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Goals:
� To introduce the rudiments of the vocabulary of computer and network
security and that of encryption/decryption.

� To trace the history of some early approaches to cryptography and to
show through this history a common failing of humans to get carried

away by the technological and scientific hubris of the moment.

� Simple Python and Perl scripts that give you pretty good se-
curity for confidential communications. Only good for fun,

though.
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2.1 SOME BASIC VOCABULARY TO GET
US STARTED

I’ll start this section with some basic vocabulary of encryption and

decryption, since that’s the primary focus of the beginning lectures

in this series. Subsequently, I’ll also review some of the basic

vocabulary of computer and network security from a more systems

perspective.

So let’s start with encryption and decryption:

plaintext: This is what you want to encrypt

ciphertext: The encrypted output

enciphering or encryption: The process by which plaintext is converted

into ciphertext

encryption algorithm: The sequence of data processing steps that go into

transforming plaintext into ciphertext. Various parameters used by an
encryption algorithm are derived from a secret key. In cryptography for

commercial and other civilian applications (and, not uncommonly, these
days even for military applications), the encryption and decryption

algorithms are placed in the public domain. [Just think of the consequences of

keeping the algorithms secret. First and foremost, a secret algorithm is less likely to be subject
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to the same level of testing and scrutiny that a public algorithm is. And, assuming that a

secret algorithm is used for all communications within an organization, what if a disgruntled

employee posted the algorithm anonymously on WikiLeaks?]

secret key: A secret key is used either to set some or all of the various
parameters used by the encryption algorithm or for directly mixing with

the plaintext. The important thing to note is that, in classical
cryptography, the same secret key is used for encryption and

decryption. It is for this reason that classical cryptography is also
referred to as symmetric key cryptography. On the other hand,
in the more recently developed cryptographic algorithms, the

encryption and decryption keys are not only different, but also
one of them is placed in the public domain. Such algorithms are

commonly referred to as asymmetric key cryptography, public key
cryptography, etc.

deciphering or decryption: Recovering plaintext from ciphertext

decryption algorithm: The sequence of data processing steps that go into
transforming ciphertext back into plaintext. In classical cryptography,

the various parameters used by a decryption algorithm are derived from
the same secret key that was used in the encryption algorithm. In

modern cryptography, the decryption algorithm mixes the secret key
with the ciphertext but in a manner that is inverse of what was done by

the encryption algorithm.

cryptography: The many schemes available today for encryption and

decryption
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cryptographic system: Any single scheme for encryption and decryption

cipher: A cipher means the same thing as a “cryptographic system”

block cipher: A block cipher processes a block of input data at a time and
produces a ciphertext block of the same size.

stream cipher: A stream cipher encrypts data on the fly, usually one byte
at at time.

cryptanalysis: Means “breaking the code”. Cryptanalysis relies on a

knowledge of the encryption algorithm (that for civilian applications
should be in the public domain) and some knowledge of the possible

structure of the plaintext (such as the structure of a typical inter-bank
financial transaction) for a partial or full reconstruction of the plaintext

from ciphertext. Additionally, the goal is to also infer the key for
decryption of future messages.

The precise methods used for cryptanalysis depend on
whether the “attacker” has just a piece of ciphertext, or pairs

of plaintext and ciphertext, how much structure is possessed
by the plaintext, and how much of that structure is known to
the attacker.

Cryptanalysis may exploit the possibility that some aspect of the
structure of the plaintext may survive in the ciphertext.

key space: The total number of all possible keys that can be used in a

cryptographic system. For example, DES uses a 56-bit key. So the key
space is of size 256, which is approximately the same as 7.2× 1016.
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brute-force attack: When encryption and decryption algorithms are
publicly available, as they generally are, a brute-force attack means

trying every possible key on a piece of ciphertext until an intelligible
translation into plaintext is obtained.

codebook attack: In general, a codebook is a mapping from the plaintext

symbols to the ciphertext symbols. In old times, the two endpoints of a
military communication link would have the same codebook that would

be composed of sheets, with a different sheet to be used for each day. In
a codebook attack, the attacker tries to acquire as many as possible of
the mappings between the plaintext symbols and the corresponding

ciphertext symbols. The data thus accumulated can give the attacker a
headstart in breaking the code. [In modern times, you can think of a codebook as the

mapping between the plaintext bit blocks and the ciphertext bit blocks, with a ciphertext bit block being

related to the corresponding plaintext bit block through an encryption key. If you can collect the

mappings between all possible plaintext bit-blocks and their corresponding ciphertext

bit-blocks, you have broken the code regardless of the secret key used. Can
you explain why?]

algebraic attack: You express the plaintext-to-ciphertext relationship as a

system of equations. Given a set of (plaintext, ciphertext) pairs, you try
to solve the equations for the encryption key. As you will see,

encryption algorithms involve nonlinearities. In algebraic attacks, one
attempts to introduce additional variables into the system of equations

and make nonlinear equations look linear.

time-memory tradeoff in attacking ciphers: The brute-force and the

codebook attacks represent two opposite cases in terms of time versus
memory needs of the algorithms. Pure brute-force attacks have

very little memory needs, but can require inordinately long times to
scan through all possible keys. On the other hand, codebook attacks

can in principle yield results instantaneously, but their memory needs
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can be humongously large. Just imagine a codebook for a 64-bit block
cipher; it may need as many as 264 rows in it. In some cases, by trading

off memory for time, it is possible to devise more effective attacks that
are sometimes referred to as time-memory tradeoff attacks. [As a specific

example of time-memory tradeoff, we may be able to reduce the time taken by a brute-force attack if we use

memory to store intermediate results obtained from the current computational steps (assuming they can help

us avoid unnecessary search later during the computations). You will see examples of such tradeoffs in

Lecture 24 when we talk about password cracking with rainbow tables.]

cryptology: Cryptography and cryptanalysis together constitute the area
of cryptology

***********

That brings us to the vocabulary related to the systems side of

computer and network security. For this vocabulary, I am going to

borrow significantly from Google’s Android Security Reports. You

can download the 2018 report from:

https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf

I believe 2018 was the last year for which the Google Android team

issued such a security report. Subsequently, these were replaced by

White Papers. Here is a link to the 2021 White Paper that deals

with the enterprise-level security features of Android devices:

https://storage.googleapis.com/android-com/resources/enterprise/pdfs/AE%20Security%20Paper_V6%20CM.pdf
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I’ll mention this white paper again in Lecture 32 whose focus is

security issues related to mobile devices. The 2022 version of this

document is not out yet — they are usually issued in April of each

year. By the way, you can get all such Android related security

reports through the following link:

https://source.android.com/security/overview/reports

In addition to the reports cited above, the following 2019 document

from Cisco is also a great (and a highly readable) source of systems

side of security vocabulary:

https://engineering.purdue.edu/ece404/Resources/CISCO_cybersecurity_report_2019.pdf

And here is hot off the press “The Top Cybersecurity Threats in

2022” report from Cisco:

https://umbrella.cisco.com/blog/top-cybersecurity-threats-2022

This document from Cisco focuses on the new security

vulnerabilities that have been created as the enterprise-level

computing services adapt to remote work by the employees.

