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Power Dissipation 

•  Dynamic power consumption 
–  switching current 

•  Static power consumption 
–  short-circuit current 
–  leakage current 
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Low Power Design Methodologies 

•  Adapt process technology 
–  reduce capacitance 
–  reduce leakage current 
–  reduce supply voltage 

•  Reduce switch activity 
–  minimize glitches 
–  minimize number of operations 
–  low power bus encoding 
–  scheduling and binding optimization 

•  Power down modes 
–  clock gating 
–  memory partitioning 
–  power gating 

•  Voltage optimization and scaling 
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Design Flow Integration 

•  Power Characterization and Modeling 
–  How to generate macro-model power data? 
–  Model accuracy 

•  Power Analysis 
–  When to analyze? 
–  Which modes to analyze? 
–  How to use the data? 

•  Power Reduction 
–  Logical modes of operation 

•  For which modes should power be reduced? 
–  Dynamic power versus leakage power 
–  Physical design implications 
–  Functional and timing verification 
–  Return on Investment 

•  How much power is reduced for the extra effort?  Extra logic?  Extra area? 
•  Power Integrity 

–  Peak instantaneous power 
–  Electromigration 
–  Impact on timing 
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[source: J. Frenkil, Kluwer’02] 



Generalized Low-Power Design Flow 

System-Level Design 

RTL Design 

Implementation 

•  Explore architectures and algorithms for power efficiency 
•  Map functions to sw and/or hw blocks for power efficiency 
•  Choose voltages and frequencies  
•  Evaluate power consumption for different operational modes 
•  Generate budgets for power, performance, area 

•  Generate RTL to match system-level model 
•  Select IP blocks 
•  Analyze and optimize power at module level and chip level  
•  Analyze power implications of test features 
•  Check power against budget for various modes 

•  Synthesize RTL to gates using power optimizations 
•  Floorplan, place and route design 
•  Optimize dynamic and leakage power 
•  Verify power budgets and power delivery 

Design Phase                Low Power Design Activities 



Design-Phase Low Power Design 

•  Primary objective: minimize feff  

•  Clock gating 
–  Reduces / inhibits unnecessary clocking 

•  Registers need not be clocked if data input hasn’t changed 

•  Data gating 
–  Prevents nets from toggling when results won’t be used 

•  Reduces wasted operations 

•  Memory system design 
–  Reduces the activity internal to a memory 

•  Cost (power) of each access is minimized 

 



Clock Gating 
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§  Power is reduced by two mechanisms 
–  Clock net toggles less frequently, reducing feff 

–  Registers’ internal clock buffering switches less often 



Clock Gating Insertion 

•  Local clock gating: 3 methods 
–  Logic synthesizer finds and implements local gating 

opportunities 
–  RTL code explicitly specifies clock gating 
–  Clock gating cell explicitly instantiated in RTL  

•  Global clock gating: 2 methods 
–  RTL code explicitly specifies clock gating 
–  Clock gating cell explicitly instantiated in RTL  



Clock Gating Verilog Code 

• Conventional RTL Code 
 
 //always clock the register 
 always @ (posedge clk) begin   // form the flip-flop 
     if (enable) q = din;                 
 end 
 

• Low Power Clock Gated RTL Code 
 
  //only clock the register when enable is true 
  assign gclk = enable && clk;   // gate the clock 
  always @ (posedge gclk) begin  // form the flip-flop 
     q = din; 
 end 

• Instantiated Clock Gating Cell 
 
 //instantiate a clock gating cell from the target library 
 clkgx1 i1 .en(enable), .cp(clk), .gclk_out(gclk);  

  always @ (posedge gclk) begin   // form the flip-flop 
     q = din;                 
 end 



Clock Gating:  Glitch Free Verilog 

• Add a Latch to Prevent Clock Glitching 

 
 
 
• Clock Gating Code with Glitch Prevention Latch  

 
    always @ (enable or clk) begin 
        if !clk then en_out = enable // build latch 
    end 
    assign gclk = en_out && clk;   // gate the clock 
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Data Gating 

• Objective 
–  Reduce wasted operations => reduce feff 

• Example 
– Multiplier whose inputs change  

every cycle, whose output  
conditionally feeds an ALU 

• Low Power Version 
–  Inputs are prevented from 

rippling through multiplier 
if multiplier output is not  
selected 
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Data Gating Insertion 

