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Lecture #2: Review of Spin Physics
• Topics

– Spin
– The Nuclear Spin Hamiltonian
– Coherences

• References
– Levitt, Spin Dynamics



How does the concept of energy differ 
between classical and quantum physics

Energy = − !µ ⋅
!
B = − µ Bcosθ

2

Nuclear Spins
• Protons (as well as electrons and neutrons) possess intrinsic 

angular momentum called “spin”, which gives rise to a magnetic 
dipole moment.

µ = γ! 12
gyromagnetic ratio

Plank’s constant

spin

• Question:  What magnetic (and electric?) fields influence 
nuclear spins?

Precession 
frequency

Note: Some texts use 
ω0 = -gB0.

€ 

ω 0 ≡ γB0

• In a magnetic field, the spin precesses around the applied field.

θ

z

x
y

�B = B0ẑ

�µ
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The Nuclear Spin Hamiltonian

Examples:
2) interactions with dipole fields of other nuclei 
3) nuclear-electron couplings

• is the sum of different terms representing different physical 
interactions.  
Ĥ

  

€ 

ˆ H = ˆ H 1 + ˆ H 2 + ˆ H 3 +!
1) interaction of spin with 

€ 

B0

• In general, we can think of an atomic nucleus as a lumpy magnet 
with a (possibly non-uniform) positive electric charge

The nuclear electric charge 
interacts with electric fields

The nuclear magnetic moment 
interacts with magnetic fields

€ 

ˆ H = ˆ H elec + ˆ H mag

• The spin Hamiltonian contains terms which describe the 
orientation dependence of the nuclear energy  
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Electromagnetic Interactions

• Electric interactions

Hence, for spin-½ nuclei there are no electrical 
energy terms that depend on orientation or internal 
nuclear structure, and they behaves exactly like 
point charges! Nuclei with spin > ½ have electrical 
quadrupolar moments.

• Magnetic interactions

Nuclear electric charge distributions 
can be expressed as a sum of 
multipole components.

Symmetry properties: C(n)=0 for n>2I and odd interaction terms disappear 

monopole dipole quadrapole

  

€ 

C(! r ) = C(0)(! r ) + C(1)(! r ) + C(2)(! r ) +"

€ 

ˆ H elec = 0  (for spin I =1/2)
Ĥ elec ≠ 0 (for spin I >1/2)

  

€ 

ˆ H mag = − ˆ 
! 
µ ⋅
! 
B = −γ"ˆ 

! 
I ⋅
! 
B 

magnetic moment

local magnetic field
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Motional Averaging

• Previously, we used averaging to simplify the Hamiltonian 

• Molecular motion  

Molecular orientation depends on time and Hamiltonian terms can be written as                              
.  These terms were replaced by their time averages:

€ 

ˆ H int
0 Θ(t)( )

€ 

ˆ H int
0 = 1

τ
ˆ H int

0 Θ(t)( )
0

τ

∫ dt

Isotropic materials:

€ 

ˆ H int
isotropic = 1

N
ˆ H int

0 Θ( )∫ dΘ
normalization

ergodicity

€ 

ˆ H int
0 = ˆ H int

0 pΘ( )∫ dΘ
p(Q)=probability 

density for molecule 
having orientation Q

• We no longer want to make this approximation. Instead, the time 
variations will be analyzed as perturbations.

Secular 
Hamiltonian
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Time-averaged Spin Hamiltonian
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Instantaneous Spin Hamiltonian

Re
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Simplifications

1. For terms in the Hamiltonian that are periodic, we change to a 
rotating frame of reference.  

• In general, the nuclear spin Hamiltonian is quite complicated.  

2. The secular approximation

• We’ll regularly make use of two simplifications.

ˆ !H = e−iωt ˆ̂Iz Ĥ = e−iωtÎz ĤeiωtÎz
rotating frame laboratory frame

Ĥ t( ) = −ω0 Îz −ω1 Î x cosωt − Î y sinωt( ) Ĥeff = − ω0 −ω( ) Îz −ω1Î x
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B0-Electron Interactions

• Local effect: Chemical Shift  

• Global effects: magnetic susceptibility

When a material is placed in a magnetic field it is magnetized to 
some degree and this modifies the field…

€ 

B0
s = (1− χ)B0

Hereafter we�ll use �B0� to refer to the internal field.

field inside sample bulk magnetic susceptibility applied field

Electrons in an atom circulate about B0, 
generating a magnetic moment opposing 
the applied magnetic field.

Different atoms experience 
different electron cloud densities.

€ 

B = B0(1−σ)

shielding constant
(Don�t confuse with the 
spin density operator!)