In what follows, I’ll go back to the 2018 Android security report for

defining certain systems based security terms that I believe will be

with us for a long time to come:

backdoor: A backdoor allows an intruder to get inside a networked device
without user authentication credentials. Backdoors may be created by
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malware that a user may inadvertently install in the device through a
phishing attack. Backdoors may also be created by exploiting

vulnerabilities in the security protocols used in a networked device.

commercial spyware: Any application that transmits sensitive
information off the device without user consent and does not display a

persistent notification that this is happening. Legitimate forms of these
apps can be used by parents to track their children. However, these

apps can be used to track a person (a spouse, for example) without
their knowledge or permission if a persistent notification is not
displayed while the data is being transmitted.

denial of service: As the name implies, the goal of a denial-of-service

attack is to prevent legitimate users from accessing a network
resource. Malware planted or inadvertently installed in a machine may

turn it into a device for mounting a denial-of-service attack on a
network resource.

hostile downloader: An application that is not in itself potentially
harmful, but downloads other potentially harmful apps. For example, a

gaming app that does not contain malicious code, but persistently
displays a misleading “Security Update” link that installs harmful apps.

mobile billing fraud: An application that charges the user in an

intentionally misleading way. Mobile billing fraud is divided into 1.
sms fraud, 2. call fraud, and 3. toll fraud based on the type of
fraud being committed.

1. sms fraud: An application that charges users to send premium SMS without
consent, or tries to disguise its SMS activities by hiding disclosure agreements or
SMS messages from the mobile operator notifying the user of charges or
confirming subscription. [The text messages normally used by most of us typically cost
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little to nothing. However, there is another category of text messages — for downloading

ringtones, music clips, adult content, games, etc., and also for voting in TV shows based

on performance competition — that are used for what are known as Mobile Premium

SMS/MMS services. Using such services leads to noticeable charges on your phone bill.

By law, the phone numbers for such services must begin with “19”.]

Some apps, even though they technically disclose SMS sending behavior introduce
additional tricky behavior that accommodates sms fraud. Examples of this
include hiding any parts of disclosure agreement from the user, making them
unreadable, conditionally suppressing SMS messages the mobile operator sends to
inform user of charges or confirm subscription.

2. call fraud: An application that charges users by making calls to premium-rate
telephone numbers without user consent. [Premium-rate telephone numbers are used by the

providers of directory services, adult chat lines, and other business organization to provide services for

which the charges appear on your phone bill. The phone company sends a portion of what is charged to

the service provider.]

3. toll fraud: An application that tricks users to subscribe or purchase content via
their mobile phone bill.

Toll Fraud includes any type of billing except Premium SMS and premium calls.
Examples of this include: Direct Carrier Billing, WAP (Wireless Access Point), or
Mobile Airtime Transfer.

WAP fraud is one of the most prevalent types of Toll fraud. WAP fraud can
include tricking users to click a button on a silently loaded transparent WebView.
Upon performing the action, a recurring subscription is initiated, and the
confirmation SMS or email is often hijacked to prevent users from noticing the
financial transaction.

phishing: An application that pretends to come from a

trustworthy source, requests a user’s authentication
credentials and/or billing information, and sends the data to a

third party. This category also applies to apps that intercept the
transmission of user credentials in transit. Common targets of phishing

include banking credentials, credit card numbers, or online account
credentials for social networks and games.
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mobile unwanted software (MUwS): Any application that collects at
least one of the following without user consent:

� Information about installed applications

� Information about third-party accounts

� Names of files on the device

This includes collecting the actual list of installed applications as well
as partial information like information about currently active apps.

privilege escalation: An application that compromises the integrity of the

system by breaking the application sandbox, or changing or disabling
access to core security-related functions. Privilege escalation can allow

an app to steal credentials from other apps and to prevent its own
removal. [The Meltdown and Spectre processor vulnerabilities — especially the former — that

recently burst into the scene could, for example, be used for privilege escalation. These vulnerabilities

are related to how the processors optimize task execution by using speculative algorithms that, as

recently discovered, come with dangerous side effects.]

Privilege escalation apps that root devices without user permission are
classified as rooting apps.

ransomware: This type of malware makes your computer unusable by
encrypting all your files. The decryption key is held by the attackers

and its release made conditional on their receiving a crypto-currency
payment from you. The Google report definition of this malware

mentions the following different types of ransomware apps:

� Ransomware that locks a user out of their device and demands
money to restore user control.

� Ransomware that encrypts data on a device and demands payment,

ostensibly to decrypt data again.
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� Ransomware that leverages device policy manager features and
cannot be removed by the user.

rooting: A privilege escalation app that roots the device.

There is a difference between malicious rooting apps and non-malicious

rooting apps.

Non-malicious rooting apps let the user know in advance that they are
going to root the device and they do not execute other potentially

harmful actions.

Malicious rooting apps do not inform the user that they will root the

device, or they inform the user about the rooting in advance but also
execute other harmful actions.

spam: Refers to the unsolicited, unwanted, and frequently annoying email

messages that land in your computer or mobile device. The word
“spamming” refers to an application that sends unsolicited commercial

messages to the user’s contact list or uses the device as an email spam
relay.

spyware: An application that transmits sensitive information off the

device.

Transmission of any of the following without disclosures or in a manner
that is unexpected to the user are sufficient to be considered spyware:

� contact list

� photos or other files not owned by the application

� content from user email

� call log
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� SMS log

� web history or browser bookmarks of the default browser

� information from the data directories of other apps.

Behaviors that can be considered as spying on the user can also be
flagged as spyware. For example: recording audio or recording calls

made to a phone, stealing application data, etc.

SSL/TLS: More than anything else, it is the certificate based client and

server authentication made possible by the SSL/TLS protocol that
makes e-commerce possible. An SSL/TLS certificate for an e-commerce

website makes available the public key used by the website. Your digital

device would know how to authenticate that public key in order to
establish that the website is genuine. SSL stands for “Secure Socket

Layer” and TLS for “Transport Layer Security”. For practical purposes,
they are one and the same thing.

TCP/IP: TCP and IP are two different foundational protocols that govern

how information is exchanged between two different hosts in the
internet. You can think of TCP as sitting on top of IP. Whereas IP

specifies how a host may use the IP addressing scheme to send data
packets to another host, the TCP protocol adds handshaking to this

interaction in order to make sure that every data packet sent by a host was

actually received by the other host.

tor: Tor is a route anonymizing protocol that makes it easier for folks in

countries with heavy censorship and controls to access foreign websites
like Google and Facebook.

trojan: An application that appears to be benign, such as a game that
claims only to be a game, but that has the power to engage in
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undesirable behavior vis-a-vis the user. This classification is usually
used in combination with other categories of harmfulness. In general, a

trojan has an innocuous app component and a hidden harmful
component. For example, a tic-tac-toe game that, in the background

and without the knowledge of the user, sends premium SMS messages
from the user’s device.

VPN: VPN (for Virtual Private Network) is an overlay network that

allows a set of hosts to communicate with one another confidentially
using IPSec, which is a secure version of the IP protocol.

Several of the definitions shown above were taken verbatim from

the previously cited Google report on Android security. Although

the definitions taken from the Google report are specifically for the

Android platform, most of them apply universally to all platforms.

In any case, being open-source, the Android platform figures

prominently in the research literature dealing with computer and

network security. I will have more to say about this platform in

Lecture 32.

***********

Before leaving this section, I’d like to draw the reader’s attention to

the following websites:

1. Krebs On Security Blog Entry on Who’s Attacking Whom? Realtime Attack Trackers

2. Digital Attack Map
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The first is a blog entry by Brian Krebs who is one of the most

famous and influential bloggers in the computer security area. He

was a reporter for Washington Post from 1995 to 2009. This

particular blob entry is about the different trackers out there for

visualizing in real-time the ongoing attacks on a world-wide basis.

And the second link above shows one of the trackers in action. The

attacks displayed in this manner are usually detected with the help

of honeypots that are typically installed around the globe. [As described

in Section 22.6 of Lecture 22, a honeypot is a specially configured machine — often a virtual machine these

days — that presents a specific network profile to the rest of the internet for the purpose of attracting malware.

