
Lecture 21
Power Optimization (Part 2)

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese461/

Power Dissipation

•  Dynamic power consumption
–  switching current

•  Static power consumption
–  short-circuit current
–  leakage current

2

staticlkgshortdynavg PPPPP +++=

Low Power Design Methodologies

•  Adapt process technology
–  reduce capacitance
–  reduce leakage current
–  reduce supply voltage

•  Reduce switch activity
–  minimize glitches
–  minimize number of operations
–  low power bus encoding
–  scheduling and binding optimization

•  Power down modes
–  clock gating
–  memory partitioning
–  power gating

•  Voltage optimization and scaling

3

Design Flow Integration

•  Power Characterization and Modeling
–  How to generate macro-model power data?
–  Model accuracy

•  Power Analysis
–  When to analyze?
–  Which modes to analyze?
–  How to use the data?

•  Power Reduction
–  Logical modes of operation

•  For which modes should power be reduced?
–  Dynamic power versus leakage power
–  Physical design implications
–  Functional and timing verification
–  Return on Investment

•  How much power is reduced for the extra effort? Extra logic? Extra area?
•  Power Integrity

–  Peak instantaneous power
–  Electromigration
–  Impact on timing

Power Characterization and Modeling

Process
Model

Library
Params

Spice
Netlists

Model
Templates

Power Characterization
(using a circuit or power simulator)

Characterization
Database

(raw power data)

Power Modeler

Power
Models

IL

Isc

Vdd

CL
Ileakage

[source: J. Frenkil, Kluwer’02]

Generalized Low-Power Design Flow

System-Level Design

RTL Design

Implementation

•  Explore architectures and algorithms for power efficiency
•  Map functions to sw and/or hw blocks for power efficiency
•  Choose voltages and frequencies
•  Evaluate power consumption for different operational modes
•  Generate budgets for power, performance, area

•  Generate RTL to match system-level model
•  Select IP blocks
•  Analyze and optimize power at module level and chip level
•  Analyze power implications of test features
•  Check power against budget for various modes

•  Synthesize RTL to gates using power optimizations
•  Floorplan, place and route design
•  Optimize dynamic and leakage power
•  Verify power budgets and power delivery

Design Phase Low Power Design Activities

Design-Phase Low Power Design

•  Primary objective: minimize feff

•  Clock gating
–  Reduces / inhibits unnecessary clocking

•  Registers need not be clocked if data input hasn’t changed

•  Data gating
–  Prevents nets from toggling when results won’t be used

•  Reduces wasted operations

•  Memory system design
–  Reduces the activity internal to a memory

•  Cost (power) of each access is minimized

Clock Gating

Local Gating Global Gating

clk
qn

q d dout
din
en

clk

clk
qn

q d dout din

en

clk

FSM

Execution
Unit

Memory
Control

clk
enM

enE

enF

§  Power is reduced by two mechanisms
–  Clock net toggles less frequently, reducing feff

–  Registers’ internal clock buffering switches less often

Clock Gating Insertion

•  Local clock gating: 3 methods
–  Logic synthesizer finds and implements local gating

opportunities
–  RTL code explicitly specifies clock gating
–  Clock gating cell explicitly instantiated in RTL

•  Global clock gating: 2 methods
–  RTL code explicitly specifies clock gating
–  Clock gating cell explicitly instantiated in RTL

Clock Gating Verilog Code

• Conventional RTL Code

 //always clock the register
 always @ (posedge clk) begin // form the flip-flop
 if (enable) q = din;
 end

• Low Power Clock Gated RTL Code

 //only clock the register when enable is true
 assign gclk = enable && clk; // gate the clock
 always @ (posedge gclk) begin // form the flip-flop
 q = din;
 end

• Instantiated Clock Gating Cell

 //instantiate a clock gating cell from the target library
 clkgx1 i1 .en(enable), .cp(clk), .gclk_out(gclk);

 always @ (posedge gclk) begin // form the flip-flop
 q = din;
 end

Clock Gating: Glitch Free Verilog

• Add a Latch to Prevent Clock Glitching

• Clock Gating Code with Glitch Prevention Latch

 always @ (enable or clk) begin
 if !clk then en_out = enable // build latch
 end
 assign gclk = en_out && clk; // gate the clock

en_out

gclk clk

L1

gn

q d

LATCH

G1

enable

Data Gating

• Objective
–  Reduce wasted operations => reduce feff

• Example
– Multiplier whose inputs change

every cycle, whose output
conditionally feeds an ALU

• Low Power Version
–  Inputs are prevented from

rippling through multiplier
if multiplier output is not
selected

X

X

Data Gating Insertion

•  Two insertion methods
–  Logic synthesizer finds and implements data gating opportunities
–  RTL code explicitly specifies data gating

•  Some opportunities cannot be found by synthesizers

•  Issues
–  Extra logic in data path slows timing
–  Additional area due to gating cells

