance decomposition (2)

• Putting everything together, we have:

EP
[
(y − h(x))2

]
= EP [(h(x)− h̄(x))2] + (h̄(x))2 − 2f(x)h̄(x)

+ EP [(y − f(x))2] + (f(x))2

= EP [(h(x)− h̄(x))2] + (f(x)− h̄(x))2

+ E[(y − f(x))2]

• The first term is thevariance of the hypothesis h when trained with
finite data sets sampled randomly from P

• The second term is the squared bias (or systematic error) which is
associated with the class of hypotheses we are considering
• The last term is the noise, which is due to the problem at hand, and

cannot be avoided
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Example revisited: Bias
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Example revisited: Variance
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Example revisited: Noise
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A point with low bias
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A point with high bias
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Error decomposition
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• The bias-variance sum approximates well the test error over a set of
1000 points
• x-axis is a measure of the hypothesis complexity (decreasing left-to-

right)
• Simple hypotheses have high bias (bias will be high at many points)
• Complex hypotheses have high variance: the hypotheses is very

dependent on the data set on which it was trained.

COMP-652, Lecture 2 - September 9, 2009 19



Bias-variance trade-off

• Consider fitting a small degree vs. a high degree polynomial
• Which one do you expect to have higher bias? Higher variance?
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Bias-variance trade-off

• Typically, bias comes from not having good hypotheses in the
considered class
• Variance results from the hypothesis class containing “too many”

hypotheses
• Hence, we are faced with a trade-off: choose a more expressive

class of hypotheses, which will generate higher variance, or a less
expressive class, which will generate higher bias
• The trade-off depends also on how much data you have
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More on overfitting

• Overfitting depends on the amount of data, relative to the complexity
of the hypothesis
• With more data, we can explore more complex hypotheses spaces,

and still find a good solution
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Linear models in general

• By linear models, we mean that the hypothesis function hw(x) is a
linear function of the parameters w
• This does NOT mean the hw(x) is a linear function of the input vector

x (e.g., polynomial regression)
• In general

hw(x) =
K−1∑
k=0

wkφk(x) = wTφ(x)

where φk are called basis functions
• As usual, we will assume that φ0(x) = 1,∀x, to create a bias term
• The hypothesis can alternatively be written as:

hw(x) = Φw

where Φ is a matrix with one row per instance; row j contains φ(xj).
• Basis functions are fixed
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Example basis functions: Polynomials
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φk(x) = xk

“Global” functions: a small change in x may cause large change in the
output of many basis functions
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Example basis functions:
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φk(x) = xk

“Global” functions: a small change in x may cause large change in the
output of many basis functions
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Example basis functions: Gaussians
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φk(x) = exp
(
x− µk

2s2

)
• µk controls the position along the x-axis
• s controls the width (activation radius)
• µk, s fixed for now (later we discuss adjusting them)
• Usually thought as “local” functions: a small change in x only causes

a change in the output of the basis with means close to x
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Example basis functions: Sigmoidal
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where σ(a) =

1
1 + exp(−a)

• µk controls the position along the x-axis
• s controls the slope
• µk, s fixed for now (later we discuss adjusting them)
• “Local” functions: a small change in x only causes a change in the

output of a few basis (others will be close to 0 or 1)
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Minimizing the mean-squared error

• Recall from last time: we want minw JD(w), where:

JD(w) =
1
2

m∑
i=1

(hw(xi)− yi)2 =
1
2

(Φw − y)T (Φw − y)

• Compute the gradient and set it to 0:

∇wJD(w) =
1
2
∇w(wTΦTΦw−wTΦTy−yTΦw+yTy) = ΦTΦw−ΦTy = 0

• Solve for w:
w = (ΦTΦ)−1ΦTy

• What if Φ is too big to compute this explicitly?
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Gradient descent

• The gradient of J at a point 〈w0, w1, . . . , wk〉 can be thought of as a
vector indicating which way is “uphill”.
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• If this is an error function, we want to move “downhill” on it, i.e., in the
direction opposite to the gradient
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Example gradient descent traces

• In general, there may be may local optima
• Final solution depends on the initial parameters
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Gradient descent algorithm

• The basic algorithm assumes that ∇J is easily computed
• We want to produce a sequence of vectors w1,w2,w3, . . . with the

goal that:
– J(w1) > J(w2) > J(w3) > . . .
– limi→∞wi = w and w is locally optimal.