Consider an attacker who wants to exploit a particular vulnerability in the HTTPD servers for the purpose of

installing his malware. The attacker, not really caring where exactly he finds such server hosts, chooses to scan

large blocks of IP addresses more or less randomly. In order to capture the attacker’s malware, a honeypot would

act exactly like the HTTPD server the attacker is hoping to find. The honeypot would download the malware but

would not activate it.] Since the visual representation of the attacks shown

in the map is quite powerful, people wonder as to what extent the

map represents the total reality of internet attacks. For the most

part, what you see in the map are standard network attacks on the

different ports and with respect to a set of well-known

vulnerabilities. Nonetheless, it is a great map to look at — a great

motivator for learning the ins and outs of computer and network

security.
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2.2 BUILDING BLOCKS OF CLASSICAL
ENCRYPTION TECHNIQUES

� Two building blocks of all classical encryption techniques are

substitution and transposition.

� Substitution means replacing an element of the plaintext with

an element of ciphertext.

� The same overall substitution rule may be applied to every

element of the plaintext, or the substitution rule may vary from

position to position in the plaintext.

� Transposition means rearranging the order of appearance of the

elements of the plaintext.

� Transposition is also referred to as permutation.

� Transposition may be carried out after substitution, or the

other way around. As you will see, modern algorithms rely on

multiple rounds of transposition and substitution.
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2.3 CAESAR CIPHER

� This is the earliest known example of a substitution cipher.

� Each character of a message is replaced by a character three

position down in the alphabet.

plaintext: are you ready

ciphertext: DUH BRX UHDGB

� If we represent each letter of the alphabet by an integer that

corresponds to its position in the alphabet, the formula for

replacing each character p of the plaintext with a character c of

the ciphertext can be expressed as

c = E(3, p) = (p + 3) mod 26

where E() stands for encryption. If you are not familiar with

modulo division, the mod operator returns the integer

remainder when p + 3 is divided by 26, the number of letters in

the English alphabet. We are obviously assuming

case-insensitive encoding with the Caesar cipher.
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� A more general version of this cipher that allows for any degree

of shift would be expressed by

c = E(k, p) = (p + k) mod 26

� The formula for decryption would be

p = D(k, c) = (c− k) mod 26

� In these formulas, k would be the secret key. As mentioned

earlier, E() stands for encryption. By the same token, D()

stands for decryption.
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2.4 THE SWAHILI ANGLE ...

� A simple substitution cipher obviously looks much too simple to

be able to provide any security, but that is the case only if you

have some idea regarding the nature of the plaintext.

� What if the “plaintext” was a binary stream of data for a

textfile in a language that is unkown to you and a substitution

cipher replaced every consecutive 6 bits with one of 64 possible

cipher characters? In fact, this is referred to as Base64

encoding for sending email multimedia attachments. [Did

you know that all internet communications are character based? What does

that mean and why do you think that is the case? What if you wanted to send a

digital photo over the internet and one of the pixels in the photo had its graylevel

value as 10 (hex: 0A)? If you put such a photo file on the wire without, say, Base64

encoding, why do you think that could cause problems? Imagine what would happen

if you sent such a photo file to a printer without encoding. [Visit

http://www.asciitable.com to understand how the characters of the English

alphabet are generally encoded. Visit the Base64 page at Wikipedia to

understand why you need this type of encoding.] A Base64 representation is

created by carrying out a bit-level scan of the data and encoding it six bits at a time

into a set of printable characters. For the most commonly used version of Base64, this

64-element set consists of the characters A-Z, a-z, 0-9, ‘+’, and ‘/’.]

19
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� If you did not know anything about the underlying plaintext

and it was encrypted by a Base64 sort of an algorithm, it might

not be as trivial a cryptographic system as it might seem. But,

of course, if the word ever got out that your plaintext was in

Swahili, you’d be hosed.

� Finally, here is more regarding the slogan “All internet

communications are character based” in the red-and-blue note

on the previous page: As you will see in Lecture 16, the internet

communications are governed by the TCP/IP protocol. That

protocol itself does not care whether you put on the wire a

purely character based file, an audio file, a video file, etc. The

protocol would work equally well with all sorts of files. So,

strictly speaking, the slogan is technically wrong. Nonetheless,

the slogan is of great practical importance because the software

that is charged with the task of making your data file available

to the TCP/IP engine in your computer could corrupt your

data if it is not based on just printable characters.
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2.5 A SEEMINGLY VERY STRONG
MONOALPHABETIC CIPHER

� The Caesar cipher you just saw is an example of a

monoalphabetic cipher. In a monoalphabetic cipher, you

use the same substitution rule to find the replacement ciphertext

letter for each letter of the alphabet in the plaintext message.

� Let’s now consider what one would think would be a very strong

monoalphabetic cipher. We will make our substitution letters a

random permutation of the 26 letters of the alphabet:

plaintext letters: a b c d e f .....

substitution letters: t h i j a b .....

� The encryption key now is the sequence of substitution letters.

In other words, the key in this case is the actual random

permutation of the alphabet used.

� Since there are 26! permutations of the alphabet, we end up

with an extremely large key space. The number 26! is much

larger than 4× 1026. Since each permutation constitutes a key,

that means that the monoalphabetic cipher has a key space of
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size larger than 4× 1026.

� Wouldn’t such a large key space make this cipher extremely

difficult to break? Not really, as I explain in the next couple of

sections.

� An interesting side note: It takes only one Python statement to

generate a random permutation of a string:

import itertools

import random

print( random.choice([’’.join(p) for p in itertools.permutations("hello")])) ## lohel
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2.5.1 A Very Large Key Space But ....

� The very large key space of a random-permutation based

monoalphabetic cipher means that the total number of all

possible keys that would need to be guessed in a pure

brute-force attack would be much too large for such an attack

to be feasible. This key space is 10 orders of magnitude larger

than the size of the key space for DES, the now somewhat

outdated (but still widely used in the form of 3DES, as described in Lecture 9) NIST

standard that is presented in Lecture 3. [When you increase the size of a

number by a factor of 10, you are increasing the size by one order of magnitude. So when we say that the

keyspace is 10 orders of magnitude larger, that means that the keyspace is larger by a factor of 1010. Recall,

as mentioned in Section 2.1, the keyspace of DES is 256 since the key size is 56 bits. And 256 ≈ 7.2 × 1016.]

� Obviously, this would rule out a brute-force attack. Even if each

key took only a nanosecond to try, it would still take zillions of

years to try out even half the keys.

� So this would seem to be the answer to our prayers for an

unbreakable code for symmetric encryption.

� But it is not! As to why? Read on.
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2.6 THE ALL-FEARSOME STATISTICAL
ATTACK

� In general, any monoalphabetic substitution cipher, regardless of the size

of the key space, can be easily broken with a statistical attack.

� When the plaintext is plain English, a simple form of statistical

attack consists measuring the frequency distribution for single

characters, for pairs of characters, for triples of characters, and

so on, and comparing those with similar statistics for English.

� Figure 1 shows the relative frequencies for the letters of the

English alphabet in a sample of English text. Obviously, by

comparing this distribution with a histogram for the letters

occurring in a piece of ciphertext, you may be able to establish

the true identities of the ciphertext letters.
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Figure 1: Relative frequencies of occurrence for the letters

of the alphabet in a sample of English text. (This figure is from

Lecture 2 of “Computer and Network Security” by Avi Kak)
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2.6.1 Comparing the Statistics for Digrams and

Trigrams

� Equally powerful statistical inferences can be made by

comparing the relative frequencies for pairs and triples of characters in

the ciphertext and the language believed to be used for the

plaintext.