Data Gating Verilog Code: Operand Isolation

• Conventional Code

 assign muxout = sel ? A : A*B ; // build mux

• Low Power Code

 assign multinA = sel & A ; // build and gate
 assign multinB = sel & B ; // build and gate
 assign muxout = sel ? A : multinA*multinB ;

X

sel

B

A
muxout

X

sel

B

A
muxout

Memory System Design

•  Primary objectives: minimize feff and Ceff
–  Reduce number of accesses or (power) cost of an access

•  Power Reduction Methods
–  Memory banking / splitting
–  Minimization of number of memory accesses

•  Challenges and Tradeoffs
–  Dependency upon access patterns
–  Placement and routing

Split Memory Access

dout

addr[0]

32

32

addr[14:1]

addr[14:0]

clock

pre_addr q d
15

write

dout

 RAM
 16K x 32

noe

din

addr

addr

din

dout

 16K x 32
 RAM

noe
write

Implementation Phase Low Power Design

Primary objective: minimize power consumed by individual instances

•  Low power synthesis
–  Dynamic power reduction via local clock gating insertion, pin-swapping

•  Slack redistribution
–  Reduces dynamic and/or leakage power

•  Power gating
–  Largest reductions in leakage power

•  Multiple supply voltages
–  The implementation of earlier choices

•  Power integrity design
–  Ensures adequate and reliable power delivery to logic

Power Gating

•  Objective
–  Reduce leakage currents by inserting a switch transistor (usually

high VTH) into the logic stack (usually low VTH)
•  Switch transistors change the bias points (VSB) of the logic transistors

•  Most effective for systems with standby operational
modes
–  1 to 3 orders of magnitude leakage reduction possible
–  But switches add many complications

 Virtual
Ground

sleep

Vdd

Logic
Cell

Switch
Cell

Vdd

Logic
Cell

Power-Gating Physical Design

•  Switch placement
–  In each cell?

•  Very large area overhead, but placement and routing is easy

–  Grid of switches?
•  Area efficient, but a third global rail must be routed

–  Ring of switches?
•  Useful for hard layout blocks, but area overhead can be significant

 Switch-in-cell Grid of Switches Ring of Switches

Switch Integrated
Within Each Cell

Virtual Grounds

Switch Cell

Module

Global Supply

Virtual
Supply

Switch
Cells

[source: S. Kosonocky, ISLPED’01]

Power Gating Switch Sizing

Vvg_max (mV)

Lvg_max (µ)

Switch
Cell
Area
(µ2)

§  Tradeoff between area, performance, leakage
–  Larger switches => less voltage drop, larger leakage, more area
–  Smaller switches => larger voltage drop, less leakage, less area

ILKG

tD

[source: J. Frenkil, Springer’07]

Power Gating: Additional Issues

•  Library design: special cells are needed
–  Switches, isolation cells, state retention flip-flops (SRFFs)

•  Headers or Footers?
–  Headers better for gate leakage reduction, but ~ 2X larger

•  Which modules, and how many, to power gate?
–  Sleep control signal must be available, or must be created

•  State retention: which registers must retain state?
–  Large area overhead for using SRFFs

•  Floating signal prevention
–  Power-gate outputs that drive always-on blocks must not float

•  Rush currents and wakeup time
–  Rush currents must settle quickly and not disrupt circuit operation

•  Delay effects and timing verification
–  Switches affect source voltages which affect delays

•  Power-up & power-down sequencing
–  Controller must be designed and sequencing verified

Power Gating Flow

Route

Clock tree synthesis

Verify virtual rail
electrical

characteristics

Verify timing

Determine state
retention mechanism

Determine which blocks
to power gate

Determine rush current
control scheme

Design power gating
controller

Power gating aware
synthesis

Determine floorplan

Power gating aware
placement

Design power gating
library cells

Multi-VDD

• Objective
–  Reduce dynamic power by reducing the VDD

2 term
• Higher supply voltage used for speed-critical logic
• Lower supply voltage used for non speed-critical logic

• Example
– Memory VDD = 1.2 V
–  Logic VDD = 1.0 V
–  Logic dynamic power

savings = 30%

Multi-VDD Issues

• Partitioning
–  Which blocks and modules should use with voltages?
–  Physical and logical hierarchies should match as much as possible

• Voltages
–  Voltages should be as low as possible to minimize CVDD

2f
–  Voltages must be high enough to meet timing specs

• Level shifters
–  Needed (generally) to buffer signals crossing islands

• May be omitted if voltage differences are small, ~ 100mV
–  Added delays must be considered

• Physical design
–  Multiple VDD rails must be considered during floorplanning

• Timing verification
–  Signoff timing verification must be performed for all corner cases across

voltage islands.
–  For example, for 2 voltage islands Vhi, Vlo

• Number of timing verification corners doubles

Multi-VDD Flow

Route

Determine which blocks
run at which Vdd

Multi-voltage
placement

Multi-voltage
synthesis

Determine floor plan

Verify timing

Clock tree synthesis

Questions?

Comments?

Discussion?

26

