
Lecture 21:
The Parity Operator

Phy851 Fall 2009



Parity inversion

• Symmetry under parity inversion is
known as mirror symmetry

• Formally, we say that f(x) is symmetric
under parity inversion if f(-x) = f(x)

• We would say that f(x) is antisymmetric
under parity inversion if f(-x)=-f(x)

• The universe is not symmetric under
parity inversion (beta decay)
– Unless there is mirror matter (and mirror

photons)
– Would interact only weakly with matter

via gravity
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P a:
Parity inversion cannot

be generated by
rotations



Parity Operator

• Let us define the parity operator via:

• Parity operator is Hermitian:

• Parity operator is it’s own inverse

• Thus it must be Unitary as well
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Properties of the Parity operator

• Parity acting to the left:

• What is the action of the parity operator on a
generic quantum state?
– Let:

• Under parity inversion, we would say:
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Must be true for any physical
transformation!
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Eigenstates of Parity Operator

• What are the eigenstates of parity?
– What states have well-defined parity?
– Answer: even/odd states

• Proof:
– Let:

– It follows that:

– But Π2=1, which gives:
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Any Even function! Any Odd function!



Parity acting on Momentum states
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Commutator of X with Π

• First we can compute ΠXΠ :

• So Π and X do not commute

ψψ Π−=ΠΠ XxXx

ψΠ−−= xx

ψxx−=

ψXx−=

XX −=ΠΠ

Π−=ΠΠ XX 2

Π−=Π XX

Π−=Π−Π XXX 2

This is the
important result
for calculations



Commutator of X with Π

• Next we can compute [x2,Π]:

• So Π and X2 do commute!

ψψ Π−=ΠΠ 22 XxXx

ψΠ−= xx2

ψxx2=

ψ2Xx=

22 XX =ΠΠ

Π=ΠΠ 222 XX

Π=Π 22 XX

022 =Π−Π XX

This is the
important result
for calculations



Commutator with Hamiltonian

• Same results must apply for P and P2, as the
relation between Π and P is the same as
between Π and X.

• Thus

• If Π commutes with X2, then Π commutes
with any even function of X

• Let

• Then

• This means that simultaneous eigenstates of
H and P exist
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Consequences for a free particle
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Note that P and Π do not commute, so
simultaneous eigenstates of momentum

and parity cannot exist

• The Hamiltonian of a free particle is:

• Energy eigenstates are doubly-
degenerate:

• Note that plane waves, |k〉, are
eigenstates of momentum and energy,
but NOT parity

• But [H,Π]=0, so eigenstates of energy
and parity must exist



Consequences for the SHO

• For the SHO we have:

• Therefore [H,Π]=0, so simultaneous
eigenstates of Energy and Parity must
exist

• The energy levels are not-degenerate, so
there is no freedom to mix and match
states

• Thus the only possibility is that each
energy level must have definite parity

• The Hermite Polynomials have definite
parity:  Hn(-x)=(-1)n Hn(x)

• Thus we have:
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So ground-state (n=0) is even

First excited state (n=1) is odd

(n=2)  is even

Etc….