� Pairs of adjacent characters are referred to as digrams, and

triples of characters as trigrams.

� Shown in Table 1 are the digram frequencies. The table does

not include digrams whose relative frequencies are below 0.47.

(A complete table of frequencies for all possible digrams would

have 676 entries in it.)

� If we have available to us the relative frequencies for all possible

digrams, we can represent this table by the joint probability

p(x, y) where x denotes the first letter of a digram and y the

second letter. Such joint probabilities can be used to compare

the digram-based statistics of ciphertext and plaintext.

� The most frequently occurring trigrams ordered by decreasing
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frequency are:

the and ent ion tio for nde .....

digram frequency digram frequency digram frequency digram frequency

th 3.15 to 1.11 sa 0.75 ma 0.56

he 2.51 nt 1.10 hi 0.72 ta 0.56

an 1.72 ed 1.07 le 0.72 ce 0.55

in 1.69 is 1.06 so 0.71 ic 0.55

er 1.54 ar 1.01 as 0.67 ll 0.55

re 1.48 ou 0.96 no 0.65 na 0.54

es 1.45 te 0.94 ne 0.64 ro 0.54

on 1.45 of 0.94 ec 0.64 ot 0.53

ea 1.31 it 0.88 io 0.63 tt 0.53

ti 1.28 ha 0.84 rt 0.63 ve 0.53

at 1.24 se 0.84 co 0.59 ns 0.51

st 1.21 et 0.80 be 0.58 ur 0.49

en 1.20 al 0.77 di 0.57 me 0.48

nd 1.18 ri 0.77 li 0.57 wh 0.48

or 1.13 ng 0.75 ra 0.57 ly 0.47

Table 1: Digram frequencies in English text (This table is from

Lecture 2 of “Computer and Network Security” by Avi Kak)
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2.7 MULTI-CHARACTER ENCRYPTION
TO MASK THE PLAINTEXT

STRUCTURE: THE PLAYFAIR CIPHER

� At least statistically speaking, one character at a time

substitution leaves too much information about the plaintext in

the ciphertext.

� So how about destroying some of those clues by mapping

multiple characters at a time to ciphertext characters?

� One of the best known approaches in classical encryption that

carries out multiple-character substitution is known as the

Playfair cipher, which is described in the next subsection.
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2.7.1 Constructing the Matrix for Pairwise

Substitutions in Playfair Cipher

� In Playfair cipher, you first choose an encryption key, making

sure that there are no duplicate characters in the key.

� You then enter the characters in the key in the cells of a 5× 5

matrix in a left-to-right and top-to-down fashion starting with

the first cell at the top-left corner.

� You fill the rest of the cells of the matrix with the remaining

characters in the alphabet and do so in alphabetic order. The

letters I and J are assigned the same cell. In the following

example, the key is “smythework”:

S M Y T H

E W O R K

A B C D F

G I/J L N P

Q U V X Z
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2.7.2 Substitution Rules for Pairs of Characters in

Playfair Cipher

� You scan the plaintext in pairs of consecutively occurring

characters. And, for any given pair of plaintext characters, you

use the following three rules to determine the corresponding

pair of ciphertext characters:

1. Two plaintext letters that fall in the same row of the 5× 5

matrix are replaced by letters to the right of each in the row.

The “rightness” property is to be interpreted circularly in

each row, meaning that the first entry in each row is to the

right of the last entry. Therefore, the pair of letters “bf” in

plaintext will get replaced by “CA” in ciphertext.

2. Two plaintext letters that fall in the same column are

replaced by the letters just below them in the column. The

“belowness” property is to be considered circular, in the

sense that the topmost entry in a column is below the

bottom-most entry. Therefore, the pair “ol” of plaintext will

get replaced by “CV” in ciphertext.

3. Otherwise, for each plaintext letter in a pair, replace it with
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the letter that is in the same row but in the column of the

other letter. Consider the pair “gf” of the plaintext. We

have ‘g’ in the fourth row and the first column; and ‘f’ in the

third row and the fifth column. So we replace ‘g’ by the

letter in the same row as ‘g’ but in the column that contains

‘f’. This given us ‘P’ as a replacement for ‘g’. And we

replace ‘f’ by the letter in the same row as ‘f’ but in the

column that contains ‘g’. That gives us ‘A’ as replacement

for ‘f’. Therefore, ‘gf’ gets replaced by ‘PA’.

� Before the substitution rules are applied, you must insert a

chosen “filler” letter (let’s say it is ‘x’) between any repeating

letters in the plaintext. So a plaintext word such as “hurray”

becomes “hurxray”
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2.7.3 How Secure is the Playfair Cipher?

� Playfair was thought to be unbreakable for many decades.

� It was used as the encryption system by the British Army in

World War 1. It was also used by the U.S. Army and other

Allied forces in World War 2.

� But, as it turned out, Playfair was extremely easy to break.

� As expected, the cipher does alter the relative frequencies

associated with the individual letters and with digrams and

with trigrams, but not sufficiently.

� Figure 2 shows the single-letter relative frequencies in

descending order (and normalized to the relative frequency of

the letter ’e’) for some different ciphers. There is still

considerable information left in the distribution for good

guesses.

� The cryptanalysis of the Playfair cipher is also aided by the fact

that a digram and its reverse will encrypt in a similar fashion.
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That is, if AB encrypts to XY, then BA will encrypt to YX. So

by looking for words that begin and end in reversed digrams,

one can try to compare them with plaintext words that are

similar. Example of words that begin and end in reversed

digrams: receiver, departed, repairer, redder, denuded, etc. [But,

for obvious reasons, cryptanalysis of the cipher based on such words would be possible only if you can

recognize the word boundaries in the ciphertext. Our 5× 5 matrix for encoding would not lend itself to that

sort of analysis.]
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Figure 2: Single-letter relative frequencies in descending

order for a class of ciphers. (This figure is from Chapter 2 of William Stallings:

“Cryptography and Network Security”, Fourth Edition, Prentice-Hall.)
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2.8 ANOTHER MULTI-LETTER CIPHER:
THE HILL CIPHER

� The Hill cipher takes a very different (more mathematical)

approach to multi-letter substitution, as we describe in what

follows.

� You assign an integer to each letter of the alphabet. For the

sake of discussion, let’s say that you have assigned the integers 0

through 25 to the letters ‘a’ through ‘z’ of the plaintext.

� The encryption key, call it K, consists of a 3× 3 matrix of

integers:

K =















k11 k12 k13
k21 k22 k23
k31 k32 k33















� Now we can transform three letters at a time from the

plaintext, the letters being represented by the numbers p1, p2,

and p3, into three ciphertext letters c1, c2, and c3 in their

numerical representations by

35



Computer and Network Security by Avi Kak Lecture 2

c1 = ( k11p1 + k12p2 + k13p3 ) mod 26

c2 = ( k21p1 + k22p2 + k23p3 ) mod 26

c3 = ( k31p1 + k32p2 + k33p3 ) mod 26

� The above set of linear equations can be written more

compactly in the following vector-matrix form:

~C = [K] ~P mod 26

� Obviously, the decryption would require the inverse of K

matrix.

~P =
[

K−1
]

~C mod 26

This works because

~P =
[

K−1
]

[K] ~P mod 26 = ~P
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2.8.1 How Secure is Hill Cipher?

� It is extremely secure against ciphertext only attacks. That is

because the keyspace can be made extremely large by choosing

the matrix elements from a large set of integers. (The key space

can be made even larger by generalizing the technique to larger

matrices.)

� But it has zero security when the plaintext–ciphertext pairs are

known. The key matrix can be calculated easily from a set of

known ~P, ~C pairs.

