Lecture 22: Design of FIR / lIR Filters

Foundations of Digital Signal Processing

Outline
Designing FIR Filters with Windows
Designing FIR Filters with Frequency Selection
Designing FIR Filters with Equi-ripples
Designing IIR Filters with Discrete Differentiation
Designing IIR Filters with Impulse Invariance
Designing IIR Filters with the Bilinear Transform
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NEWTR

®= Homework #9

= Due on Thursday

= Submit via canvas

m Coding Assighment #6

= Due on next Monday

= Submit via canvas
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= Mean: 86.3
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Foundations of Digital Signal Processing

Outline
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Designing FIR Filters with Frequency Selection
Designing FIR Filters with Equi-ripples
Designing IIR Filters with Discrete Differentiation
Designing IIR Filters with Impulse Invariance
Designing IIR Filters with the Bilinear Transform
Related Analog Filters

Lecture 22: Designing FIR / IIR Filters 4



Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What condition must be satisfied?
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What condition must be satisfied?

mx[n]=+x]-n+(N—-1)] = +x[N — 1 —n]

= Positive: Even symmetry

= Negative: Odd symmetry
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response?
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

m Even Symmetry
X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_z) 1 aOZ_(M_l)

m Odd Symmetry
X(Z) = Qo + alz‘l + aZZ—Z o — alz—(M—Z) _ aOZ_(M_l)
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

® Even Symmetry

X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_Z) 1 aOZ_(M_l)
_@ [ (M_l) (M—l)_l 1_(M—1) (M—l)]

Aoz 2 ~+ a,z 2 + -4 a,z 2 ~+ AoZ 2

= Z

m Odd Symmetry

X(Z) = Qo + a]_Z_l + aZZ_Z + .= CllZ_
M-y M-1) (M-1)_, _M-1)
=Z 2 |aypz 2 +aqz 2 + = aqz 2 —agz 2
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

® Even Symmetry

X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_z) 1 aOZ_(M_l)
_% [ (M0 (M_l)—l 1_M (M—l)]
‘ )

AQpZz 2 +aqzZ 2 + -+ a1z 2 +agz 2
|
G(w) = X (w)|e®

= Z

m Odd Symmetry

X(Z) = Qo + a]_Z_l + aZZ_Z + .= alz_
M-y M-1) (M-1)_, (M-1) _M-1)

=z 2 |apz 2 Haz 2 + =z 2 —Qapz 2
\ J

G(w) = |X(w)|e®@
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

® Even Symmetry

X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_z) 1 aOZ_(M_l)
_% [ (M0 (M_l)—l 1_M (M—l)]
‘ )

AQpZz 2 +aqzZ 2 + -+ a1z 2 +agz 2
|
6(w) = X(@)]e®@  Bw) = {

= Z

0 for G(w)=>0
m for G(w) <O
m Odd Symmetry
X(Z) = Qo + a]_Z_l + aZZ_Z + - — alz_
_M[ M-1) M-1)_, M-1) _(M-1)
=z 2 |apz 2 Haz 2 + =z 2 —Qapz 2
| ]

0 for G(w)=>0
m for G(w) <0

(o) = [X(@)]e®®  B(w) = {

Lecture 22: Designing FIR / IIR Filters



Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

® Even Symmetry

X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_Z) 1 aOZ_(M_l)
_% [ (M0 (M_l)—l 1_M (M—l)]
‘ )

QpZ 2 +a.z 2 + -+ az 2 H4agz 2
|

—w(M —-1)/2 for G(w) >0

—owM—-1)/24+7m for G(w) <0

= Z

2X(w) = {
m Odd Symmetry

X(2) = ag+ a;z-t + ayz =2 + - — a;z= M2 — g 7z~ M-D
M [ M) (M-1)_4 - M=1) _(M—l)]

=z 2 a’OZ 2 +a1Z 2 -|—..._alz 7 —CLOZ —

' J

Y
—w(M —1)/2 for G(w) >0
—owM—-1)/2+7m for G(w) <0

/X (w) = {
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

® Even Symmetry

X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_z) 1 aOZ_(M_l)
_@[ (M-1) M-1)_, _(M-D) _(M—1)]

AQpZz 2 +aqzZ 2 + -+ a1z 2 +agz 2

= Z
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

® Even Symmetry

X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_Z) 1 aOZ_(M_l)
_@[ (M-1) (M-1) _(M-D) (M_l)]

AQpZz 2 +aqzZ 2 +--t+ a1z 2 +agz 2

=Z
M/2-1

e L A

k=0
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

m Even Symmetry
X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_Z) 1 aOZ_(M_l)

