B EECS151/251A
& Spring 2018

&8 Digital Design and
Integrated Circuits

- Instructors:
. John Wawrzynek and Nick Weaver

Multiplication

a, a, a, a, — Multiplicand

X ab, ab, a,b, aby’
asb, a)b, a;b, ayb, Partial
asb, a,b, a,b, ajb, products
asb, a,b; a,b; agbs

~/

a,b,tagb, ajb, — Product

Many different circuits exist for multiplication.
Each one has a different balance between
speed (performance) and amount of logic (cost).

Page 2

“Shift and Add” Multiplier

e Sums each patrtial

product, one at a time.
P K B * In binary, each partial

bt shift registers product is shifted
versions of A or 0.
k

+ —
n-bit 0 0 Control Algorithm:
adder j::1 1.P < 0, A — multiplicand,

A B < multiplier

+bit register 2. If LSB of B==1 then add Ato P

else add O
3. Shift [P][B] right 1
4. Repeat steps 2 and 3 n-1 times.
5. [P][B] has product.

Page 3

“Shift and Add” Multiplier
Signed Multiplication:

Remember for 2’s complement numbers MSB has negative weight:

N-2
: 1
X = Exl.2’ -x,,2"
i=0

ex: -6 = 11010, = 020 + 121 + 022 + 1023 - 124
=0 + 2+ 0+ 8 -16=-6

« Therefore for multiplication:
a) subtract final partial product
b) sign-extend partial products
* Modifications to shift & add circuit:
a) adder/subtractor

b) sign-extender on P shifter register
Page 4

A Combinational multiplier

A Latency & Throughput
= Wallace Tree

= Pipelining to increase
throughput

Q Smaller multipliers
= Booth encoding
= Serial, bit-serial

Q Two’'s complement
multiplier

Unsigned
Combinational
Multiplier

Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.

b3 0 b2 0 b1 O bO O . : :
Each row: n-bit adder with AND gates
R N R A A N e

a0
] o _
T C C o bj sum in
1] 1) ‘
——a’l Y 5
| ‘_O . i
A N
* FA
— S carry carry
h ﬁ h %_. pp out in
I 3 \J
a sum out
| 0
]
i "o i P4 What is the critical path?

Page 7

Combinational Multiplier (unsigned)

L %3 X2 xb X0 multiplicand
Ty xe vl ¥o multiplier
X3Y0 X2Y0 X1Y0 XO0YO : _
. %3v1 %071 %1v1 X0Y1 Par"n‘al .produc‘rs, one for efxch bit in
+ X3Y2 X2Y2 X1Y2 X0Y2 multiplier (each bit needs just one
+ X3Y3 X2Y3 X1Y3 X0Y3 AND gate)
y0

)a .

Carry-Save Addition

« Speeding up multiplication is a « Example: sum three numbers,
matter of speeding up the 340 = 0011, 2,, = 0010, 3,, = 0011
summing of the partial products.

- “Carry-save” addition can help. 3,, 0011 .

« Carry-save addition passes + 2..0010
(saves) the carries to the output, 12 0100 = 4. ¢ carry-save add
rather than propagating them. (10

s 0001 = 14,)
carry-save add <
340 0011
c 0010 = 24,
carry-propagate add< \ s 0110 = 610
1000 = 84,

 In general, carry-save addition takes in 3 numbers and produces 2.
« Whereas, carry-propagate takes 2 and produces 1.
« With this technique, we can avoid carry propagation until final addition
Page 9

Carry-save Circuits

\“-‘C.S-S.-A._.!-l-Y--_.-.Y-l'-!.---.Y-.V-.Y----.!-!_Y.--..-Y.J_X--..-Y.-Y.-L--.-!-!-!--.--Y--Y..Y.-.-_._...--._7
| FA||FA||FA||FA||FA||FA||FA||FA| ¢
"""" I
C SC SC SC SC SC SC SC SC

 When adding sets of numbers, X,
carry-save can be used on all
but the final sum.

 Standard adder (carry | |
propagate) is used for final sum.
« Carry-save is fast (no carry []

propagation) and cheap (same
cost as ripple adder)

Page 10

Array Multiplier using Carry-save Addition

b3 0 b2 0 b1 0 b0 0
| | | | | | | | .
——a0 bj sum in
0 0 0)
l [[1
O| \ l 4 l > PO - . . .
al
—O— — — — —] je—
[[[
] ‘ { o —— Pt FA
— a2 carry
0 L o] out)
R e s '
a3 sum out
0 L i |
— P3

-1 | Fast carry-
propagate adder

P7 P6 P5 P4

Page 11

Carry-save Addition

CSA is associative and communitive. For example:
(KXo *+ Xq) +X5) +X;) = ((Xg + Xp) +H(Xy + X3))

X;Xg Xg X, X3 X, X, X

\CSA/ \CSA/ Abalanced tree can be used to

reduce the logic delay.

\CSA/ \CSA/ « This structure is the basis of the
T Wallace Tree Multiplier.
0g3,N -, Partial products are summed
with the CSA tree. Fast CPA

(ex: CLA) is used for final sum.