� Each plaintext-ciphertext pair, if the messages are of any length

at all, will yield several ~P, ~C pairs. Estimating the matrix K

from such data would be child’s play for those well schooled in

linear analysis.
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2.9 POLYALPHABETIC CIPHERS: THE
VIGENERE CIPHER

� In a monoalphabetic cipher, the same substitution rule is used

at every character position in the plaintext message. In a

polyalphabetic cipher, on the other hand, the substitution rule

changes continuously from one character position to the next in

the plaintext according to the elements of the encryption key.

� One of the best known examples of a polyalphabetic cipher is

the Vigenere cipher. In this cipher, you first “align” the

encryption key with the plaintext message. [If the plaintext message

is longer than the encryption key, you can repeat the encryption key, as I show at the

top of the next page where the encryption key is “abracadabra”.] Consider each

letter of the encryption key denoting a shifted Caesar cipher,

the shift corresponding to the letter of the key. This is

illustrated with the help of the table shown on the next page.

� With Vigenere cipher, a plaintext message may be encrypted as

shown on the next slide.
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key: abracadabraabracadabraabracadabraab

plaintext: canyoumeetmeatmidnightihavethegoods

ciphertext: CBEYQUPEFKMEBK.....................

where the actual key is abracadabra and the plaintext is meant

to convey the message “Can you meet me at midnight? I have

the goods”.

The table that is shown below illustrates what character

substitution rule to use at each position in the plaintext. The

substitution rule depends on the encryption key letter that

corresponds to that position.

encryption key plain text letters

letter a b c d ............

substitution letters

a A B C D ............

b B C D E ............

c C D E F ............

d D E F G ............

e E F G H ............

. . . . . .

. . . . . .

z Z A B C ............
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2.9.1 How Secure is the Vigenere Cipher?

� Since there exist in the output multiple ciphertext letters for

each plaintext letter, you would expect that the relative

frequency distribution would be effectively destroyed. But as

can be seen in the plots in Figure 2, a great deal of the input

statistical distribution still shows up in the output. [The plot shown for

Vigenere cipher is for an encryption key that is just 9 letters long.]

� Obviously, the longer the encryption key, the greater the

masking of the structure of the plaintext. The best possible key

is as long as the plaintext message and consists of a purely

random permutation of the 26 letters of the alphabet. This

would yield the ideal plot shown in Figure 2. The ideal plot is

labeled “Random polyalphabetic” in that figure.

� In general, to break the Vigenere cipher, you first try to

estimate the length of the encryption key by using what is

known as Kasiski Examination which consists of examining the

ciphertext for sequences of characters that are repeated. The

distances between the repeated occurrences of character strings

in the ciphertext can serve as possible candidates for the length

of the encryption key. If there are several such candidates, one

works with the greatest common divisor all possible values as
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the most likely choice for the keylength. [Obviously, character sequences

that repeat in the plaintext will create character sequences that repeat in the

ciphertext if the plaintext distance between the repetitions is a multiple of the

keylength. With Vigenere, the plaintext characters separated by multiples of the key

length are encoded in exactly the same way. ]

� Said another way, if the estimated length of the key is N , then

the cipher consists of N monoalphabetic substitution ciphers

and the plaintext letters at positions 1, N , 2N , 3N , etc., will be

encoded by the same monoalphabetic cipher. Assuming that

your estimate for the keylength is accurate, all you have to do is

to accumulate the ciphertext characters separately at intervals

of N , 2N , 3N , etc., and subject each of the accumulations

separately to a statistical analysis of the sort mentioned earlier.

� The historically best known example of a polyalphabetic cipher

is the Enigma machine that was used by the German military in

the Second World War. [Since rotors are used in the electromechanical hardware for

implementing a polyalphabetic cipher, such machines are commonly referred to as rotor machines.

Wikipedia has a wonderful article on “Rotor Machines” that traces the history of their development. To

appreciate the idea of a rotor in this context, a monoalphabetic cipher requires that the electrical signals

generated by hitting, say, any of the 26 letter keys on a typewrite-like device be routed to a sequence of 26

permuted outputs. If the connections between the input signals and the output is through a rotor that has 26

electrical pass-through points on it, by simply turning the rotor by one position, you’ll be able to change the

mapping between the incoming 26 signals and the corresponding outputs. Using multiple rotors and turning

each rotor to a different position specified by an encryption key allows a Vigenere mapping to be created

between the input and the output. Rotor machines were used extensively by the militaries of the different
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nations in the second half of the previous century.] If the movie “The Imitation

Game” starring Benedict Cumberbatch and Keira Knightly is to

be believed, the Enigma machine was broken because the

operators started all their communications with the salutation

“Heil Hitler!” or “Heil mein Führer!”
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2.10 TRANSPOSITION TECHNIQUES

� All of our discussion so far has dealt with substitution ciphers.

We have talked about monoalphabetic substitutions,

polyalphabetic substitutions, etc.

� We will now talk about a different notion in classical

cryptography: permuting the plaintext.

� This is how a pure permutation cipher could work: You write

your plaintext message along the rows of a matrix of some size.

You generate ciphertext by reading along the columns. The

order in which you read the columns is determined by the

encryption key:

key: 2 5 3 1 6 4

plaintext: m e e t m e

a t m i d n

i g h t f o

r t h e g o

d i e s x y

ciphertext: ETGTIMDFGXEMHHEMAIRDENOOYTITES
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� The cipher can be made more secure by performing multiple

rounds of such permutations.
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2.11 ESTABLISHING SECURE
COMMUNICATIONS FOR FUN (BUT

NOT FOR PROFIT)

This section has two goals:

� To demonstrate that if all that you want is to establish a

medium-strength secure communication link between yourself

and a buddy, you may be able to get by without having to

resort to the full-strength crypto systems that we will be

studying in later lectures.

� To introduce you to my BitVector module. You will be using

this module for several homework assignments throughout this

course.

The BitVector module comes with both a Python and a Perl

implementation. However, if you are not multilingual in your

scripting capabilities, it is sufficient if you become familiar with

either the Python version or the Perl version of the module. Note

that the scripts shown in this section only provide a brief

introduction to the module. Please also spend some time going

though the API of the module that you will find at the following

links:

Python: https://engineering.purdue.edu/kak/dist/BitVector-3.5.0.html
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Perl: https://metacpan.org/pod/Algorithm::BitVector

So here we go:

� Fundamentally, the encryption/decryption logic in the scripts

shown in this section is based on the following properties of

XOR operations on bit blocks. Assuming that A, B, and C are

bit arrays, and that ⊕ denotes the XOR operator, we can write

[A ⊕ B] ⊕ C = A ⊕ [B ⊕ C ]

A ⊕ A = 0

A ⊕ 0 = A

� More precisely, the Python and Perl encryption/decryption

scripts in this section are based on differential XORing of

bit blocks. Differential XORing means that, as a file is scanned

in blocks of bits, the output produced for each block is made a

function of the output for the previous block.

� Differential XORing destroys any repetitive patterns in the

messages to be encrypted and makes it more difficult to break

encryption by statistical analysis.

� The encryption/decryption scripts presented in this section

require a key and a passphrase. While the user is prompted for

the key in lines (J) through (M), the passphrase is placed

directly in the scripts in line (C). In more secure versions of the
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scripts, the passphrase would also be kept confidential by the

parties using the scripts.

� Since differential XORing means that the output for the current

block must depend on the output that was produced for the

previous block, that raises the question of what to do for the

first bit block in a file. Typically, this problem is solved by using

an initialization vector (IV) for the differential XORing needed

for the first bit block in a file. We derive the needed

initialization vector from the passphrase in lines (F) through (I).

