
Econ 715

Lecture 2
Some Useful Asymptotic Theory

As seen in the last lecture, linear least square has an analytical solution: β̂OLS = (X ′X)
−1
X ′y.

The consistency and asymptotic normality of β̂n can be established using LLN, CLT and generalized

Slutsky theorem. When it comes to nonlinear models/methods, the estimators typically do not have

analytical solution. For example, a nonlinear regression model:

y = αXθ + ε, E(ε|X) = 0. (1)

A typical estimator is obtained by nonlinear least square:

(α̂NLS , θ̂NLS) = arg min
(α,θ)∈A×Θ⊆R2

Q̂n(α, θ), (2)

where Q̂n(α, θ) = n−1
∑n
i=1

(
yi − aXθ

i

)2
. The nonlinear least square problem does not have analyt-

ical solution. In order to study the consistency of (α̂NLS , θ̂NLS), we need to know the asymptotic

behavior of Q̂n(α, θ) on the set A×Θ ⊆ R2. In other words, we need the uniform (probability or

almost sure) limit behavior of Q̂n(α, θ) on the set A×Θ ⊆ R2. Uniform laws of large numbers are

tools serving that purpose.

Once the consistency is established, we then expand the objective function around the true value

of the parameters, aiming to obtain the asymptotic dispersion of the estimators around the true

value, namely the asymptotic distribution of the estimators. The expansion is made possible by

the mean-value theorem. Details on consistency and asymptotic normality will be covered in the

next few lectures. This lecture focuses on uniform laws of large numbers.

Let X × Θ be the Cartesian product of Euclidean sets X and Θ. Let g(x, θ) be a real-valued

function defined on X ×Θ. Function g(·, θ) is Lebesgue measurable for every θ ∈ Θ. Let X1, X2, ...

be a sequence of iid random variables on X . A uniform (weak) law of large numbers defines a set

of conditions under which1

sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

g(Xi, θ)− Eg(Xi, θ)

∣∣∣∣∣→p 0. (3)

Trivial Case: Θ = {θ1, ..., θK}, K < ∞. That is, the set Θ is finite. In this case, pointwise

LLN is enough. The condition for pointwise LLN is: Eg(Xi, θ) < ∞ for all θ ∈ Θ. Suppose this

1It is a strong law of large number if the convergence holds almost surely instead of in probability. In this course,
we only need weak law of large numbers, though some of the conditions we give today are strong enough to obtain
strong law of large numbers.
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condition hold. Then,

sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

g(Xi, θ)− Eg(Xi, θ)

∣∣∣∣∣ ≤
K∑
k=1

∣∣∣∣∣n−1
n∑
i=1

g(Xi, θk)− Eg(Xi, θk)

∣∣∣∣∣→p 0. (4)

When Θ is not finite, the idea is to approximate the supremum over Θ by the supremum over

a finite subset of Θ. Loosely speaking, the two suprema are close if g is ”not too volatile” on Θ.

Various ULLNs restrict the ”volatility” of g in different ways. Here we introduce an old and simple,

but rather useful ULLN.

1 A Simple ULLN

The following theorem dates back to Jennrich (1969, Theorem 2) or even earlier:

Theorem (ULLN1): Suppose (a) Θ is compact, (b) g(Xi, θ) is continuous at each θ ∈ Θ with

probability one, (c) g(Xi, θ) is dominated by a function G(Xi), i.e. |g(Xi, θ)| ≤ G(Xi), and (d)

EG(Xi) <∞. Then (3) holds.

Proof. First, define ∆δ (Xi, θ0) = supθ∈B(θ0,δ) g(Xi, θ)−infθ∈B(θ0,δ) g(Xi, θ). Now E∆δ (Xi, θ0) ↓ 0

as δ ↓ 0 because (i) ∆δ (Xi, θ0) ↓ 0 a.s. by condition (b), (ii) ∆δ (Xi, θ0) ≤ 2 supθ∈Θ |g(Xi, θ)| ≤
2G(Xi) by condition (c), and condition (d).

So, for all θ ∈ Θ and ε > 0, there exists δε (θ) such that E
[
∆δε(θ) (Xi, θ)

]
< ε.

Obviously, we can cover the whole parameter space Θ by {B (θ, δε (θ)) : θ ∈ Θ}. In fact, because

Θ is compact, we can find a finite subcover, such that Θ is covered by ∪Kk=1B (θk, δε(θk)).