_(M-1) [ (M-1) (M-1) 1_(M—1) _(M—1)]
=z 2 |apz 2 +az 2 +--t+ a1z 2 +agz 2
(M—1) M2 (M—1) (M-1)
=z 2 2 ay [z 2 _k+z_[ 2 _k”
k=0

m Notice that
X(z) =z~ M-Dy(z;~1)
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

m Even Symmetry
X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_Z) 1 aOZ_(M_l)

_(M-1) [ (M-1) (M-1) 1_(M—1) _(M—1)]
=z 2 |apz 2 +az 2 +--t+ a1z 2 +agz 2
(M—1) M2 (M—1) (M-1)
=z 2 2 ay [z 2 _k+z_[ 2 _k”
k=0

m Pole-zero plot property?
X(z) =z~ M-Dy(z;~1)
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Causality and Linear Phase

m Question: Consider a length-M symmetric, causal filter.
What is the phase response? Assume M is even.

m Even Symmetry
X(Z) = Qo + Cl]_Z_1 + aZZ—Z 4+ ... 4 CllZ_(M_Z) 1 aOZ_(M_l)

_(M—l)[ (M-1) (M-1)_ |_(M-1) _(M—l)]
=z 2 |apz 2 +az 2 +--t+ a1z 2 +agz 2
M/2-1
_(M-1) [ M- _[(M—l)_k”
=z 2 2 ay lz 2 +z 1L 2
O O
k=0 1o
Il O O \\
l ){X(Dd-:‘)
' 1
m Pole-zero plot property? O 0o/
X(z) =z~ M-Dy(z;~1) i
O O
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m Question: How do we describe causal filter magnitude?

|H ()

e l '

]~ §, 8, ~ Passband ripple

o '1 ---------- 3, ~ Stopband ripple

‘ w, ~ Passband edge ripple
Passband ripple w, ~ Stopband edge ripple

e e e R mammE e A .-, -

=
&
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m Question: How do we describe causal filter magnitude?

|H ()

I, P S, W S 8, ~ Passband ripple
1 8, ~ Stopband ripple

‘ w, ~ Passband edge ripple
Passband ripple w, ~ Stopband edge ripple

_Often plotted
in dB (decibels)

0

e e e R mammE e A .-, -
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m Question: How do we describe causal filter magnitude?

|H ()

I, P S, W S 8, ~ Passband ripple
1 8, ~ Stopband ripple

‘ w, ~ Passband edge ripple
Passband ripple w, ~ Stopband edge ripple

_Often plotted
in dB (decibels)

0

e e e R mammE e A .-, -
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Foundations of Digital Signal Processing

Outline
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Causality in Filters
Designing FIR Filters with Windows
Designing FIR Filters with Frequency Selection
Designing FIR Filters with Equi-ripples
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Designing with Windows

m Question: How can | design an FIR filter from an ideal filter?

h[n] |H(w) |

]
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Designing with Windows

m Question: How can | design an FIR filter from an ideal filter?

h[n] |H(w) |

-20 -10

Non-causal Ideal filter
Infinite Response
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Designing with Windows

m Question: How can | design an FIR filter from an ideal filter?

h[n] |H(w) |

-20 -10

Non-causal Ideal filter
Infinite Response

m Answer: Window the response!
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Designing with Windows

m Question: How can | design an FIR filter from an ideal filter?

h[n] |H(w) |

-20

n , :
10 10 % 20 T 5 ;

Non-causal Ideal filter
Infinite Response

m Answer: Window the response!
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Designing with Windows

m Question: How can | design an FIR filter from an ideal filter?

h[n] w([n] | H(w)*W(w) |

-20

n
W
10 10 % 20 T 5 ,

Non-causal Ideal filter
Infinite Response

m Answer: Window the response!
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Designing with Windows

m Different Filters

w[n] [rect] |W(w)| [rect]
M
n W
-20 -10 10 20 -2 2
w[n] [hann] |W(w)| [hann]
Mrﬂl" "hlr...... AN\ ,
-20 -10 -2 2
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Designing with Windows

m Different Filters

w[n] [hamming] |W(w)| [hamming]
Wvﬂl“" n = [\f " w
-20 -10 10 20 -2 2
w[n] [bartlett] |W(w)| [bartlett]
\/
n — ‘“A" = w
-20 -10 10 20 -2 2
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Designing with Windows

m Different Filters

w[n] [blackman] |W(w)| [blackman]