� For the purpose of encryption or decryption, the file involved is

scanned in bit blocks, with each block being of size BLOCKSIZE.

For encryption, this is done in line (V) of the script shown next.

Since the size of a file in bits may not be an integral multiple of

BLOCKSIZE, we add an appropriate number of null bytes to the

bytes extracted by the last call in line (V). This step is

implemented in lines (W) and (X) of the encryption script that

follows.

� For encryption, each bit block read from the message file is first

XORed with the key in line (Y), and then, in line (Z), with the

output produced for the previous bit block. The step in line (Z)

constitutes differential XORing.

� If you make the value of BLOCKSIZE sufficiently large and keep
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both the encryption key and the passphrase as secrets, it will be

very, very difficult for an adversary to break the encryption —

especially if you also keep the logic of the code confidential.

� The implementation shown below is made fairly compact by the

use of the BitVector module. [This would be a good time to

become familiar with the BitVector module by going through its API.

You’ll be using this module in several homework assignments dealing with

cryptography and hashing.]

#!/usr/bin/env python

### EncryptForFun.py

### Avi Kak (kak@purdue.edu)

### January 21, 2014, modified January 11, 2016

### Medium strength encryption/decryption for secure message exchange

### for fun.

### Based on differential XORing of bit blocks. Differential XORing

### destroys any repetitive patterns in the messages to be encrypted and

### makes it more difficult to break encryption by statistical

### analysis. Differential XORing needs an Initialization Vector that is

### derived from a pass phrase in the script shown below. The security

### level of this script can be taken to full strength by using 3DES or

### AES for encrypting the bit blocks produced by differential XORing.

### Call syntax:

###

### EncryptForFun.py message_file.txt output.txt

###

### The encrypted output is deposited in the file ‘output.txt’

import sys

from BitVector import * #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the message file and the other for the ’’’

’’’encrypted output file’’’)
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PassPhrase = "Hopes and dreams of a million years" #(C)

BLOCKSIZE = 64 #(D)

numbytes = BLOCKSIZE // 8 #(E)

# Reduce the passphrase to a bit array of size BLOCKSIZE:

bv_iv = BitVector(bitlist = [0]*BLOCKSIZE) #(F)

for i in range(0,len(PassPhrase) // numbytes): #(G)

textstr = PassPhrase[i*numbytes:(i+1)*numbytes] #(H)

bv_iv ^= BitVector( textstring = textstr ) #(I)

# Get key from user:

key = None

if sys.version_info[0] == 3: #(J)

key = input("\nEnter key: ") #(K)

else:

key = raw_input("\nEnter key: ") #(L)

key = key.strip() #(M)

# Reduce the key to a bit array of size BLOCKSIZE:

key_bv = BitVector(bitlist = [0]*BLOCKSIZE) #(N)

for i in range(0,len(key) // numbytes): #(O)

keyblock = key[i*numbytes:(i+1)*numbytes] #(P)

key_bv ^= BitVector( textstring = keyblock ) #(Q)

# Create a bitvector for storing the ciphertext bit array:

msg_encrypted_bv = BitVector( size = 0 ) #(R)

# Carry out differential XORing of bit blocks and encryption:

previous_block = bv_iv #(S)

bv = BitVector( filename = sys.argv[1] ) #(T)

while (bv.more_to_read): #(U)

bv_read = bv.read_bits_from_file(BLOCKSIZE) #(V)

if len(bv_read) < BLOCKSIZE: #(W)

bv_read += BitVector(size = (BLOCKSIZE - len(bv_read))) #(X)

bv_read ^= key_bv #(Y)

bv_read ^= previous_block #(Z)

previous_block = bv_read.deep_copy() #(a)

msg_encrypted_bv += bv_read #(b)

# Convert the encrypted bitvector into a hex string:

outputhex = msg_encrypted_bv.get_hex_string_from_bitvector() #(c)

# Write ciphertext bitvector to the output file:

FILEOUT = open(sys.argv[2], ’w’) #(d)

FILEOUT.write(outputhex) #(e)

FILEOUT.close() #(f)
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� Note that a very important feature of the script shown above is

that the ciphertext it outputs consists only of printable

characters. This is ensured by calling

get hex string from bitvector() in line (c) near the end of the

script. This call translates each byte of the ciphertext into two

printable hex characters.

� The decryption script, shown below, uses the same properties of

the XOR operator as stated at the beginning of this section to

recover the original message from the encrypted output.

� The reader may wish to compare the decryption logic in the

loop in lines (U) through (b) of the script shown below with the

encryption logic shown in lines (S) through (b) of the script

above.

#!/usr/bin/env python

### DecryptForFun.py

### Avi Kak (kak@purdue.edu)

### January 21, 2014, modified January 11, 2016

### Medium strength encryption/decryption for secure message exchange

### for fun.

### Based on differential XORing of bit blocks. Differential XORing

### destroys any repetitive patterns in the messages to be ecrypted and

### makes it more difficult to break encryption by statistical

### analysis. Differential XORing needs an Initialization Vector that is

### derived from a pass phrase in the script shown below. The security

### level of this script can be taken to full strength by using 3DES or

### AES for encrypting the bit blocks produced by differential XORing.

### Call syntax:

###
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### DecryptForFun.py encrypted_file.txt recover.txt

###

### The decrypted output is deposited in the file ‘recover.txt’

import sys

from BitVector import * #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the encrypted file and the other for the ’’’

’’’decrypted output file’’’)

PassPhrase = "Hopes and dreams of a million years" #(C)

BLOCKSIZE = 64 #(D)

numbytes = BLOCKSIZE // 8 #(E)

# Reduce the passphrase to a bit array of size BLOCKSIZE:

bv_iv = BitVector(bitlist = [0]*BLOCKSIZE) #(F)

for i in range(0,len(PassPhrase) // numbytes): #(G)

textstr = PassPhrase[i*numbytes:(i+1)*numbytes] #(H)

bv_iv ^= BitVector( textstring = textstr ) #(I)

# Create a bitvector from the ciphertext hex string:

FILEIN = open(sys.argv[1]) #(J)

encrypted_bv = BitVector( hexstring = FILEIN.read() ) #(K)

# Get key from user:

key = None

if sys.version_info[0] == 3: #(L)

key = input("\nEnter key: ") #(M)

else:

key = raw_input("\nEnter key: ") #(N)

key = key.strip() #(O)

# Reduce the key to a bit array of size BLOCKSIZE:

key_bv = BitVector(bitlist = [0]*BLOCKSIZE) #(P)

for i in range(0,len(key) // numbytes): #(Q)

keyblock = key[i*numbytes:(i+1)*numbytes] #(R)

key_bv ^= BitVector( textstring = keyblock ) #(S)

# Create a bitvector for storing the decrypted plaintext bit array:

msg_decrypted_bv = BitVector( size = 0 ) #(T)

# Carry out differential XORing of bit blocks and decryption:

previous_decrypted_block = bv_iv #(U)

for i in range(0, len(encrypted_bv) // BLOCKSIZE): #(V)

bv = encrypted_bv[i*BLOCKSIZE:(i+1)*BLOCKSIZE] #(W)

temp = bv.deep_copy() #(X)

bv ^= previous_decrypted_block #(Y)

previous_decrypted_block = temp #(Z)
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bv ^= key_bv #(a)

msg_decrypted_bv += bv #(b)

# Extract plaintext from the decrypted bitvector:

outputtext = msg_decrypted_bv.get_text_from_bitvector() #(c)

# Write plaintext to the output file:

FILEOUT = open(sys.argv[2], ’w’) #(d)

FILEOUT.write(outputtext) #(e)

FILEOUT.close() #(f)

� To exercise these scripts, enter some text in a file and let’s call

this file message.txt. Now you can call the encrypt script by

EncryptForFun.py message.txt output.txt

The script will place the encrypted output, in the form of a hex

string, in the file output.txt. Subsequently, you can call

DecryptForFun.py output.txt recover.txt

to recover the original message from the encrypted output

produced by the first script.

