Lecture 21:
 The Parity Operator

Phy851 Fall 2009

Parity inversion

- Symmetry under parity inversion is known as mirror symmetry

$$
P:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \mapsto\left(\begin{array}{l}
-x \\
-y \\
-z
\end{array}\right)
$$

- Formally, we say that $f(x)$ is symmetric under parity inversion if $f(-x)=f(x)$
- We would say that $f(x)$ is antisymmetric under parity inversion if $f(-x)=-f(x)$
- The universe is not symmetric under parity inversion (beta decay)
- Unless there is mirror matter (and mirror photons)
- Would interact only weakly with matter via gravity

Parity Operator

- Let us define the parity operator via:

$$
\Pi|x\rangle=|-x\rangle
$$

- Parity operator is Hermitian:

$$
\begin{gathered}
\langle x| \Pi\left|x^{\prime}\right\rangle=\left\langle x \mid-x^{\prime}\right\rangle=\delta\left(x+x^{\prime}\right) \\
\left\langle x^{\prime}\right| \Pi|x\rangle^{*}=\left\langle x^{\prime} \mid-x\right\rangle^{*}=\delta\left(x+x^{\prime}\right) \\
\Pi^{\dagger}=\Pi
\end{gathered}
$$

- Parity operator is it's own inverse

$$
\begin{gathered}
\Pi \Pi|x\rangle=\Pi|-x\rangle=|x\rangle \\
\Pi^{2}=1
\end{gathered}
$$

- Thus it must be Unitary as well

$$
\begin{aligned}
& \Pi^{\dagger}=\Pi \\
& \Pi=\Pi^{-1}
\end{aligned} \quad \Pi^{\dagger}=\Pi^{-1}
$$

Properties of the Parity operator

- Parity acting to the left:

$$
\begin{gathered}
\langle x| \Pi^{\dagger}=(\Pi|x\rangle)=|-x\rangle^{\dagger}=\langle-x| \\
\langle x| \Pi=\langle-x|
\end{gathered}
$$

- What is the action of the parity operator on a generic quantum state?
- Let:

$$
\begin{gathered}
\left\langle x \mid \psi^{\prime}\right\rangle=\langle x| \Pi|\psi\rangle \\
\left\langle x \mid \psi^{\prime}\right\rangle=\langle-x \mid \psi\rangle \\
\psi^{\prime}(x)=\psi(-x) \\
\psi^{\prime}(-x)=\psi(x)
\end{gathered}
$$

- Under parity inversion, we would say:

$$
\psi^{\prime}\left(x^{\prime}\right)=\psi(x)
$$

Eigenstates of Parity Operator

- What are the eigenstates of parity?
- What states have well-defined parity?
- Answer: even/odd states
- Proof:
- Let: $\quad \Pi|\pi\rangle=\pi|\pi\rangle$
- It follows that:

$$
\Pi^{2}|\pi\rangle=\pi^{2}|\pi\rangle
$$

- But $\Pi^{2}=1$, which gives:

$$
\begin{gathered}
|\pi\rangle=\pi^{2}|\pi\rangle \\
\pi^{2}=1 \\
\pi= \pm 1
\end{gathered}
$$

$$
\frac{\pi=+1}{\langle x| \Pi|+\rangle=\langle x \mid+\rangle}
$$

$$
\pi=-1
$$

$$
\langle x| \Pi|-\rangle=-\langle x \mid-\rangle
$$

$$
\langle-x \mid+\rangle=\langle x \mid+\rangle
$$

Any Even function!