._.______,,ﬂﬂ"l AN

-20 -10 0 20 -2 2

w[n] [kaiser] |W(w)| [kaiser]
M
n W
-20 -10 10 20 -2 2
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Designing with Windows

= Windowing the sinc impulse response

h[n] w[n] |H(w)*W(w)|
20 -10 10 %20 " 5 5 w
w[n] [rect] |W(w)| [rect]
M
n W
20 -10 10 20 -2 2
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Designing with Windows

= Windowing the sinc impulse response

x[n] w[n] [hann] | H(w)*W(w) |
20 -10 0 20 5 g W
w[n] [hann] |W(w)| [hann]
Mrﬂl" "hlr...... AN\ )

-20 -10 -2 2
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Designing with Windows

= Windowing the sinc impulse response

x[n] w[n] [hamming]

-20 -10 10

|H(w)*W(w)|

L. _/

w[n] [hamming]

A

2

|W(w)| [hamming]

...................mﬂ“"

b A

-20 -10
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Designing with Windows

= Windowing the sinc impulse response

x[n] w[n] [bartlett] |H(w)*W(w)|
20 -10 0 T 5 . w
w[n] [bartlett] |W(w)| [bartlett]
\/
n - ‘A" = W
20 -10 10 20 -2 2
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Designing with Windows

= Windowing the sinc impulse response

x[n] w[n] [blackman’ | H(w)*W(w) |
20 -10 0 20 - > w
w[n] [blackman] |W(w)| [blackman]

........._.........,..ﬂﬂ“ nl[h_ AN\ )

-20 -10 -2 2
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Designing with Windows

= Windowing the sinc impulse response

x[n] w[n] [kaiser] | H(w)*W(w)|
2
w[n] [kaiser] |W(w)| [kaiser]
M
n w
-20 -10 10 20 -2 2
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Designing with Windows

= Windowing the sinc impulse response

h[n] w[n] | H(w)*W4w)| in dB
u u 20
w[n] [rect] |W(w)| [rect]
M
n w
-20 -10 10 20 -2 2
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Designing with Windows

= Windowing the sinc impulse response

Xx[n] w[n] [hann] 9 | H(w)*W4w)| in dB
7 |
w
n
-20 -10 10 20
w[n] [hann] |W(w)| [hann]
Mrﬂl" "hlr...... AN\ )
-20 -10 -2 2
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Designing with Windows

= Windowing the sinc impulse response

X[n] w[n] [hamming] 9 | H(w)*W4w)| in dB
? . |
w
n -60 -
-20 -10 10 20
w[n] [hamming] |W(w)| [hamming]

...................mll“l /\

-20 -10 10 20 -2 2
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Designing with Windows

= Windowing the sinc impulse response

X[n] w[n] [bartlett] 9 | H(w)*W4w)| in dB
~—’_/-__\-\—- "
n -60 -
-20 -10 10 20
w[n] [bartlett] |W(w)| [bartlett]
\/
n — AA‘— — W
-20 -10 10 20 -2 2

Lecture 22: Designing FIR / IIR Filters



Designing with Windows
= Windowing the sinc impulse response

Xx[n] w[n] [blackman’ 9 | H(w)*W4w)| in dB

-20 -10 10 20

w[n] [blackman] |W(w)| [blackman]

........._.........,..ﬂﬂ“ nl[h_ AN\ )

-20 -10 -2 2
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Designing with Windows

= Windowing the sinc impulse response

x[n] w[n] [kaiser] | H(w)*W4w)| in dB
n
20
w[n] [kaiser] |W(w)| [kaiser]
M
n W
-20 -10 10 20 -2 2
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Design with Frequency Sampling

m Option 2: Work backwards with constraints

Consider the DFT:

N—1
2TT
hin] = 2 H[k]e WK suchthat  H[k] = H[N — k]
k=0
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Design with Frequency Sampling

m Option 2: Work backwards with constraints

Consider the DFT:
N—1 ,
LTT
h[n] =~ H[k]e' N ™ suchthat  H[k] = H[N — k]
k=0
(N-1)/2 N-1

2k
hn] = — | H[0] + Z HIk z H[k]e/ W™
k=(N+1)/2
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Design with Frequency Sampling

m Option 2: Work backwards with constraints

Consider the DFT:

N—1
hn] = N
k=0

(N-1)/2

+ZH

suchthat H|k]| = H[N — k]