� If you’d rather use Python 3, you can invoke these scripts as

python3 EncryptForFun.py message.txt output.txt

python3 DecryptForFun.py output.txt recover.txt

� What follows are the Perl versions of the two Python script

shown above. For at least those of you who would like to be

proficient in both Perl and Python, it would be educational to
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compare the syntax used for doing the same things in the two

versions. Since the flow of logic in the two versions is identical,

such a comparison should be straightforward.

� In case you are puzzled by the statement in line (C), the call to

split with an empty regex as its first argument returns an array

of characters for the passphrase. This was done to establish

parity with line (C) of the Python version of the encryption

script with regard to how we may subsequently process the

passphrase in the rest of the scripts. You see, in Python, a

string is directly an iterable object, which allows for compact

code to be written for substring access and slicing. The call in

line (C) of the script shown below allows us to write similar

substring access and string slicing code in Perl with the help of

Perl’s range operator.

#!/usr/bin/perl -w

### EncryptForFun.pl

### Avi Kak (kak@purdue.edu)

### January 11, 2016

### Medium strength encryption/decryption for secure message exchange

### for fun.

### Based on differential XORing of bit blocks. Differential XORing

### destroys any repetitive patterns in the messages to be encrypted and

### makes it more difficult to break encryption by statistical

### analysis. Differential XORing needs an Initialization Vector that is

### derived from a pass phrase in the script shown below. The security

### level of this script can be taken to full strength by using 3DES or

### AES for encrypting the bit blocks produced by differential XORing.

### Call syntax:

###

### EncryptForFun.pl message_file.txt output.txt
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###

### The encrypted output is deposited in the file ‘output.txt’

use strict;

use Algorithm::BitVector; #(A)

die "Needs two command-line arguments, one for the name of " .

"message file and the other for the name to be used for " .

"encrypted output file"

unless @ARGV == 2; #(B)

my @PassPhrase = split //, "Hopes and dreams of a million years"; #(C)

my $BLOCKSIZE = 64; #(D)

my $numbytes = int($BLOCKSIZE / 8); #(E)

# Reduce the passphrase to a bit array of size BLOCKSIZE:

my $bv_iv = Algorithm::BitVector->new(bitlist => [(0) x $BLOCKSIZE]);

#(F)

foreach my $i (0 .. int(@PassPhrase / $numbytes) - 1) { #(G)

my $textstr = join ’’, @PassPhrase[$i*$numbytes .. ($i+1)*$numbytes-1]; #(H)

$bv_iv ^= Algorithm::BitVector->new(textstring => $textstr); #(I)

}

# Get key from user:

print "\nEnter key: "; #(J)

my $key_input = <STDIN>; #(K)

$key_input =~ s/^\s+|\s$//g; #(L)

my @key = split //, $key_input; #(M)

# Reduce the key to a bit array of size BLOCKSIZE:

my $key_bv = Algorithm::BitVector->new( bitlist => [(0)x$BLOCKSIZE] ); #(N)

foreach my $i (0 .. int(@key / $numbytes) - 1) { #(O)

my $keyblock = join ’’, @key[ $i*$numbytes .. ($i+1)*$numbytes - 1 ]; #(P)

$key_bv ^= Algorithm::BitVector->new(textstring => $keyblock); #(Q)

}

# Create a bitvector for storing the ciphertext bit array:

my $msg_encrypted_bv = Algorithm::BitVector->new( size => 0 ); #(R)

# Carry out differential XORing of bit blocks and encryption:

my $previous_block = $bv_iv; #(S)

my $bv = Algorithm::BitVector->new(filename => shift); #(T)

while ($bv->{more_to_read}) { #(U)

my $bv_read = $bv->read_bits_from_file($BLOCKSIZE); #(V)

if (length($bv_read) < $BLOCKSIZE) { #(W)

$bv_read += Algorithm::BitVector->new(size =>

($BLOCKSIZE - length($bv_read))); #(X)

}

$bv_read ^= $key_bv; #(Y)

$bv_read ^= $previous_block; #(Z)
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$previous_block = $bv_read->deep_copy(); #(a)

$msg_encrypted_bv += $bv_read; #(b)

}

# Convert the encrypted bitvector into a hex string:

my $outputhex = $msg_encrypted_bv->get_hex_string_from_bitvector(); #(c)

# Write ciphertext bitvector to the output file:

open FILEOUT, ">" . shift or die "unable to open file: $!"; #(d)

print FILEOUT $outputhex; #(e)

close FILEOUT or die "unable to close file: $!"; #(f)

� Finally, what follows is the Perl version of the decryption script.

Perhaps the only statement that might seem a bit complex is in

line (W). That is because Perl’s version of the BitVector module

does not come with an overloading for the slice operator.

Recall, Python comes with the slice operator ’:’ that is

overloaded in the BitVector module to return a slice of a given

BitVector object as another BitVector object. At least with

respect to substring access, the role that ’:’ plays in Python can

be approximated by the range operator ’..’ in Perl. However,

the range operator is not overloaded in the Perl version of the

BitVector module. In the Perl module, you can call get bit()

method with an array argument to return a slice a bit vector —

but only in the form of an array of bits. That’s why, in line (W)

in the code shown below, the call to get bit() is enclosed inside

a call to the BitVector constructor so that the slice returned is

itself a BitVector object.

#!/usr/bin/perl -w

### DecryptForFun.pl

### Avi Kak (kak@purdue.edu)
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### January 11, 2016

### Medium strength encryption/decryption for secure message exchange

### for fun.

### Based on differential XORing of bit blocks. Differential XORing

### destroys any repetitive patterns in the messages to be encrypted and

### makes it more difficult to break encryption by statistical

### analysis. Differential XORing needs an Initialization Vector that is

### derived from a pass phrase in the script shown below. The security

### level of this script can be taken to full strength by using 3DES or

### AES for encrypting the bit blocks produced by differential XORing.

### Call syntax:

###

### DecryptForFun.pl output.txt recover.txt

###

### The decrypted message is deposited in the file ‘recover.txt’

use strict;

use Algorithm::BitVector; #(A)

die "Needs two command-line arguments, one for the name of " .

"message file and the other for the name to be used for " .