Shielding:
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The Zeeman Hamiltonian

  

€ 

ˆ H zeeman = −γ
! ˆ I (1−σ)

! 
B 

€ 

σ =σ iso = Tr(σ /3)

  

€ 

E = −γ
! 
B ⋅
! 
I Classical:

ĤZeeman = −γ (1−σ )B0 Îz

  

€ 

! 
µ = γ
! 
I 

  

€ 

! 
B • The interaction energy between the magnetic field,    , and the 

magnetic moment,          , is given by the Zeeman Hamiltonian.

• The formal correction for chemical shielding is:

where

€ 

σ = 3× 3 shielding tensor

• In vivo, rapid molecular tumbling averages out the non-isotropic 
components.

!
B = [0, 0,B0 ] :• Hence for

  

€ 

ˆ H zeeman = −γ
! 
B ⋅
! ˆ I QM:

E

€ 

B = 0

€ 

B = B0
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Chemical Shielding Tensor
• Electron shielding is in general anisotropic, i.e. the degree of 

shielding depends on the molecular orientation.
• The shielding tensor can be written as the sum of three terms:

σ =

σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz

!

"

#
#
#
#

$

%

&
&
&
&

=σ iso

1 0 0
0 1 0
0 0 1

!

"

#
#
#

$

%

&
&
&
+σ 1( ) +σ 2( )

= 1
3 σ xx +σ yy +σ zz( )

antisymmetric

• Both σ(1) and σ(2) are time-varying due to molecular tumbling.

• σ(2) gives rise to a relaxation mechanism called chemical shift 
anisotropy (CSA).  (to be discussed later in the course)

• σ(1) causes only 2nd order effects and is typically ignored.

symmetric and 
traceless

See Kowalewski, pp
105-6 for details.

A little foreshadowing…
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J-Coupling: Mechanism

• What’s in a name?

• At very small distances (comparable to the nuclear radius), the 
dipolar interaction between an electron and proton is replaced by 
an isotropic interaction called �Fermi contract interaction�.

Energy Diagram
less stable

more stable

I spin �senses�
polarization of 

S spin

I S

I S

e e

e e

A simple model of J-coupling

  

€ 

∝−γ eγ n

! ˆ I ⋅
! ˆ S • Interaction energy

independent of molecular orientation

J-coupling

Through-bond (vs through-
space) interaction

Scalar coupling

Spin-spin coupling

Indirect 
interaction
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J-Coupling and Relaxation
• Because J is unchanged with molecular tumbling, J-coupling 

typically does not contribute to relaxation.

A little foreshadowing…

• However, there are a few cases where J can become “effectively” 
time-varying.

- Case 1: the S spin is engaged in chemical exchange

- Case 2: the T1 of the S spin itself is << 1/J. 

• These cases are called scalar relaxation of the first and second 
kind respectively, and both are important for the study of MRI 
contrast agents.

ĤJ = 2π J
!̂
I ⋅
!̂
S J Θ t( )( ) = Jwhere
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Magnetic Dipoles
• Nuclei with spin ≠ 0 act like tiny magnetic dipoles.  

permeability of free space

falls off as r3

Dipole at origin

€ 

Bµx =
µ0
4π
# 

$ 
% 

& 

' 
( 

µ
r3
# 

$ 
% 

& 

' 
( 3sinθ cosθ( )

€ 

Bµy = 0

€ 

Bµz =
µ0
4π
# 

$ 
% 

& 

' 
( 

µ
r3
# 

$ 
% 

& 

' 
( 3cos2θ −1( )

Magnetic Field in y=0 plane

Lines of Force Bµz Bµx
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Dipolar Coupling
• Dipole fields from nearby spins interact (i.e. are coupled).  

• Rapid fall off with distance causes this to be primarily a 
intramolecular effect.

Water 
molecule 

in a 
magnetic 

field

with 
tumbling 

Interaction is 
time variant!

Spins remain 
aligned with B0
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The Nuclear Dipolar Coupling 
Hamiltonian

• Mathematically speaking, the general expression is:  

Ĥdipole = −
µ0γ IγS
4πr3

!
"̂
I ⋅
!̂
S − 3

r2
(
!̂
I ⋅ !r )(

!̂
S ⋅ !r )

#

$
%

&

'
( where      vector from 

spin I to spin S
  

€ 

! r 

•  Secular approximation:

  

€ 

ˆ H dipole = d 3ˆ I z ˆ S z −
! ˆ I ⋅
! ˆ S $ 

% 
& ' 

( 
)     where   d = −

µ0γ Iγ S

4πr3 " 3cos2ΘIS −1( )
dipole coupling 

constant
angle between B0
and vector from 

spins I and S 

Ĥdipole = 0- With isotropic tumbling, the time average of 

- However, the temporal variations of                 are typically 
the dominant source of T1 and T2 relaxation in vivo. 