(N-1)/2

2TT
nk_l_ z H[k]e Tl(N k)
k=1
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Design with Frequency Sampling

m Option 2: Work backwards with constraints

Consider the DFT:
N—-1
1 'z—nnk
h[n] = ~ H[kle’N suchthat H[k] = H[N — k]
k=0
(N-1)/2 (N-1)/2

Aln) = [HIOL+ Y HIK/ W™ + ) Hlk]e TN
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Design with Frequency Sampling

m Option 2: Work backwards with constraints

Consider the DFT:
N—1 ,
LLTT
h[n] =~ H[k]e' N ™ suchthat  H[k] = H[N — k]
k=0
(N-1)/2 (N-1)/2

hin] = < |HI0] + z HIk]e/ W™ + z H[K]e/ N0
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Design with Frequency Sampling

m Option 2: Work backwards with constraints

Consider the DFT:
N-1
1 'z—nnk
h[n] = ~ H[kle’N suchthat H[k] = H[N — k]
k=0
i (N-1)/2 (N-1)/2
1 21 A (N=K)
N

hn] = — | H[0] + Z H[k]e T + Z HIk]e
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Design with Frequency Sampling

m Option 2: Work backwards with constraints

Consider the DFT:
N—-1 ,
LLTT
h[n] =~ H[k]e' N ™ suchthat  H[k] = H[N — k]
k=0
1 (N-1)/2 (N-1)/2 7
h[n] = —|H[0] + Z H[k]e/ W™ + z H(k -k
N
(N 1)/2 _

h|n] =% Z H[k](e’N"k +e ZWnnk)
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Design with Frequency Sampling

m Option 2: Work backwards with constraints

Consider the DFT:
N—1 5
LTT
h[n] = ~ H[k]e' N ™ suchthat  H[k] = H[N — k]
k=0
1 (N-1)/2 (N-1)/2 7
h[n] = —|H[0] + Z H[k]e/ W™ + z H(k -k
N
(N 1)/2 '

h|n] =% |+ 2 z H|k] cos (—nk)
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Design with Frequency Sampling

= An inverse DFT that forces time-symmetry
' (N-1)/2 '

h|n] =% H[0] + 2 z H|k] cos (%Tnk)
L k=1 .
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Design with Frequency Sampling

= An inverse DFT that forces time-symmetry

1 (N-1)/2 )
h|in] = N H[0] + 2 z H|k] cos (Wn nk)
_ k=1

m  Example: Consider the desired 9-sample frequency response
with the first half defined by [1 1 0 0]

m  Compute the frequency sampled filter

Lecture 22: Designing FIR / IIR Filters




1
hin] = —

Design with Frequency Sampling

= An inverse DFT that forces time-symmetry

(N-1)/2

H[0] + 2 H|k] cos

m  Compute the frequency sampled filter

%[1 + 2 cos((Zn/9)n)]

(o)

m  Example: Consider the desired 9-sample frequency response
with the first half defined by [1 1 0 0]
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Design with Frequency Sampling

Example: Consider the desired 9-sample frequency response
with the first half defined by [1 1 0 0]

m  Compute the frequency sampled filter
1
hin] = > [1 + 2 cos((2n/9)n)]

h[n]
|
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Design with Frequency Sampling

m  Example: Consider the desired 9-sample frequency response
with the first half defined by [1 1 0 0]

m  Compute the frequency sampled filter

hin] = % [1 + 2 cos((2n/9)n)]

" |n practice, this should be circularly shifted so that the

h[n]
|

) "11;]“"

2
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1
hin] = —

Design with Frequency Sampling

= An inverse DFT that forces time-symmetry

(N-1)/2

H[0] + 2 H|k] cos

m  Example: Consider the desired 9-sample frequency response
with the first half defined by [1 1 0 0]

m  Compute the frequency sampled filter

%[1 + 2 cos((Zn/9)n)]

N-1

n_—
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Design with Frequency Sampling

Example: Consider the desired 9-sample frequency response
with the first half defined by [1 1 0 0]

m  Compute the frequency sampled filter
1
hin] = > [1 + 2 cos((Zn/9)(n — 8/2))]

h[n] |H(w)|
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Design with Frequency Sampling

m  Example: Consider the desired 17-sample frequency response
with the first half defined by [11110000]

m  Compute the frequency sampled filter

h|n] = % [1 + 2 Cos((Zn/19)nc) + 2 cos((47t/19)nc) + 2 COS((67T/19)TLC)]

fe =775
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Design with Frequency Sampling

m  Example: Consider the desired 17-sample frequency response
with the first half defined by [11110000]

