
Business Conditions & Forecasting – Exponential Smoothing 
Dr. Thomas C. Chiang 

LECTURE 2  
MOVING AVERAGES AND EXPONENTIAL SMOOTHING 
 
OVERVIEW 
 
This lecture introduces time-series smoothing forecasting methods.  Various models are 
discussed, including methods applicable to nonstationary and seasonal time-series data.  These 
models are viewed as classical time-series model; all of them are univariate. 
 
LEARNING OBJECTIVES 
 

• Moving averages 
• Forecasting using exponential smoothing 
• Accounting for data trend using Holt's smoothing 
• Accounting for data seasonality using Winter's smoothing 
• Adaptive-response-rate single exponential smoothing 

 
 
1.  Forecasting with Moving Averages 
 
The naive method discussed in Lecture 1 uses the most recent observations to forecast future 
values.  That is, 1

ˆ
+tY = Yt.   Since the outcomes of Yt are subject to variations, using the mean 

value is considered an alternative method of forecasting.  In order to keep forecasts updated, a 
simple moving-average method has been widely used.  
 
1.1. The Model 
 
Moving averages are developed based on an average of weighted observations, which tends to 
smooth out short-term irregularity in the data series.  They are useful if the data series remains 
fairly steady over time.  
 
Notations  
 

1
ˆ
+≡ tt YM            -       Moving average at time t , which is the forecast value at  time t+1,  

tY                        -       Observation at time t,      

ttt YYe ˆ−=          -        Forecast error. 
 

A moving average is obtained by calculating the mean for a specified set of values and then 
using it to forecast the next period.  That is, 
 

nYYYM ntttt )( 11 +−− +⋅⋅⋅++=  (1.1.1) 
 

nYYYM ntttt )( 211 −−−− +⋅⋅⋅++=                          (1.1.2) 
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Subtracting Equation (1.1.2) from Equation (1.1.1), we obtain:  
  

nYYMM ntttt )(1 −− −+=                                                               (1.1.3) 
 

Equation (1.1.3) allows us to update the data, making the forecasting process much easier.  This 
equation states that the moving average can be updated by using a previous moving average plus 
the average changes in actual value from time t to t-n.  Using either Equation (1.1.1) or (1.1.3) 
should yield the same result.  
 
1.2. A Numerical Example 
 
To illustrate how a moving average is used, consider Table 3-1, which contains the exchange rate 
between the Japanese yen and the US dollar from 1983Q1 through 1998Q4.  To calculate the 
three-quarter moving average requires first that we sum the first three observations (239.3, 239.8, 
and 236.1).  This three-quarter total is then divided by 3 to obtained 238.40, as shown in the third 
cell of column 4 in Table 1.  This smoothed number, 238.40, becomes the forecast for 1983Q4, 
displayed in the fourth cell of column 5 of 3-Q MAF. 
 
By the same token, we can obtain the forecast for 1984Q1 by moving one quarter ahead and 
dropping the most distant quarter.  That is,   
 

3)( 211 −−+ ++= tttt YYYY   (assume n = 3),  
 

97.235
3

8.2391.236232
=

++ . 

 
The last value of the moving average is 130.29, which is the forecast for 1999.Q1. 
 

29.130
3

95.13972.1352.115
=

++ . 

 
It is of interest to calculate the squared errors (SE) and the sum of squared errors (SSE).  The 
squared errors of using moving average are presented in column 8, labeled by SE_MA.  The 
resulted mean-squared error (MSE) is 244.21 (The last row of Table 1).  This figure (244.21) 
appears to be larger than the MSE of 218.94 obtained by a naive model, the random-walk 
process.   