• The algorithm: Given w0, do for i = 0, 1, 2, . . .

wi+1 = wi − αi∇J(wi) ,

where αi > 0 is the step size or learning rate for iteration i.
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Step size and convergence

• Convergence to a local minimum depends in part on the αi.
• If they are too large (such as constant) oscillation or “bubbling” may

occur.
(This suggests the αi should tend to zero as i→∞.)
• If they are too small, the wi may not move far enough to reach a local

minimum, or may do so very slowly.
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Robbins-Monroe conditions

• The αi are a Robbins-Monroe sequence if:

∞∑
i=0

αi = +∞ and
∞∑
i=0

α2
i <∞

• E.g., αi = 1
i+1 (averaging)

• E.g., αi = 1
2 for i = 1 . . . T , αi = 1

22 for i = T + 1, . . . (T + 1) + 2T etc
• These conditions, along with appropriate conditions on J are

sufficient to ensure convergence of the wi to a point w∞ such that
∇J(w∞) = 0.
• Many variants are possible: e.g., we may use at each step a random

vector with mean ∇J(wi); this is stochastic gradient descent.
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“Batch” versus “On-line” optimization

• The error function, JD, is a sum of errors attributed to each instance:
(JD = J1 + J2 + . . .+ Jm.)
• In batch gradient descent, the true gradient is computed at each step:

∇JD = ∇J1 +∇J2 + . . .∇Jm.

• In on-line gradient descent, at each iteration one instance, i ∈
{1, . . . ,m}, is chosen at random and only ∇Ji is used in the update.
• Linear case (least-mean-square or LMS or Widrow-Hoff rule): pick

instance i and update:

wi+1 = wi + αi(yi −wTφ(xi)φ(xi),

• Why prefer one or the other?
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“Batch” versus “On-line” optimization

• Batch is simple, repeatable.
• On-line:

– Requires less computation per step.
– Randomization may help escape poor local minima.
– Allows working with a stream of data, rather than a static set

(hence “on-line”).
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Termination
There are many heuristics for deciding when to stop gradient descent.

1. Run until ‖∇J‖ is smaller than some threshold.
2. Run it for as long as you can stand.
3. Run it for a short time from 100 different starting points, see which

one is doing best, goto 2.
4. . . .
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Gradient descent in linear models and beyond

• In linear models, gradient descent can be used with larger data sets
than the exact solution method
• Very useful if the data is non-stationary (i.e., the data distribution

changes over time)
• In this case, use constant learning rates (not obeying Robbins-Munro

conditions)
• Crucial method for non-linear function approximation (where closed-

form solutions are impossible)

Annoyances:

• Speed of convergence depends on the learning rate schedule
• In non-linear case, randomizing the initial parameter vector is crucial
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Another algorithm for optimization

• Recall Newton’s method for finding the zero of a function g : R→ R
• At point wi, approximate the function by a straight line (its tangent)
• Solve the linear equation for where the tangent equals 0, and move

the parameter to this point:

wi+1 = wi − g(wi)
g′(wi)
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Application to machine learning

• Suppose for simplicity that the error function J has only one
parameter
• We want to optimize J , so we can apply Newton’s method to find the

zeros of J ′ = d
dwJ

• We obtain the iteration:

wi+1 = wi − J ′(wi)
J ′′(wi)

• Note that there is no step size parameter!
• This is a second-order method, because it requires computing the

second derivative
• But, if our error function is quadratic, this will find the global optimum

in one step!
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Second-order methods: Multivariate setting

• If we have an error function J that depends on many variables, we
can compute the Hessian matrix, which contains the second-order
derivatives of J :

Hij =
∂2J

∂wi∂wj

• The inverse of the Hessian gives the “optimal” learning rates
• The weights are updated as:

w← w −H−1∇wJ

• This is also called Newton-Raphson method
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Which method is better?

• Newton’s method usually requires significantly fewer iterations than
gradient descent
• Computing the Hessian requires a batch of data, so there is no

natural on-line algorithm
• Inverting the Hessian explicitly is expensive, but there is very cute

trick for computing the product we need in linear time (Schraudolph,
1996)

COMP-652, Lecture 2 - September 9, 2009 41



Coming back to mean-squared error function...