Ĥdipole t( )
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Quadrupolar Interactions

• This electrical quadrupole moment interacts with local electric 
field gradients

•  Quadrupolar coupling Hamiltonian (secular approximation):

• Nuclei with spin I > ½ have a electrical quadrupolar moment 
due to their non-uniform charge distribution.

- Static E-field gradients results in shifts of the resonance frequencies of the 
observed peaks.

- Dynamic (time-varying) E-field gradients result in relaxation.

What’s the spin of Gd3+ with 
its 7 unpaired electrons?

Looks like an 
interaction of a spin 

with itself.
ĤQ =

3eQ
4I 2I −1( )!

V0 3Îz
2 −
!̂
I ⋅
!̂
I( )

Coupling constant

Electric field gradient –
dependent on molecular 

orientation



Magnevist
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Nucleus-unpaired electron couplings
• Both nuclear-electron J and dipolar coupling occur.
• Important for understanding MR contrast agents.

A little foreshadowing…

7 unpaired electrons,
I = 7/2, non-zero 

quadrupolar moment

J coupling Dipolar 
coupling
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Polarization
Single 
spin

Ensemble of Spins
Example 1

B

Ensemble of Spins
Example 2

B

• In tissue, we are always dealing with a large number of nuclei, and 
the net magnetization is given by: 

  

€ 

! 
M = ! 

µ ∑
volume

“Professor Bloch has told you how one can detect the precession of the magnetic nuclei in a drop of 
water. Commonplace as such experiments have become in our laboratories, I have not yet lost a feeling 
of wonder, and of delight, that this delicate motion should reside in all the ordinary things around us, 
revealing itself only to him who looks for it. I remember, in the winter of our first experiments, just seven 
years ago, looking on snow with new eyes. There the snow lay around my doorstep - great heaps of 
protons quietly precessing in the earth’s magnetic field.” 

- Edward Purcell, Nobel Lecture 1952
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Phase Coherence

Arrows represents spin 
polarization axis
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€ 

ˆ I x

No net tendency for S spins in any direction
Net tendency for I spins to be +x

€ 

ˆ S z I
S

Net tendency for S spins to be +z
No net tendency for I spins in any direction

Two-spin Phase Coherences

€ 

2ˆ I z ˆ S z

No net tendency for I or S spins to be �z
If I or S is �z, increased probability paired spin is �z

? ?
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Magnetization = Phase Coherences
…while others are not.

Cxz = γ! 2 Î xŜz ,
“antiphase x”

Czz = γ! 2 ÎzŜz
“longitudinal two-spin order”

• The total coherence for an ensemble of paired spins can be 
described by a linear combination of 16 terms, and there is a very 
elegant mathematical formalism to keep track of these coherences: 

σ̂ = bn
n
∑ Ôn Ôn ∈ {

1
2 Ê, Î x, Ŝx, Î y, Ŝy, Îz, Ŝz, 2 Î xŜz, 2 Î yŜz…, 2 ÎzŜz}where

density 
operator

Classical 
Magnetization 

vector

z

x

y

!
M t( )

!
B 3-d vector that 

precesses around    
!
B

Drawing shows a 
3-d subspace

Density 
operator 

formulation

Element in a 16-d vector 
space that precesses around Ĥ

€ 

ˆ I z

€ 

ˆ I x€ 

ˆ I y

σ̂ t( )

Ĥ

Mx = γ! Î x ,

• Some coherences are 
observable with Rf coils,

My = γ! Î y
“x magnetization” “y magnetization”

Mz = γ! Îz “z magnetization”
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Ĥ = Ĥ0 + Ĥ1 t( )

• Then look for an equation of the form:

• Our ultimate strategy will be to write the Hamiltonian as the sum 
of a large static component plus a small time-varying perturbation.

This equation is known as the Master Equation of NMR.

∂
∂t
σ̂ = −i ˆ̂H0σ̂ − ˆ̂Γ σ̂ − σ̂ B( )

Relaxation superoperator

Rad226a/BioE326a Rad226b/BioE326b

Note the similarity to 
Bloch’s equations:

  

€ 

d
! 

M 
dt

= γ
! 

M × B0 ˆ z −
Mx ˆ x + My ˆ y 

T2

−
Mz − M0( )ˆ z 

T1Rotations Relaxation terms

Rotations Relaxation

Key Concept: temporal and spatial magnetic field variations*

cause loss/gain of phase coherence (= “relaxation”)!
* also electric field variations for spins > ½ 
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Next lecture:
Basics of Relaxation