 Not surprisingly, if you are familiar with the research in international finance, this result is 
consistent with most empirical findings.  It has been shown that not many models can beat the 
random-walk process since the current exchange rate contains all the historical information 
pertinent to predict exchange rate movements, as stated by the efficient market hypothesis.  
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Table 1.  The Japanese Yen / US Dollar Rate: 1983Q1 - 1998Q4  
___________________________________________________________________________ 
Period     Actual 1-Q RW  3-Q MA 3-Q MAF     XS(α=0.8)     SE_RW       SE_MA       SE_XS 
________________________________________________________________________________________________________________ 
 
Mar-83 239.3 Missing Missing Missing Missing 
Jun-83 239.8 239.3 Missing Missing 239.30    
Sep-83 236.1 239.8 238.40 Missing 239.70    
Dec-83 232 236.1 235.97 238.40 236.82 16.81 40.96 23.23 
Mar-84 224.75 232 230.95 235.97 232.96 52.56 125.81 67.47 
Jun-84 237.45 224.75 231.40 230.95 226.39 161.29 42.25 122.26 
Sep-84 245.4 237.45 235.87 231.40 235.24 63.20 196.00 103.25 
Dec-84 251.58 245.4 244.81 235.87 243.37 38.19 246.91 67.44 
Mar-85 250.7 251.58 249.23 244.81 249.94 0.77 34.69 0.58 
Jun-85 248.95 250.7 250.41 249.23 250.55 3.06 0.08 2.55 
Sep-85 216 248.95 238.55 250.41 249.27 1085.70 1184.05 1106.86 
Dec-85 200.6 216 221.85 238.55 222.65 237.16 1440.20 486.37 
Mar-86 179.65 200.6 198.75 221.85 205.01 438.90 1780.84 643.17 
Jun-86 163.95 179.65 181.40 198.75 184.72 246.49 1211.04 431.48 
Sep-86 153.63 163.95 165.74 181.40 168.10 106.50 771.17 209.51 
Dec-86 160.1 153.63 159.23 165.74 156.52 41.86 31.85 12.78 
Mar-87 145.65 160.1 153.13 159.23 159.38 208.80 184.33 188.65 
Jun-87 146.75 145.65 150.83 153.13 148.40 1.21 40.66 2.71 
Sep-87 146.35 146.75 146.25 150.83 147.08 0.16 20.10 0.53 
Dec-87 122 146.35 138.37 146.25 146.50 592.92 588.06 600.05 
Mar-88 124.5 122 130.95 138.37 126.90 6.25 192.28 5.76 
Jun-88 132.2 124.5 126.23 130.95 124.98 59.29 1.56 52.13 
Sep-88 134.3 132.2 130.33 126.23 130.76 4.41 65.07 12.56 
Dec-88 125.9 134.3 130.80 130.33 133.59 70.56 19.65 59.15 
Mar-89 132.55 125.9 130.92 130.80 127.44 44.22 3.06 26.13 
Jun-89 143.95 132.55 134.13 130.92 131.53 129.96 169.87 154.31 
Sep-89 139.35 143.95 138.62 134.13 141.47 21.16 27.21 4.48 
Dec-89 143.4 139.35 142.23 138.62 139.77 16.40 22.88 13.15 
Mar-90 157.65 143.4 146.80 142.23 142.67 203.06 237.67 224.26 
Jun-90 152.85 157.65 151.30 146.80 154.65 23.04 36.60 3.26 
Sep-90 137.95 152.85 149.48 151.30 153.21 222.01 178.22 232.90 
Dec-90 135.4 137.95 142.07 149.48 141.00 6.50 198.34 31.38 
Mar-91 140.55 135.4 137.97 142.07 136.52 26.52 2.30 16.24 
Jun-91 138.15 140.55 138.03 137.97 139.74 5.76 0.03 2.54 
Sep-91 132.95 138.15 137.22 138.03 138.47 27.04 25.84 30.46 
Dec-91 125.25 132.95 132.12 137.22 134.05 59.29 143.20 77.51 
Mar-92 133.05 125.25 130.42 132.12 127.01 60.84 0.87 36.47 
Jun-92 125.55 133.05 127.95 130.42 131.84 56.25 23.68 39.59 
Sep-92 119.25 125.55 125.95 127.95 126.81 39.69 75.69 57.13 
Dec-92 124.65 119.25 123.15 125.95 120.76 29.16 1.69 15.12 
Mar-93 115.35 124.65 119.75 123.15 123.87 86.49 60.84 72.63 
Jun-93 106.51 115.35 115.50 119.75 117.05 78.15 175.30 111.19 
Sep-93 105.1 106.51 108.99 115.50 108.62 1.99 108.23 12.38 
Dec-93 111.89 105.1 107.83 108.99 105.80 46.10 8.43 37.04 
Mar-94 102.8 111.89 106.60 107.83 110.67 82.63 25.33 61.98 
Jun-94 98.95 102.8 104.55 106.60 104.37 14.82 58.47 29.43 
Sep-94 98.59 98.95 100.11 104.55 100.03 0.13 35.48 2.09 
Dec-94 99.83 98.59 99.12 100.11 98.88 1.54 0.08 0.90 
Mar-95 88.38 99.83 95.60 99.12 99.64 131.10 115.42 126.78 
Jun-95 84.77 88.38 90.99 95.60 90.63 13.03 117.29 34.36 
Sep-95 98.18 84.77 90.44 90.99 85.94 179.83 51.65 149.76 
Dec-95 102.91 98.18 95.29 90.44 95.73 22.37 155.42 51.52 
 