• Good intuitive feel (small errors are ignored, large errors are
penalized)
• Nice math (closed-form solution, unique global optimum)
• Geometric interpretation (in our notation, t is y and y is hw(x))

S
t

yϕ1

ϕ2

• Any other interpretation?
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A probabilistic assumption

• Assume yi is a noisy target value, generated from a hypothesis hw(x)
• More specifically, assume that there exists w such that:

yi = hw(xi) + ei

where ei is random variable (noise) drawn independently for each
xi according to some Gaussian (normal) distribution with mean zero
and variance σ.
• How should we choose the parameter vector w?
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Bayes theorem in learning
Let h be a hypothesis and D be the set of training data. Using Bayes
theorem, we have:

P (h|D) =
P (D|h)P (h)

P (D)
,

where:

• P (h) = prior probability of hypothesis h
• P (D) = prior probability of training data D (normalization,

independent of h)
• P (h|D) = probability of h given D
• P (D|h) = probability of D given h (likelihood of the data)

COMP-652, Lecture 2 - September 9, 2009 44



Choosing hypotheses

P (h|D) =
P (D|h)P (h)

P (D)
What is the most probable hypothesis given the training data?

Maximum a posteriori (MAP) hypothesis hMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)
P (D)

(using Bayes theorem)

= arg max
h∈H

P (D|h)P (h)

This is the Bayesian answer (more detail next time)
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Maximum likelihood estimation

hMAP = arg max
h∈H

P (D|h)P (h)

• If we assume P (hi) = P (hj) (all hypotheses are equally likely a priori)
then we can further simplify, and choose the maximum likelihood
(ML) hypothesis:

hML = arg max
h∈H

P (D|h) = arg max
h∈H

L(h)

• Standard assumption: the training examples are independently
identically distributed (i.i.d.)
• This alows us to simplify P (D|h):

P (D|h) =
m∏
i=1

P (〈xi, yi〉|h) =
m∏
i=1

P (yi|xi;h)
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The log trick

• We want to maximize:

L(h) =
m∏
i=1

P (yi|xi;h)

This is a product, and products are hard to maximize!
• Instead, we will maximize logL(h)! (the log-likelihood function)

logL(h) =
m∑
i=1

logP (yi|xi;h)
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Maximum likelihood for regression

• Adopt the assumption that:

yi = hw(xi) + ei,

where ei are normally distributed with mean 0 and variance σ
• The best hypothesis maximizes the likelihood of yi − hw(xi) = ei

• Hence,

L(w) =
m∏
i=1

1√
2πσ2

e
−1

2

“
yi−hw(xi)

σ

”2

because the noise variables ei are from a Gaussian distribution
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Applying the log trick

logL(w) =
m∑
i=1

log

(
1√

2πσ2
e
−1

2
(yi−hw(xi))

2

σ2

)

=
m∑
i=1

log
(

1√
2πσ2

)
−

m∑
i=1

1
2

(yi − hw(xi))2

σ2

Maximizing the right hand side is the same as minimizing:

m∑
i=1

1
2

(yi − hw(xi))2

σ2

This is our old friend, the sum-squared-error function!
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Maximum likelihood hypothesis for least-squares
estimators

• Under the assumption that the training examples are i.i.d. and that
we have Gaussian target noise, the maximum likelihood parameters
w are those minimizing the sum squared error:

w∗ = arg min
w

m∑
i=1

(yi − hw(xi))
2

• This makes explicit the hypothesis behind minimizing the sum-
squared error
• If the noise is not normally distributed, maximizing the likelihood

will not be the same as minimizing the sum-squared error (see
homework)
• In practice, different loss functions may be needed
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Regularization

• Remember the intuition: complicated hypotheses lead to overfitting
• Idea: change the error function to penalize hypothesis complexity:

J(w) = JD(w) + λJpen(w)

This is called regularization in machine learning and shrinkage in
statistics
• λ is called regularization coefficient and controls how much we value

fitting the data well, vs. a simple hypothesis
• One can view this as making complex hypotheses a priori less likely

(though there are some subtleties)
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Regularization for linear models

• A squared penalty on the weights would make the math work nicely
in our case:

1
2

(Φw − y)T (Φw − y) +
λ

2
wTw

• This regularization term is also known as weight decay in neural
networks
• Optimal solution:

w = (ΦTΦ + λI)−1Φy
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