Note that

sup
θ∈Θ

[
n−1

n∑
i=1

g(Xi, θ)− Eg(Xi, θ)

]

= max
k

sup
θ∈B(θk,δε(θk))

[
n−1

n∑
i=1

g(Xi, θ)− Eg(Xi, θ)

]

≤ max
k

[
n−1

n∑
i=1

sup
θ∈B(θk,δε(θk))

g(Xi, θ)− E inf
θ∈B(θk,δε(θk))

g(Xi, θ)

]

= op(1) + max
k

[
E sup
θ∈B(θk,δε(θk))

g(Xi, θ)− E inf
θ∈B(θk,δε(θk))

g(Xi, θ)

]
= op(1) + max

k
E∆δε(θk) (Xi, θk)

≤ op(1) + ε, (5)

Xiaoxia Shi Page: 2



Econ 715

where the first equality holds by the WLLN, which applies because E
∣∣∣supθ∈B(θk,δε(θk)) g(Xi, θ)

∣∣∣ ≤
EG(Xi) <∞, and the last inequality holds by the way we define δε(θk).

By analogous argument,

inf
θ∈Θ

[
n−1

n∑
i=1

g(Xi, θ)− Eg(Xi, θ)

]
≥ op(1)− ε. (6)

The desired result follows from (5) and (6) by the fact that ε is chosen arbitrarily.

Comments on ULLN1: 1. Condition (a) is not a strong assumption and is often assumed in

extremum estimation problems. It is effectively imposed in practice because computers don’t deal

with real infinity. Compactness can be replaced with boundedness without affecting the result or

the proof.

2. Condition (b) does not require g(x, θ) to be continuous at all θ ∈ Θ for a given x. Thus the

theorem applies to the cases when the g functions are non-smooth. Condition (b) can usually be

verified by visual inspection.

3. ULLN1 can be readily extended to stationary data.

Example 1: (NLS continued) In the NLS example introduced at the beginning of the lecture,

the NLS objective function is

Q̂n(α, θ) = n−1
n∑
i=1

(
yi − aXθ

i

)2
. (7)

Suppose the parameter space is [−C,C]× [0, C] for some positive constant C.

Here g(yi, Xi; a, θ) =
(
yi − aXθ

i

)2
. It is continuous in a and θ by visual inspection. It is

dominated by G(y, x) = 2y2 + 2C2 (|x| ∨ 1)
2C

. The moment condition (d) is verified if yi has finite

second moment and |Xi| has finite 2C ′th moment.

Example 2: (Maximum Likelihood – Probit) Yi = 1(X
′

iθ+εi ≥ 0), εi ∼ N(0, 1). Log-likelihood

function for this model is

lnLn(θ)/n = n−1
n∑
i=1

[Yi ln Φ(X
′

iθ) + (1− Yi) ln Φ(−X
′

iθ)], (8)

where Φ() is the cdf of the standard normal distribution. Here g(Yi, Xi; θ) = Yi ln Φ(X
′

iθ) + (1 −
Yi) ln Φ(−X ′

iθ). It is continuous in θ by visual inspection. To find the dominating function, observe
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that

| ln Φ(X
′

iθ)| = | ln Φ(0) + λ(X
′

i θ̃)X
′

iθ|

≤ | ln Φ(0)|+ λ(X
′

i θ̃)|X
′

iθ|

≤ | ln 2|+ C · |1 +X
′

i θ̃||X
′

iθ|

≤ | ln 2|+ C · (1 + ‖Xi‖ ‖θ‖)‖Xi‖‖θ‖, (9)

where λ(v) = φ(v)/Φ(v), the equality holds by a mean-value expansion, the first inequality holds

by the triangular inequality, the second inequality holds by the well-known fact that λ(v) is con-

tinuous, approaches 0 as v approaches positive infinity and approaches the negative 45 degree line

as v approaches negative infinity, and the last inequality holds by the Cauchy-Schwartz inequality.

Therefore, the dominating function for g is a multiple of (1 + ‖Xi‖ ‖θ‖)‖Xi‖‖θ‖ plus a constant.

Thus the moment condition (d) is verified as long as the space of θ is bounded and X has finite

second moment.

Example 3: (Maximum Score, Manski, 1995) Yi = 1(X
′

iθ + εi >= 0), where ε has conditional

median (given x) of zero. The maximum score estimator is the maximizer of

Q̂n(θ) = −n−1
n∑
i=1

|Yi − 1(X
′

iθ > 0)|. (10)

Here g(y, x; θ) = |y − 1(x
′
θ > 0)|. It is continuous with probability one at each θ as long as X

′

iθ is

continuously distributed for all θ. For example, if the coefficient of a component of Xi is nonzero for

all θ ∈ Θ and that component is a continuous random variable, then X
′

iθ is continuously distributed

for all θ. The g function is dominated by the constant 2. Thus, conditions (c) and (d) of ULLN1

also hold.