•  Two insertion methods 
–  Logic synthesizer finds and implements data gating opportunities 
–  RTL code explicitly specifies data gating 

•  Some opportunities cannot be found by synthesizers 

•  Issues 
–  Extra logic in data path slows timing 
–  Additional area due to gating cells 



Data Gating Verilog Code: Operand Isolation 

• Conventional Code 
 
     assign muxout = sel ? A : A*B ;  // build mux 

• Low Power Code 
 
    assign multinA = sel & A ;  // build and gate 
    assign multinB = sel & B ;  // build and gate 
  assign muxout =  sel ? A : multinA*multinB ;    
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Memory System Design 

•  Primary objectives: minimize feff and Ceff 
–  Reduce number of accesses or (power) cost of an access 

•  Power Reduction Methods 
–  Memory banking / splitting 
–  Minimization of number of memory accesses 

•  Challenges and Tradeoffs 
–  Dependency upon access patterns 
–  Placement and routing 
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Implementation Phase Low Power Design 

Primary objective: minimize power consumed by individual instances 

•  Low power synthesis 
–  Dynamic power reduction via local clock gating insertion, pin-swapping 

•  Slack redistribution 
–  Reduces dynamic and/or leakage power 

•  Power gating 
–  Largest reductions in leakage power 

•  Multiple supply voltages 
–  The implementation of earlier choices 

•  Power integrity design 
–  Ensures adequate and reliable power delivery to logic 



Power Gating 

•  Objective 
–  Reduce leakage currents by inserting a switch transistor (usually 

high VTH) into the logic stack (usually low VTH) 
•  Switch transistors change the bias points (VSB) of the logic transistors 

•  Most effective for systems with standby operational 
modes 
–  1 to 3 orders of magnitude leakage reduction possible 
–  But switches add many complications 
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Power-Gating Physical Design 

•  Switch placement 
–  In each cell? 

•  Very large area overhead, but placement and routing is easy 

–  Grid of switches? 
•  Area efficient, but a third global rail must be routed 

–  Ring of switches? 
•  Useful for hard layout blocks, but area overhead can be significant 
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[source: S. Kosonocky, ISLPED’01] 



Power Gating Switch Sizing 
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§  Tradeoff between area, performance, leakage 
–  Larger switches => less voltage drop, larger leakage, more area 
–  Smaller switches => larger voltage drop, less leakage, less area 
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[source: J. Frenkil, Springer’07] 



Power Gating: Additional Issues 

•  Library design: special cells are needed 
–  Switches, isolation cells, state retention flip-flops (SRFFs) 

•  Headers or Footers? 
–  Headers better for gate leakage reduction, but ~ 2X larger 

•  Which modules, and how many, to power gate? 
–  Sleep control signal must be available, or must be created 

•  State retention: which registers must retain state? 
–  Large area overhead for using SRFFs 

•  Floating signal prevention 
–  Power-gate outputs that drive always-on blocks must not float 

•  Rush currents and wakeup time 
–  Rush currents must settle quickly and not disrupt circuit operation 

•  Delay effects and timing verification 
–  Switches affect source voltages which affect delays 

•  Power-up & power-down sequencing 
–  Controller must be designed and sequencing verified 



Power Gating Flow 
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Multi-VDD 

• Objective 
–  Reduce dynamic power by reducing the VDD

2 term 
• Higher supply voltage used for speed-critical logic 
• Lower supply voltage used for non speed-critical logic 

• Example 
– Memory VDD = 1.2 V 
–  Logic VDD = 1.0 V 
–  Logic dynamic power 

savings = 30% 



Multi-VDD Issues 

• Partitioning 
–  Which blocks and modules should use with voltages? 
–  Physical and logical hierarchies should match as much as possible 

• Voltages 
–  Voltages should be as low as possible to minimize CVDD

2f 
–  Voltages must be high enough to meet timing specs 

• Level shifters 
–  Needed (generally) to buffer signals crossing islands 

• May be omitted if voltage differences are small, ~ 100mV 
–  Added delays must be considered 

• Physical design 
–  Multiple VDD rails must be considered during floorplanning 

• Timing verification 
–  Signoff timing verification must be performed for all corner cases across 

voltage islands. 
–  For example, for 2 voltage islands Vhi, Vlo 

• Number of timing verification corners doubles 



Multi-VDD Flow 
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Questions? 
 

Comments? 
 

Discussion? 
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