m  Compute the frequency sampled filter

h|n] = % [1 + 2 Cos((Zn/19)nc) + 2 cos((47t/19)nc) + 2 COS((67T/19)TLC)]

h[n] |H(w)|

10 15 ] w
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Design with Frequency Sampling

m  Example: Consider the desired 41-sample frequency response
with the first 10 values defined by 1

m  Compute the frequency sampled filter

h[n] |H(w)|
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Design with Frequency Sampling

m  Example: Consider the desired 401-sample frequency response
with the first 100 values defined by 1

m  Compute the frequency sampled filter

m Note that in practice, this needs to be circularly shifted to the
center

h[n] |H(w)|

H=
&

100 2 300
-2 2
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Design with Frequency Sampling

m Note: The definition can be slightly modified

= Qur definition:
(N-1)/2

hln] =+ [H[0] + 2 Z H[k]cos(
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Design with Frequency Sampling

m Final Definition

=| -

h|n]

(N-1)/2

H[0] + 2 z (—1)"H[k]cos(ﬁ<
k=1

2T

Side note: This is very closely related to the
discrete cosine transform

Lecture 22: Designing FIR / IIR Filters
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Design with Equi-ripples

Previously derived:

(M) M/2-1
X(z) =z 2 z ay

k=0
e M/2-1
X(w)=e"7%"2 z
k=0
(M) M/2—-

=2 1¥® 3

[Z(M_l) B

2

) a [ejw[

f + Z_[(Mz_l) - k”

(M-1)

2 _k] +ja)_jw[

Lecture 22: Designing FIR / IIR Filters
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Design with Equi-ripples

m  Equi-ripple design

INUS M—1
X(w) = 2e 2 Z a,, COS a)T—k
k=0

® Goal: Find the optimal a;,s that satisfies passband / stopband
ripple constraints.

|H{e)|
}
l + 8 o - - .4-_- - - - - -
]~ 5} ___________________ 8, ~ Passband ripple
! ' 8, ~ Stapband ripple

w, ~ Passband edge ripple
w, ~ Stopband edge ripple

)

w, 4
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Design with Equi-ripples

m  Equi-ripple design

[ M/2-1
_ gy M=1) M-1
min W(w) |Hy(w) —2e™7% 2 z ag cos | w |[—— —

2
] T k=0

Desired frequency
response

Equals: 0, = stopband ripple
) 6, = band rippl
5—2 for w in pass band 1 = passbanc ripple
1

1 for w instop band

Lecture 22: Designing FIR / IIR Filters

)




Lecture 22: Design of FIR / lIR Filters

Foundations of Digital Signal Processing

Outline
Designing FIR Filters with Windows
Designing FIR Filters with Frequency Sampling
Designing FIR Filters with Equi-ripples
Designing lIR Filters with Discrete Differentiation
Designing IIR Filters with Impulse Invariance
Designing IIR Filters with the Bilinear Transform
Related Analog Filters

Lecture 22: Designing FIR / IIR Filters



IR Filter Design from Derivatives

m Designing lIR Filters
= No easy ways to design digital IR filters

= So let us start from analog filters
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IR Filter Design from Derivatives

m Designing lIR Filters
= No easy ways to design digital IR filters

= So let us start from analog filters

m Option 1: Preserve the difference equation!
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IR Filter Design from Derivatives

m Question: What is a derivative in discrete-time?
= |n continuous-time
dx(t)
dt

— sX(s)

= |n discrete-time
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IR Filter Design from Derivatives

® Question: What is a derivative in discrete-time?

" |n continuous-time
dx(t)

X
7 SX(s)

= |n discrete-time

dx(t) " x(t) — x(t — AT) T=1
dt  ATS0 AT /
dx(t) ~x(nT) —x(nT —T) »
7t = 7 = x|n] — x[n — 1]

t=nT
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IR Filter Design from Derivatives

® Question: What is a derivative in discrete-time?

" |n continuous-time
dx(t)
dt

— sX(s)

= |In discrete-time
dx(t) " x(t) — x(t — AT)

dt A%To AT
dx(t) ~_x(nT) —x(nT —-T) 1
= = . = = (] - x[n — 1))

t=nT
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IR Filter Design from Derivatives

® Question: What is a derivative in discrete-time?

" |n continuous-time

dx(t)
dt

— sX(s)

= |n discrete-time

dx(t)
dt
dx(t)

x(t) — x(t — AT)

= ATS0 AT
~_x(nT) —x(nT —-T) 1

T

I N (O
T
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IR Filter Design from Derivatives

® Question: What is a second-derivative in discrete-time?