Parity acting on Momentum states

$$
\begin{aligned}
& \Pi|p\rangle=\int d x \Pi|x\rangle\langle x \mid p\rangle \\
&=\int d x|-x\rangle\langle x \mid p\rangle \\
&=\int d x|x\rangle\langle-x \mid p\rangle \\
&\langle-x \mid p\rangle= \frac{1}{\sqrt{2 \pi \hbar}} e^{-\frac{i}{\hbar} p x}=\langle x \mid-p\rangle \\
& \Pi|p\rangle=\int d x|x\rangle\langle x \mid-p\rangle \\
& \Pi|p\rangle=|-p\rangle
\end{aligned}
$$

Commutator of X with Π

- First we can compute $\Pi Х \Pi$:

$$
\begin{aligned}
\langle x| \Pi X \Pi|\psi\rangle & =\langle-x| X \Pi|\psi\rangle \\
& =-x\langle-x| \Pi|\psi\rangle \\
& =-x\langle x \mid \psi\rangle \\
& =-\langle x| X|\psi\rangle \\
\Pi X \Pi & =-X \\
\Pi X \Pi^{2}= & -X \Pi \\
\Pi X & =-X \Pi \\
\Pi X-X \Pi & =-2 X \Pi
\end{aligned}
$$

- So Π and X do not commute

Commutator of X with Π

- Next we can compute $\left[x^{2}, \Pi\right]$:

$$
\begin{aligned}
\langle x| \Pi X^{2} \Pi|\psi\rangle & =\langle-x| X^{2} \Pi|\psi\rangle \\
& =x^{2}\langle-x| \Pi|\psi\rangle \\
& =x^{2}\langle x \mid \psi\rangle \\
& =\langle x| X^{2}|\psi\rangle
\end{aligned}
$$

$\Pi X^{2} \Pi=X^{2}$
$\Pi X^{2} \Pi^{2}=X^{2} \Pi$
$\Pi X^{2}=X^{2} \Pi$
$\Pi X^{2}-X^{2} \Pi=0$

- So Π and X^{2} do commute!

Commutator with Hamiltonian

- Same results must apply for P and P^{2}, as the relation between Π and P is the same as between Π and X.
- Thus

$$
\left[\Pi, \frac{P^{2}}{2 M}\right]=0
$$

- If Π commutes with X^{2}, then Π commutes with any even function of X

$$
\left[\pi, V_{\text {cem }}\left(X^{2}\right)\right]=0
$$

- Let $H=\frac{P^{2}}{2 M}+V_{\text {even }}(X)$
- Then

$$
[\Pi, H]=0
$$

- This means that simultaneous eigenstates of H and P exist

Consequences for a free particle

- The Hamiltonian of a free particle is:

$$
H=\frac{P^{2}}{2 M}
$$

- Energy eigenstates are doublydegenerate:

$$
\begin{array}{cl}
H|k\rangle=\frac{\hbar^{2} k^{2}}{2 M} & H|-k\rangle=\frac{\hbar^{2} k^{2}}{2 M} \\
|E, 1\rangle:=\left.|k\rangle\right|_{k=\frac{\sqrt{2 M E}}{h}} \quad|E, 2\rangle:=\left.|k\rangle\right|_{k=-\frac{\sqrt{2 M E}}{h}}
\end{array}
$$

- Note that plane waves, |k>, are eigenstates of momentum and energy, but NOT parity
- But $[\mathrm{H}, \Pi]=0$, so eigenstates of energy and parity must exist

$$
\begin{aligned}
& \left.|E,+\rangle:=\frac{1}{\sqrt{2}}(E, 1\rangle+|E, 2\rangle\right) \\
& \left.|E,-\rangle:=\frac{1}{\sqrt{2}}(E, 1\rangle-|E, 2\rangle\right)
\end{aligned}
$$

Consequences for the SHO

- For the SHO we have:

$$
H=\frac{P^{2}}{2 M}+\frac{1}{2} M \omega^{2} X^{2}
$$

- Therefore $[\mathrm{H}, \Pi]=0$, so simultaneous eigenstates of Energy and Parity must exist
- The energy levels are not-degenerate, so there is no freedom to mix and match states
- Thus the only possibility is that each energy level must have definite parity
- The Hermite Polynomials have definite parity: $H_{n}(-x)=(-1)^{n} H_{n}(x)$
- Thus we have:

$$
\Pi|n\rangle=(-1)^{n}|n\rangle
$$