 
    (continued) 
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Table 3-1 (continued) ___________________________________________________________________________ 
Period Actual 1-Q RW 3-Q MA 3-Q MAF   XS(α=0.8)        SE_RW      SE_MA      SE_XS 
_________________________________________________________________________________________________________________  
Mar-96 106.49 102.91 102.53 95.29 101.47 12.82 125.51 25.16 
Jun-96 109.88 106.49 106.43 102.53 105.49 11.49 54.07 19.30 
Sep-96 111.45 109.88 109.27 106.43 109.00 2.46 25.23 6.00 
Dec-96 115.98 111.45 112.44 109.27 110.96 20.52 44.98 25.20 
Mar-97 123.97 115.98 117.13 112.44 114.98 63.84 133.02 80.89 
Jun-97 114.3 123.97 118.08 117.13 122.17 93.51 8.03 61.96 
Sep-97 121.44 114.3 119.90 118.08 115.87 50.98 11.27 30.98 
Dec-97 129.92 121.44 121.89 119.90 120.33 71.91 100.33 92.03 
Mar-98 133.39 129.92 128.25 121.89 128.00 12.04 132.33 29.04 
Jun-98 139.95 133.39 134.42 128.25 132.31 43.03 136.89 58.33 
Sep-98 135.72 139.95 136.35 134.42 138.42 17.89 1.69 7.30 
Dec-98 115.2 135.72 130.29 136.35 136.26 421.07 447.46 443.54 
Mar-99  115.2 Missing 130.29 119.41    
     
___________________________________________________________________________ 
 
MSE      218.94 244.21 233.39 
___________________________________________________________________________ 
         
Notes: 
1-Q RW: 1-quarter random walk process 
3-Q MA : 3-quarter moving average 
3-Q MAF: 3-quarter moving average forecast 
XS(α=0.8): 1-quarter exponential smoothing with α =0.8 
SE_RW: Squared errors by using random walk forecast 
SE_MA: Squared errors by 3-quarter moving-average forecast  
SE_XS: Squared errors by using exponential-smoothing forecast 
MSE: Mean squared errors 