Example 4: (Quantile Regression) Yi = X ′iθ + εi, i = 1, ..., n; Qεi(q|Xi) = 0 (the qth quantile

of εi given Xi is zero). Then a quantile estimator sets n−1
∑n
i=1

(
q − 1(Yi −X ′i θ̂n ≤ 0)

)
Xi = 0.

Here g(y, x; θ) = (q−1(y−x′θ))x. It is continuous with probability one at each θ as long as εi|Xi

has continuous distribution (and thus Yi|Xi has continuous distribution). The moment condition

holds if E ||Xi|| ≤ ∞ because g(y, x; θ) is dominated by G(y, x) = 2 |x|.

2 Generic Uniform Convergence

The ULLN1 is enough for most of the uniform convergence results needed in the consistency proofs.

But it has its limitations. It only applies to sample averages. Some criterion functions we use are not

of the sample average form (e.g. pre-estimated parameters, U-statistics, etc.). Thus we also discuss

a generic uniform convergence theorem. The central piece of the generic uniform convergence is
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the stochastic equicontinuity concept, which will be useful in other aspects of extreme estimators

besides consistency.

Let Gn(θ) be a generic sequence of random functions. In the special case of sample averages,

Gn (θ) = n−1
∑n
i=1[g(Xi, θ)−Eg(Xi, θ)]. In general, Gn(θ) is not necessarily of the sample average

form.

Definition SE: {Gn(θ) : n ≥ 1} is stochastically equicontinuous on Θ if ∀ε > 0, ∃δ > 0 such that

lim sup
n→∞

P

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

|Gn (θ)−Gn (θ′)| > ε

)
< ε. (11)

Remark. In the definition of SE, we can replace “< ε” by “= 0”. Doing so results in an equivalent

definition. (Why?)

Another equivalent definition is: for any random sequences {θn ∈ Θ}n≥1 and {θ∗n ∈ Θ}n≥1 such

that ‖θn − θ∗n‖ →p 0, ‖Gn(θn)−Gn(θ∗n)‖ →p 0.

Theorem 2.1 (Generic Convergence) (a) If (i) Θ is a bounded Euclidean space, (ii) Gn(θ)→p 0

∀θ ∈ Θ and (iii) {Gn(θ) : n ≥ 1} is stochastically equicontinuous, then supθ∈Θ |Gn(θ)| →p 0.

(b) If supθ∈Θ |Gn(θ)| →p 0, then (ii) and (iii) hold.

Proof. (a) Because Θ is a bounded Euclidean space, for any δ > 0, there exist a finite subset

{θk : k = 1, ...,K} of Θ such that the open balls {B (θk, δ) : k = 1, ..,K} cover Θ. Consider an

arbitrary ε > 0. Let δ be the positive number such that the inequality in Definition SE holds.

Observe that

P

(
sup
θ∈Θ
|Gn(θ)| > 2ε

)
= P

(
max
k

sup
θ∈B(θk,δε)

|Gn(θ)−Gn(θk) +Gn(θk)| > 2ε

)

≤ P

(
max
k

sup
θ∈B(θk,δε)

|Gn(θ)−Gn(θk)|+ max
k
|Gn(θk)| > 2ε

)

≤ P

(
max
k

sup
θ∈B(θk,δε)

|Gn(θ)−Gn(θk)| > ε

)
+ P

(
max
k
|Gn(θk)| > ε

)

≤ P

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

|Gn(θ)−Gn(θk)| > ε

)
+ P

(
max
k
|Gn(θk)| > ε

)
. (12)

Thus,

lim sup
n→∞

P

(
sup
θ∈Θ
|Gn(θ)| > 2ε

)
≤ ε+ 0 = ε, (13)
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which implies that supθ∈Θ |Gn(θ)| →p 0.