" |n continuous-time

" In discrete-time
d?x(t) dx(t) [dx(t)
dtz  dt | dt
_x(nT) —x(nT —T)
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IR Filter Design from Derivatives

® Question: What is a second-derivative in discrete-time?

" |n continuous-time

= |In discrete-time
d’x(t)  dx(t) [dx(t)
dt>  dt | dt

[x(nT) — x(nT —T)]/T — [x(nT — T) — x(nT — 2T)]/T
T

d?x(t)
dt?

t=nT
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IR Filter Design from Derivatives

® Question: What is a second-derivative in discrete-time?

" |n continuous-time

= |In discrete-time
d’x(t)  dx(t) [dx(t)
dt>  dt | dt

_x(nT) = 2x(nT —T) + x(nT — 2T)  x[n] —2x[n—1] + x[n — 2]
B T2 ~ T2

d?x(t)
dt?

t=nT
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IR Filter Design from Derivatives

® Question: What is a second-derivative in discrete-time?

" |n continuous-time

= |n discrete-time

d’x(t)  dx(t) [dx(t)
dt2  dt | dt

d?x(t) _x(nT) = 2x(nT —T) + x(nT — 2T)  x[n] — 2x[n — 1] + x[n — 2]
dt? - T2 - 2
t=nT
dx(t) 1 ) ) 1 )
It t=nT—>ﬁ(1—Zz lyz Z)X(Z)=ﬁ(1—z 1)2x(z)
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IR Filter Design from Derivatives

® Question: What is a derivative in discrete-time?

= Translate continuous-time to discrete-time

k
ddtit) - s°X(s)
k
ddtit) - - z kX (2)
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IR Filter Design from Derivatives

® Question: What is a derivative in discrete-time?

= Translate continuous-time to discrete-time

d®x(t)
dtk

- (1-2z7Y
ﬁ —_— —
S z
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IR Filter Design from Derivatives

m Example: s — %(1 -z 1

= Use the derivative conversion to transform the following biquad
filter into the discrete-time domain.
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IR Filter Design from Derivatives

m Example: s — %(1 —z 1

= Use the derivative conversion to transform the following bi-quad
filter into the discrete-time domain.

1
HS) = oDz +9
H(Z) 1 T2
Z) = —
(% (1—z"1) + 0.1)2 +9 T2 [(% (1—z"1)+ 0.1)2 + 9]
T2 T2

(=2 +01T)° +9T2  ((1+04T) — 2~1)° + 972
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IR Filter Design from Derivatives

m Example: s — %(1 —z 1

= Use the derivative conversion to transform the following bi-quad
filter into the discrete-time domain.

(s +0.1)2+9

T2 Finding poles
H(z) = 5
((140.1T) — z71)" +9T2

(1+01T) — 2z~ )  +9T2 =0

((1+0.1T) — z~1)* = —972
(14+0.1T) —z~ 1 = +3Tj

1

1 = (1 4 0.1T) F 3Tj — _
2 = (1 +017) + 37 “TIX 1T 3T
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IR Filter Design from Derivatives

m Example: s — %(1 -z 1

= Use the derivative conversion to transform the following bi-quad
filter into the discrete-time domain.

1
“TIH 01 +3)T

Poles
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IR Filter Design from Derivatives

m Example: s — %(1 -z 1
B 1
“TIH 01 +3)T

T=0.01
1 =
>
. i
Ty O o Qe S
T :
1=
1 . P
-2 1 0
Real
100
i)
=
=
o 50}
]
=
'D i 1 e —
0 2 4 6 8 10
MNormalized Frequency [rad/s]
2
o 1.5¢
=
=
S 1}
(o]
1]
= 0.5
D i i
0 2 4 6 8 10

Angular Frequency [rad/s]
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IR Filter Design from Derivatives

® Question: What is a derivative in discrete-time?

= Translate continuous-time to discrete-time

(-7
s—=>=10—-z
T
Stable IIR
= Pros: analog filters
_ 4 __map here
= Relatively simple //
/
/
m Cons: !
|
= Very limiting \
\
= Stable continuous-time poles can ..
only be mapped to low frequencies o
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IR Filter Design by Impulse Invariance

m Designing lIR Filters
= No easy ways to design digital IR filters

= So let us start from analog filters

m Option 2: Preserve the impulse response!
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IR Filter Design by Impulse Invariance

m Question: How else can | represent my transfer function?
K

H(s) = HS_lPk

k=1
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IR Filter Design by Impulse Invariance

m Question: How else can | represent my transfer function?
K K

1
S — Pk

k=1 k=1
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IR Filter Design by Impulse Invariance

m Question: How else can | represent my transfer function?