Multiplier delay o logs;,N +
log,N

log,N

Page 12

Increasing Throughput Plpellmng

Idea: split processin
several clock 1 I s R

across several clock e Rl =
cycles by dividing circuit) _l—_;“ - = S ‘J‘ "

into pipeline stages 1 ! I

into pipeline agg ' é‘ﬁ L_B d d_}J
separated by registers A o o fa

that hold values passin . T

from one stage to Ther

next. Fr
' i

+- register. dj

Throughput = 1/4t,; ¢, instead of 1/8tpy 4 13
S

Booth Recoding: Higher-radix mult.

Idea: If we could use, say, 2 bits of the multiplier in generating each
partial product we would halve the number of columns and halve the
latency of the multiplier!
Avi Ans - Ay Ay A, A A,
X Bui Bwzo- Bs B, B By

¥
Booth's insight: rewrite 2*A Br.i(*A=0*A =0

. =1*A = A
and 3*A cases, leave 4A for —— S 0%A L AA - 2A

hext partial product to do! =3*A > 4A- A 15

Booth recoding
(On-the-fly canonical signed digit encoding!)

current bit pair /from previous bit pair
B.., B, B i
o BBl e o
1A — A
O O 1 | addA = 2*A — 4A - 2A
O 1 O | addA =3TA—~4A-A
O 1 1 |add?2*A
1 O O |sub?2*A
1 0 1 sSub A — -2*A+A
1 1 O sub A
1 1 1 add 0 — -A+A
}

A "1" in this bit means the previous stage needed to add 4*A. Since
this stage is shifted by 2 bits with respect to the previous stage,
adding 4*A in the previous stage is like adding A in this stage! 16

 Bit-serial multiplier (n2 cycles, one bit of result per n cycles):

S

hiftA—

Ll

A register

Bit-serial Multiplier

—

Lt

B register

7

FA

carry

! ot

L reset |
sum | o

N
D-FF|

T

« Control Algorithm:

repeat n cycles {
repeat n cycles{

}

shiftB, shiftHI, shiftLOW, reset

// outer

0
1

— shiftHI

— shiftLOW

A

HI register

LseIectSum

(1)

loop

// inner (j) loop
shiftA, selectSum, shiftHI

LOW register

Note: The occurrence of a control
signal x means x=1. The absence

of x means x=0.

Page 17

Signed Multipliers

Combinational Multiplier (signed!)

i N bits —i
PN DN-2 | el ves 23 22 21 20
' / Range: - 2Nt to 2Nt - | . A
"sign bit" “decimal” point
(=3) * (=2)
(—=3) 1 0 1 (X)
(—2) * 1 1 0 (Y)
000O0O00O YO*X = O
+1 1101 2Y1*X = -6
- 1101 4Y2*X = =12

(+6) 000110

Combinational Multiplier (signed)

* Y3 y2 Yl Y0 | N bits '
____________________ PN N2 | eee | e | e | 23 | 22| 21| 20
X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0YO
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 [Range: -2 1o 2|
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0YZ2 “sign bit" “decimal” point

- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

0

¢ © .9
. ﬁﬂ?

z0

1)
There are tricks we can use
to eliminate the extra

2’s Complement Multiplication
(Baugh-Wooley)

Step 1: two's complement operands so high Step 3: add the ones to the partial products
order bit is -2N-1, Must sign extend partial and propagate the carries. All the sign
products and subtract the last one extension bits go away!
L B3 oxz2oxL X0 X3Y0 X2Y0 X1Y0 X0YO
¥3. ¥z y1 X0 + X3Y1 X2Y1 X1Y1l X0Y1
““““““““““ + X2¥2 X1Y2 X0Y2
X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1YO XOYO + X3Y3 X273 XIT3 X073
+ X3Y1 X3Y1l X3Y1 X3Yl X2Y1 X1Y1l XO0Y1 +
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 + 1
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 _
1 1 1 1
z7 26 z5 z4 z3 z2 2zl Z0
Step 2: don't want all those extra additions, so Step 4: finish computing the constants...
add a carefully chosen constant, remembering
to subtract it at the end. Convert subtraction
into add of (complement + 1). X3Y0 X2Y0 X1YO0 XO0YO
X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1YO XO0YO + X3Y1 X2Y1 X1Y1l X0Y1
+ 1 + X2Y2 X1Y2 X0Y2
+ X3Y1 x3Y1 X3Y1l X3Y1l X2Y1 X1Y1l XOY1 + X3Y3 X2Y3 X1Y3 X0Y3
+ 1 + 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 + 1 1
+ 1
+ X3Y3 X3Y3 X2Y3 XIY3 X0Y3_ T—
. 1 }-B =~B +1 Result: multiplying 2's complement operands
+ 1 takes just about same amount of hardwarﬁ as

1 1 1 1 multiplying unsigned operands!

2’s Complement Multiplication

Multiplication in Verilog

You can use the “*” operator to multiply two numbers:

wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplicationl

If you want Verilog to treat your operands as signed two’'s complement
numbers, add the keyword signed to your wire or reg declaration:

wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!

Remember: unlike addition and subtraction, you need different circuitry
if your multiplication operands are signed vs. unsigned. Same is true of
the >>> (arithmetic right shift) operator. To get signed operations all
operands must be signed.

wire signed [9:0] a;

wire [9:0] b;

wire signed [19:0] result = a*$signed(b);

To make a signed constant: 10’'sh37C 23
o