(b) The implication of (ii) is immediate. To show that the uniform convergence implies (iii),

observe that

P

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

|Gn(θ)−Gn(θk)| > ε

)
≤ P

(
2 sup
θ∈Θ
|Gn (θ) | > ε

)
→ 0. (14)

Example. U-Statistic. Newey, 1991: Let m(z, z̃, θ) be a function of a pair of data arguments

that is symmetric in the data arguments, i.e., m(z, z̃, θ) = m(z̃, z, θ). Consider a U-statistic,

depending on θ and its population analog

Q̂n(θ) ≡ 2

n∑
t=1

∑
s>t

m(zt, zs, θ)/(n(n− 1))

Q(θ) = E[m(zt, zs, θ)], θ ∈ Θ, (15)

where zt is assumed i.i.d. Results on convergence of Q̂n(θ) is well known (see e.g. Serfling (1980)).

We can turn it into uniform covergence result using the generic uniform convergence result.

Proposition 2.1. Suppose that Θ is a compact metric space, E[|m(zt, zs, θ0)|] < ∞ for some

θ0 ∈ Θ, and there are b(z, z̃) such that E[b(z1, z2)] <∞ and for θ̃, θ ∈ Θ, |m(z, z̃, θ̃)−m(z, z̃, θ)| ≤
b(z, z̃)‖θ̃ − θ‖. Then

sup
θ∈Θ
|Q̂n(θ)−Q(θ)| = op(1), (16)

and Q(θ) is continuous.

Proof. We verify the three conditions in Theorem 2.1(a). Condition (i) holds automatically.

Condition (ii) holds by Theorem 5.4.A of Serfling (1980), which applies because for any θ ∈ Θ,

E[|m(zt, zs, θ)|] ≤ E[|m(zt, zs, θ0)|] + E[|m(zt, zs, θ0)−m(zt, zs, θ)|]

≤ E[|m(zt, zs, θ0)|] + E[b(z, z̃)‖θ̃ − θ‖]

≤ E[|m(zt, zs, θ0)|] + E[b(z, z̃)]diameter(Θ)

<∞. (17)
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Let Bn = 2
∑n
t=1

∑
s>t b(zs, zt)/(n(n− 1)). Then E[Bn] = E[b(z1, z2)] <∞. We have,

|Q̂n(θ̃)− Q̂n(θ)| ≤ 2

n∑
t=1

∑
s>t

|m(zt, zs, θ̃)−m(zs, zt, θ)|/(n(n− 1))

≤ Bn‖θ̃ − θ‖. (18)

Condition (iii) is implied by this display and E(Bn) < ∞. Now that we have verified all three

conditions of Theorem 2.1(a), the theorem applies and gives us the desired result.

3 Some Probability Concepts

These probability concepts are used repeatedly. I put them here for easy reference.

Convergence in probability: A random sequence {Xn}∞n=1 converges in probability to a

nonstochastic scalar c if for all ε > 0, limn→∞ Pr (|Xn − c| > ε) = 0. We usually write Xn →p c or

plimn→∞Xn = c.

The op notation. Consider random sequences {Xn}∞n=1 and {Yn}∞n=1. We say Xn = op(Yn)

(in English: Xn is of order smaller than Yn) if Xn

Yn
→p 0. For example, Xn = op(1) means Xn →p 0

as n→∞.

The Op notation. We say Xn = Op(Yn) (in English: Xn is of order no larger than Yn) if for

any ε > 0, there exists C large enough such that limn→∞ Pr (|Xn/Yn| > C) < ε. If Xn = Op(1), we

call Xn stochastically bounded. Any sequence of random variables that converges in distribution is

stochastically bounded.

You may also encounter some variations of the op and Op notation. The o notation is used

in deterministic context: an = o (bn) means limn→∞ an/bn = 0. The O notation is used also in

deterministic context: an = O (bn) means an/bn is a bounded sequence.

”Almost surely” or ”with probability one”. These phrases are added to statements

about random objects (functions or variables), when we allow some exceptions to the statement.

The exceptions are allowed for some values of the random objects. The exceptions cannot occur

too often. They can only occur on a probabilistically negligible set of occasions. For example, we

say g(Xi, θ0) is continuous in θ at θ = θ0 with probability one, if limθ→θ0 g(x, θ) = g(x, θ0) for all

x ∈ X1 such that Pr (x ∈ X1) = 1. The set X1 can be a proper subset of the support of Xi. To be

more specific, suppose Xi ∼ N(0, 1). The support of Xi is R. The set X1 can be R − {0}, or even

R− {the set of all rational numbers}.
Dominated Convergence Theorem. Suppose {Xn}∞n=1 is a sequence of random variables

and X is a random variable. If (a) Xn → X almost surely, (b) |Xn| ≤ Z almost surely, and (c)

E (Z) <∞, then E (Xn)→ E (X).
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