 
1.3. Remarks on Moving-Average Method 
 
The moving-average method provides an efficient mechanism for obtaining a value for 
forecasting stationary time series.   The technique is simply an arithmetic average as time 
passes, with some lag-length determined optimally by an underlying cycle present in the 
data.  Thus, moving-averages and moving-average lines are frequently derived by technicians 
on Wall Street to generate market expectations, one of the most important input variables 
used by fund managers to allocate portfolios.  
The difficulty in using moving averages is their inability to capture the peaks and troughs of 
the series. When the market (actual) data are moving down persistently, the moving average 
forecast tends to produce over-predicted valued; while when the market is moving up 
continually, the moving-average forecast will under-predict the market.  Obviously, this 
method fails to deal with non-stationary data.  Moreover, since all the data points in the 
moving-average process are given equal weight, this approach fails to reflect the importance 
of time ordering with respect to observations.   For this reason, a weighted moving-average 
method has been suggested.  It merely imposes different weights on the observations being 
used for forecasting.  The double moving-average method, taking the form of moving 
average on the first moving-averages, gives more weight on the middle point. Exponential 
smoothing methods are the techniques that place more weights on the recent observations.  
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2.  Forecasting with Exponential Smoothing 
 
2.1. The Model 
 
Simple exponential smoothing takes the form of: 
 

=+1tF tt FY )1( αα −+  (2.1.1) 
 

=+1t̂Y tt YY ˆ)1( αα −+  
 
Notations: 

 =+1tF forecast value for period t+1 made at time t, which can be defined as 1
ˆ
+tY  

tY    =  actual value in period t  

      (Wilson and Keating use tX , others use tZ , we use tY  to maintain notation consistency) 

tF   =  forecast value for period t made by t-1. 

 α  =  smoothing constant (0< α  <1) 

 
By continuing to substitute previous forecasting values back to the starting point of the data:   
 

 =+1t̂Y ++−+ −1
2 ˆ)-(1  ˆ)1( ttt YYY ααααα …+ 01

1 )1()1( YY tt ααα −+− −   (2.1.2) 
 
Writing this equation in compact form: 
 

 1
ˆ
+tY = 0

1

0
)1()1( YY t

kt

t

k

k ααα −+∑ − −

−

=
  (2.1.3) 

 
It is clear that the weights, ,)-(1 ),1(, 2ααααα − on tY , 1−tY , 2−tY …as implied in Equation 
(2.1.3) are exponentially declining.    
 
Two points deserve our attention before we proceed to make our forecasts.  First, we need to 
decide the initial value, 0Y .   A convenient way to accomplish this is to utilize the value of the 
initial data point or the average value of the first few observations of the data series.  Second, 
we must determine the value of α .  Usually, this selection can be achieved by minimizing 
the MSE or RMSE based on in-sample experiments.  
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2.2. Numerical Example 
 
Simple exponential smoothing can be illustrated by using quarterly data of the yen/dollar 
exchange rate in Table 3-1.  Assuming that α = 0.8, calculations of the exponential 
smoothing of the exchange rate are as follows:   

 
=+1tF tt FY )1( αα −+  = 0.8(239.8) + (1-0.8) 239.30 = 239.70 - Forecast for 1983.Q3, 

 
        =  0.8(236.1) + (1-0.8) 239.70 = 236.82    -                           Forecast for 1983.Q4.  

 
By calculating the smoothing values in the same manner, we obtain the figures presented in 
column 6 under “XS(α = 0.8)”.  Again, the squared errors are shown in column 9; the 
resulting MSE is still higher than the random-walk process although it is slightly better than 
the moving-average smoothing calculation.  From our exercise, the naive model in the form 
of a random walk is not so naive; it is quite appropriate to describe an asset-price behavior.  
 
As a guide for selecting the smoothing constant, it is suggested that α values close to 0 are 
selected if the series has small variations and values close to 1 are selected if the forecast 
values appear to depend on recent changes in actual values.   Usually the MSE or RMSR can 
be used as the criterion for selecting an appropriate smoothing constant.  For instance, by 
assigning α values from 0.1 to 0.99, we select the value that produces the smallest MSE.  
 
2.3. Remarks on Simple Exponential Smoothing 
 

 The model =+1t̂Y tt YY ˆ)1( αα −+  can be rewritten as: 

 =−+ tt YY ˆˆ
1 )ˆ( tt YY −α , change in forecasting value is proportionate to the forecast 

 error. That is, =−+ tt YY ˆˆ
1 )( tεα . 