K , K
— — Prt
H(s) = 1_[ — = 2 Ce
k=1> Pk 1=
K
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IR Filter Design by Impulse Invariance

m Question: How else can | represent my transfer function?

K K
1
H(s) = 1_[ —— = 2 crePkt
k=1> Pk 1o
K
h(t) = Z crePrt
k=1
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IR Filter Design by Impulse Invariance

m Question: How else can | represent my transfer function?
K K

1
H(s) = 1_[ —— = 2 crePkt
k=1> Pk 1=
K
h(t) = Z crePrt
k=1

K K

h(nT) = h[n] = 2 cr ekl = 2 cr [ePKT ™
k=1 k=1

K
Ck
H(z) = z 1 —ePrlz71
k=1
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IR Filter Design from Derivatives

K Ck
k=1 1—ekaZ_1

m Example: H(z) =

= Use impulse invariance to transform the following biquad filter into
the discrete-time domain.

1
(s +0.1)2+9

H(s) =
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IR Filter Design from Derivatives

K Ck
k=1 1—ekaZ_1

m Example: H(z) =

= Use impulse invariance to transform the following biquad filter into
the discrete-time domain.

1
(s +0.1)2+9

H(s) =

Poles:
(s+0.1)%+9=0
s=43j—0.1
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IR Filter Design from Derivatives

K Ck
k=1 1—ekaZ_1

m Example: H(z) =

= Use impulse invariance to transform the following biquad filter into
the discrete-time domain.

1 12 . 1/2
(s+01)24+9 s+3j+01 s—3j+0.1

H(s) =

Poles:
(s+0.1)*+9=0
s=43j—0.1
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IR Filter Design from Derivatives

K Ck
k=1 1—ekaZ_1

m Example: H(z) =

= Use impulse invariance to transform the following biquad filter into
the discrete-time domain.

1 1/2 1/2
H(s) = = : + ,
(s+01)?+9 s+3j+01 s-3j+0.1
1/2 1/2
H(z) = / + /

1 — e(—3j—0.1)TZ—1 1 — e(3j—0.1)TZ—1
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IR Filter Design from Derivatives

K Ck

m Example: H(z) =

k=1 1—ePkT ;-1 1 T=l]l]1
. 1/2 >
(2) = 1 — e(—=3j-0.1)T ,-1 G O f O
=
1/2 y B
_|_ - 2 1 0 1 2
1 — e(3]—0.1)TZ—1 Real
UJ4-
33
=
1t _
0 : : ; ——)
0 2 4 6 8 10
MNormalized Frequency [rad/s]
2
L 1.5¢
g{Il.5
0 : :
0 2 4 B 8 10

Angular Frequency [rad/s]

Lecture 22: Designing FIR / IIR Filters




Lecture 22: Design of FIR / lIR Filters

Foundations of Digital Signal Processing

Outline
Designing FIR Filters with Windows
Designing FIR Filters with Frequency Sampling
Designing FIR Filters with Equi-ripples
Designing IIR Filters with Discrete Differentiation
Designing IIR Filters with Impulse Invariance
Designing lIR Filters with the Bilinear Transform
Related Analog Filters

Lecture 22: Designing FIR / IIR Filters



IR Filter Design by Bilinear Transform

m Designing lIR Filters
= No easy ways to design digital IR filters

= So let us start from analog filters

m Option 3: Preserve the definition of z!
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IR Filter Design by Bilinear Transform

® Question: How are z and s related?
= From continuous-time to discrete-time

s = j{) Taylor Series
st — gsnT — ,n Expansion / Approximation

e
z=e5T /

= Building an approximation (e* = 1 + x)

sT

e 2 1+ sT/2
Z=—% ® T

3_57 1—sT/2
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IR Filter Design by Bilinear Transform

® Question: How are z and s related?
= From continuous-time to discrete-time
s = JQ
st — ,snT _ n
e =e€ = Z Bilinear
1 Expansion / Approximation

z=e5T s = Tln(z) /

= Building an approximation
2z—1
T Tz4+1

S
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IR Filter Design by Bilinear Transform

m The Bilinear Transform

Continuous-time to discrete-time
21—z"1
"T1+4 z-1

Discrete-time to continuous-time
14 sT/2

1—sT/2

7z —
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IR Filter Design by Bilinear Transform

21-z"1 1+sT/2
m Example:s > =————, z -
T1+z71 1—sT/2

= Use the bilinear transform to transform the following biquad filter
into the discrete-time domain.