"encrypted output file"

unless @ARGV == 2; #(B)

my @PassPhrase = split //, "Hopes and dreams of a million years"; #(C)

my $BLOCKSIZE = 64; #(D)

my $numbytes = int($BLOCKSIZE / 8); #(E)

# Reduce the passphrase to a bit array of size BLOCKSIZE:

my $bv_iv = Algorithm::BitVector->new(bitlist => [(0) x $BLOCKSIZE]); #(F)

foreach my $i (0 .. int(@PassPhrase / $numbytes) - 1) { #(G)

my $textstr = join ’’, @PassPhrase[$i*$numbytes .. ($i+1)*$numbytes-1]; #(H)

$bv_iv ^= Algorithm::BitVector->new(textstring => $textstr); #(I)

}

# Create a bitvector from the ciphertext hex string:

open FILEIN, shift or die "unable to open file: $!"; #(J)

my $encrypted_bv = Algorithm::BitVector->new( hexstring => <FILEIN> ); #(K)

# Get key from user:

print "\nEnter key: "; #(L)

my $key_input = <STDIN>; #(M)

$key_input =~ s/^\s+|\s$//g; #(N)

my @key = split //, $key_input; #(O)

# Reduce the key to a bit array of size BLOCKSIZE:

my $key_bv = Algorithm::BitVector->new( bitlist => [(0) x $BLOCKSIZE] ); #(P)
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foreach my $i (0 .. int(@key / $numbytes) - 1) { #(Q)

my $keyblock = join ’’, @key[ $i*$numbytes .. ($i+1) * $numbytes - 1]; #(R)

$key_bv ^= Algorithm::BitVector->new(textstring => $keyblock); #(S)

}

# Create a bitvector for storing the decrypted plaintext bit array:

my $msg_decrypted_bv = Algorithm::BitVector->new( size => 0 ); #(T)

# Carry out differential XORing of bit blocks and decryption:

my $previous_decrypted_block = $bv_iv; #(U)

foreach my $i (0 .. int(length($encrypted_bv)/$BLOCKSIZE - 1)) { #(V)

my $bv = Algorithm::BitVector->new( bitlist => $encrypted_bv->get_bit(

[$i*$BLOCKSIZE .. ($i+1)*$BLOCKSIZE - 1] ) ); #(W)

my $temp = $bv->deep_copy(); #(X)

$bv ^= $previous_decrypted_block; #(Y)

$previous_decrypted_block = $temp; #(Z)

$bv ^= $key_bv; #(a)

$msg_decrypted_bv += $bv; #(b)

}

# Extract plaintext from the decrypted bitvector:

my $output_text = $msg_decrypted_bv->get_text_from_bitvector(); #(c)

# Write plaintext bitvector to the output file:

open FILEOUT, ">" . shift or die "unable to open file: $!"; #(d)

print FILEOUT $output_text; #(e)

close FILEOUT or die "unable to close file: $!"; #(f)

� Here’s how you would call the Perl scripts:

EncryptForFun.pl message.txt output.txt

DecryptForFun.pl output.txt recover.txt

� The security level of this script can be taken to full strength by

using 3DES or AES for encrypting the bit blocks produced by

differential XORing.
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Back to TOC

2.12 HOMEWORK PROBLEMS

1. Use the ASCII codes available at http://www.asciitable.com to

manually construct a Base64 encoded version of the string

“hello\njello”. Your answer should be “aGVsbG8KamVsbG8=”. What

do you think the character ‘=’ at the end of the Base64

representation is for? [If you wish you can also use interactive Python for this. Enter the

following sequence of commands “import base64” followed by “base64.b64encode(’hello\njello’)”.

If you are using Python 3, make sure you prefix the argument to the b64encode() function by the character

‘b’ to indicate that it is of type bytes as opposed to of type str. Several string processing functions in

Python 3 require bytes type arguments and often return results of the same type. Educate yourself on the

difference between the string str type and bytes type in Python 3.]

2. A text file named myfile.txt that you created with a

run-of-the-mill editor contains just the following word:

hello

If you examine this file with a command like

hexdump -C myfile.txt

you are likely to see the following bytes (in hex) in the file:

68 65 6C 6C 6F 0A

which translate into the following bit content:
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01101000 01100101 01101100 01101100 01101111 00001010

Looks like there are six bytes in the file whereas the word

“hello” has only five characters. What do you think is going on?

Do you know why your editor might want to place that extra

byte in the file and how to prevent that from happening?

3. As you know, you can easily find the XOR of two bit patterns

or two decimal integers through a terminal interactive session

with Python or Perl. For example, with Python:

>>> 16 ^ 1

17

>>> 0x10 ^ 0x01

17

However, just in order to become more familiar with the

BitVector, write a script in each language that takes two

command line strings, in hex or in decimal, and returns the

XOR of the two arguments.

4. Write your own Python or Perl script that carries out Base64

encoding. If you use the BitVector module, your solution should

not take more than half a dozen lines of code.

5. All classical ciphers are based on symmetric key encryption.

What does that mean?
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6. What are the two building blocks of all classical ciphers?

7. True or false: The larger the size of the key space, the more

secure a cipher? Justify your answer.

8. Give an example of a cipher that has an extremely large key

space size, an extremely simple encryption algorithm, and

extremely poor security.

9. What is the difference between monoalphabetic substitution

ciphers and polyalphabetic substitution ciphers?

10. What is the main security flaw in the Hill cipher?

11. What makes Vigenere cipher more secure than, say, the Playfair

cipher?

12. Let’s say you have used the encryption and decryption scripts

shown in Section 2.11 through the following calls

EncryptForFun.py message.txt output.txt

DecryptForFun.py output.txt recover.txt

or the Perl versions of the same, and that, subsequently, you

compare the input message file and the output produced by

decryption by calling
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diff message.txt recover.txt

you are likely to see the following message returned by the diff

command:

Binary files message.txt and recover.txt differ

and, yet, if you print out the contents of the two files by

cat message.txt

cat recover.txt

the two files appear to be identical. What do you think is going

on? [HINT: Use the ’cat -A’ command to output the contents of the two files.

Also, instead of calling diff as shown above, try calling ’diff -a’ which forces a

text only comparison on the two files.]

13. Programming Assignment:

Write a script called hist.pl in Perl (or hist.py in Python)

that makes a histogram of the letter frequencies in a text file.

The output should look like

A: xx

B: xx

C: xx

...

...

where xx stands for the count for that letter.

61



Computer and Network Security by Avi Kak Lecture 2

14. Programming Assignment:

Write a script called poly_cipher.pl in Perl (or

poly_cipher.py in Python) that is an implementation of the

Vigenere polyalphabetic cipher for messages composed from the

letters of the English alphabet, the numerals 0 through 9, and

the punctuation marks ‘.’, ‘,’, and ‘?’.

Your script should read from standard input and write to

standard output. It should prompt the user for the encryption

key.

Your hardcopy submission for this homework should include

some sample plaintext, the ciphertext, and the encryption key

used.

Make your scripts as compact and as efficient as possible. Make

liberal use of builtin functions for what needs to be done. For

example, you could make a circular list with either of the

following two constructs in Perl:

unshift( @array, pop(@array) )

push( @array, shift(@array) )

See perlfaq4 for some tips on array processing in Perl.

15. Programming Assignment:

This is an exercise in you assuming the role of a cryptanalyst

and trying to break a cryptographic system that consists of the

two Python scripts you saw in Section 2.11. As you’ll recall, the

script EncryptForFun.py can be used for encrypting a message
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file and the script DecryptForFun.py for recovering the plaintext

message from the ciphertext created by the first script. You can

download both these scripts in the code archive for Lecture 2.

With BLOCKSIZE set to 16, the script EncryptForFun.py produces

the following ciphertext output for a plaintext message that is a

quote by Mark Twain:

20352a7e36703a6930767f7276397e376528632d6b6665656f6f6424623c2d\

30272f3c2d3d2172396933742c7e233f687d2e32083c11385a03460d440c25

all in one line. (You can copy-and-paste this hex ciphertext into

your own script. However, make sure that you delete the

backslash at the end of the first line. You can also see the same

output in the file named output5.txt in the code archive for

Lecture 2.) Your job is to both recover the original quote and

the encryption key used by mounting a brute-force attack on the

encryption/decryption algorithms. [HINT: The logic used in the scripts

implies that the effective key size is only 16 bits when the BLOCKSIZE variable is set to

16. So your brute-force attack need search through a keyspace of size only 216.]
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CREDITS

The data presented in Figure 1 and Table 1 are from

http://jnicholl.org/Cryptanalysis/Data/EnglishData.php.

That site also shows a complete digram table for all 676 pairings of

the letters of the English alphabet.
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