 
 Exponential smoothing provides an effective mechanism for forecasting, especially 

when we have only a few observations in hand for conducting the forecast process.  
This method is appropriate for series that move randomly above and below a constant 
mean.  However, if the series presents a trend or seasonal pattern, some modification 
is required.  

 
 
3.  Exponential Smoothing with Trend - Holt’s Model 
 
Holt's two-parameter exponential smoothing model extends simple exponential smoothing to 
include a linear-trend component.  Accordingly, Holt's model is appropriate for non-
stationary data.  We shall briefly present the model below: 
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3.1.  The Holt’s Model  
 
=+1tF ))(1( ttt TFY +−+ αα         (3.1.1) 

 
=+1tT ttt TFF )1()( 1 ββ −+−+         (3.1.2) 

 
=+mtH 11 ++ + tt mTF          (3.1.3) 

 
 
Notations: 
 
 =+1tF forecast value for period t+1 made at time t, which can be denoted as 1

ˆ
+tY  

tY = actual value in period t 

tF = forecast value for period t made by t-1. 

tT  = trend   

α  = smoothing constant for the data (0< α  <1) 

β  = smoothing constant for the trend estimate (0<β <1) 

 m = number of periods ahead to be forecast 

=+mtH Holt’s forecast value of period t+m. 

 
The model proposed by Holt contains two smoothing constants, one for the level of the 
series, and one for the trend.  In equation (3.1.1), the smoothing value, 1+tF , is predicted 
based on the current observation and the previous smoothed value.  However, the latter is 
adjusted by adding a trend factor.   The trend in equation (3.1.2) evolves by weighting the 
average of the recent change of the smoothed value and the previous trend.  
 
Equation (3.1.3) is a forecast equation which is used to forecast m periods into the future by 
using both updated smoothing value, 1+tF , and trend estimate, tT , derived from Equations 
(3.1.1) and (3.1.2). To conduct forecasts in this model m periods ahead, we can follow the 
same procedure as that of simple exponential-smoothing model.  What we have to add here is 
a trend variable.   The initial trend value is usually set at 0; the increment is advanced by 1 
over time.  Here, we need to search for two smoothing constants, α  and β  by using MSE or 
RMSE criterion. 
 
4.  Winters’ Exponential Smoothing  
 
Due to the fact that previous models ignored the seasonal component, Winters’ three-
parameter, exponential-smoothing model extends Holt’s model by adding a seasonality 
factor, which is itself smoothed.  Accordingly, we have three smoothing parameters, one for 
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actual data, one for trend, and one for seasonal factors.  Since a new variable is added to the 
system, there are four equations in Winters’ model. 
 
4.1.  The Winters’ Model 
 

=tF ))(1()/( 11 −−− +−+ ttptt TFSY αα        (4.1.1) 
 

=tS pttt SFY −−+ )1()/( γγ         (4.1.2) 
 

=tT 11 )1()( −− −+− ttt TFF ββ         (4.1.3) 
 

=+mtW pmttt SmTF −++ )(          (4.1.4) 
 
Notations: 
 
 =tF smoothed value of the level of series for period t 

1−tF = smoothed value for period t-1  

tY    = actual value in period t 

tT  =  trend  estimate 

=tS  seasonality estimate  

α  =  smoothing constant for the data (0< α  <1) 

 
β  = smoothing constant for the trend estimate (0<β <1) 
 