1

H) = S oD2+ 9
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IR Filter Design by Bilinear Transform

21—z~ 1+ST /2
m Example:s > =————, z -
T1+z71 1—sT/2

= Use the bilinear transform to transform the following biquad filter
into the discrete-time domain.

1
H(s) =
) = GFoD2+9
H) = -
z) = 2
(%1;2 1+01) +9
(1+z71)?

2 -1 i -1)2
(T(l—z )+0.1) +9(1+z71)
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IR Filter Design by Bilinear Transform

21-z"1 1+sT/2
N Example: S 2= —, Z = = T=0.01
T 1+z~1 1-sT/2 1 o
(1+z71)? 2 5
H(z) = > > % O oo S - T ——
(T (1-z1YH+ 0.1) +9(1+2z71)2 £

b ]
=
=
=
n
1}
=
0 2 4 6 8 10
Normalized Frequency [rad/s]
2
o 1.5}
=
=
= 1
o
0
=05
D i i
0 2 4 6 8 10

Angular Frequency [rad/s]
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Multi-pole Filters

m Butterworth: Maximally flat passband
m Chebyshev: Faster cutoff with passband ripple

m Elliptic: Fastest cutoff with passband and stopband ripple

1.5
&
2 1
o
Q
7]
O]
14
o 05 L
°
2
c
o))
©
= 0 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Frequency [Hz]

Phase Response
o N
=) o o
K

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Butterworth Filter

m Butterworth Filter of order N

1 i(2k+N-1)1
H(jw)| = _ K
];X=1(S — Sk) Sk = € 2N
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Butterworth Filter

m Butterworth Filter of order N

= N equally spaced poles on a circle on the left-hand-side of the s-

plane
Pole-Zero Map &
2 5
B ﬂ- .1
73}
d
15¢ a4
4k}
_ gos
= 1r =
e S
= . . . .
) I 0
o 0.5 0o 1 2 3 4 5
[}
- Frequen Hz
% gL quency [Hz]
@ 00—
E—D.E &
[ [
.E‘ g-
= o
Q@ 20t
15¢ 9
o
: 30t . . . .
_2 1 1 1
5 y 0 1 o 0 1 2 3 4 5

Real Axis {mcnnds”} Fraquancy [Fiz]
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Butterworth Filter

m Properties of the Butterworth Filter
" |tis maximallyflatatw =0

1

V2

= Forlargen, it becomes an ideal filter

= |t has a cutoff frequency |H(w)| = =atw = w,
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Chebyshev Filter

m Chebyshev Filter of order N

H(jw)] = ———

J1+€2C3(w)

2

C2(w) is an nth-order Chebyshev Polynomial €< controls ripple
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Chebyshev Filter

m Chebyshev Filter of order N

Pole-Zero Map &
2 =
- ﬂ- .1
3]
L
1.5} o
i
_ g0
0 1r =
- 3
= . . . .
] i o
g U5 o 1 2 3 4 5
3]
PP Frequency [Hz]
< 0
5 05 3
— =
=1 2 10f
£ -} @
- o
D 207
A5 o
o
: 30t . . . .
_2 1 1 1
2 1 0 1 5 0 1 2 3 4 5

Real Axis {mcnnds”} i Sl
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Chebyshev Filter

m Properties of the Chebyshev Filter

It has ripples in the passband and is smooth in the stopband.

The ratio between the maximum and minimum ripples in the
passband is

(1+€2)—1/2

If € is reduced (i.e., the ripple size is reduced), then the stopband
attenuation is reduced.

It has a sharper cut-off than a Butterworth filter, but at the
expense of passband rippling
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Elliptic Filter

m Elliptic Filter of order N

H(jo)] = ———

J1+ €2R%(w)

2

RZ(w) is an nth-order elliptic function €“ controls ripple
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Elliptic Filter

m Elliptic Filter of order N

Pole-Zero Map @
[
2 - ) - S 1
[w
[ 2]
1§}
15} a4
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) 1r e
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Elliptic Filter

m Properties of the Elliptic Filter
= |t has ripples in the passband and the stopband
= The ratio between the maximum and minimum ripples is larger

than the Chebyshev filter, but it has an even quicker transition
from passband to stopband

= |t has poles and zeros, but they are much more difficult to compute
compared with the Butterworth and Chebyshev filters
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