γ  = smoothing constant for seasonality estimate (0<γ <1) 
 
 p = number of periods in seasonal cycle 
 
 m = number of periods ahead to be forecast 
 

=+mtW Winters’ forecast for m periods into the future 
 
A special feature of this model is that the element of a seasonal factor is added to the model. 
Equation (4.1.1) is similar to Holt’s equation for smoothing the trend.  A minor difference is 
that seasonal fluctuations in Yt have been removed.  As can be seen in the first term, Yt is 
divided by ptS −  to adjust for seasonality.  The seasonality estimate and trend are updated in a 
fashion similar to the simple exponential process as described Equations (4.1.2) and (4.1.3).  
Finally, Equation (4.1.4) is employed to compute the forecast for m periods into the future. 
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5.  Adaptive-Response Approach 
 
An alternative to simple exponential smoothing for stationary and non-seasonal time series is 
the adaptive-response approach to single exponential smoothing model in which an adaptive 
algorithm is used to determine a time-varying smoothing parameter.  Accordingly, adaptive 
smoothing has the ability to adapt to a changing mean of an otherwise stationary and 
nonseasonal time series.   
 
5.1. The Adaptive-Response model  
 

=+1tF tttt FY )1( αα −+          (5.1.1) 
 

t

t
t A

S
=α            (5.1.2) 

 

1)1( −−+= ttt SeS ββ          (5.1.3) 
 

1)1( −−+= ttt AeA ββ          (5.1.4) 
 
 et tt FY −=           (5.1.5) 

 
The basic equation (5.1.1) for forecasting is generally the same as the simple exponential 
smoothing model represented by equation (2.1.1).  The only difference is that the smoothed 
term α  in Equation (2.1.1) is replaced by α t, and the later is adaptive over time, governed 
by the value of the smoothed error divided by the absolute smoothed error as expressed by 
Equation (5.1.2). Like most exponential smoothing models, both St (not a notation for 
seasonality) and At are smoothed out by using Equations (5.1.3) and (5.1.4).  
 
The forecasting procedure for this model can be proceeded recursively.  Given the values of  

tt FY  and , we can estimate et  from (5.1.5).  The et then is plugged into (5.1.3) and (5.1.4). 
Given the estimated value of β , we can obtain tα  by using (5.1.2).  Finally, we use  tα , 

tt FY  and  to predict Ft+1 by employing equation (5.1.1).  
 
5.2 Remarks 
 
The advantage of this model is that it allows the smoothing value to change over time.  
However, the underlying rationale for time varying is less clear.  If we want to have a time-
varying coefficient model to reflect the changing pattern, the behavior of tα  can be specified 
as a random coefficient or autoregressive form, depending on the nature of the process.  
Another drawback for this model is that there is no explicit way to handle seasonality.   Thus, 
in facing seasonal data, the data must first be deseasonalized and then reseasonalized to 
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generate forecasts.  Adaptive smoothing is an alternative to Winters' smoothing when 
handling seasonal time series. 
 
A major flaw with smoothing models is their inability to predict cyclical reversals in the data, 
since forecasts depend solely on the past.  Perhaps even more pernicious is the possibility of 
spurious cycles, since all smoothing models produce serially correlated forecasts. 
 
Threaded question  
 
Assume you were to use α  values of 0.1, 0.5, and 0.95 in a simple exponential smoothing 
model.  How would these different α  values weight past observations of the variable to be 
forecasted? How would you know which of these α  values provides the best forecasting 
model?  If the α  = 0.99 value provides the best forecast for your data at the current 
calculation, would this imply that you should make forecasts in the future based on 
availability of new data?  Does exponential smoothing place more or less weight on the most 
recent data when compared with the moving-average method? What weight is applied to 
each observation in a moving-average model? Why is smoothing (simple, Holt's, and 
Winters') also termed exponential smoothing?  
 
 
 
Assignment 
 
Consider the monthly stock index data for the US (USsp) market from 1995.01-2000.06 
available to the class. Use Excel to calculate both the 12-month moving-average and simple 
exponential smoothing (α = 0.6) for these data and compare the forecasts of these two 
methods by calculating the root-mean-squared errors.  Make brief comments on your 
findings.  
 
(Note the data file is: Monthly_US_JP_MacroData and variable name is USsp). 
 
 


