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CSE 564 Class Contents 
§  Introduction to Computer Architecture (CA) 
§  Quantitative Analysis, Trend and Performance of CA 

–  Chapter 1 
§  Instruction Set Principles and Examples 

–  Appendix A 
§  Pipelining and Implementation, RISC-V ISA and Implementation 

–  Appendix C, RISC-V (riscv.org) and UCB RISC-V impl 
§  Memory System (Technology, Cache Organization and Optimization, 

Virtual Memory) 
–  Appendix B and Chapter 2 
–  Midterm covered till Memory Tech and Cache Organization 

§  Instruction Level Parallelism (Dynamic Scheduling, Branch Prediction, 
Hardware Speculation, Superscalar, VLIW and SMT) 

–  Chapter 3 
§  Data Level Parallelism (Vector, SIMD, and GPU) 

–  Chapter 4 

§  Thread Level Parallelism 
–  Chapter 5 
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Topics for Thread Level Parallelism (TLP) 
§  Parallelism (centered around … ) 

–  Instruction Level Parallelism 
–  Data Level Parallelism 
–  Thread Level Parallelism 

§  TLP Introduction 
– 5.1 

§  SMP and Snooping Cache Coherence Protocol 
– 5.2 

§  Distributed Shared-Memory and Directory-Based 
Coherence 
– 5.4 

§  Synchronization Basics and Memory Consistency 
Model 
– 5.5, 5.6 

§  Others 
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Moore’s Law 
•  Long-term trend on the density of transistor per integrated 

circuit 
•  Number of transistors/in2 double every ~18-24 month 
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What do we do with that many 
transistors?  

§  Optimizing the execution of a single instruction 
stream through 
–  Pipelining 

» Overlap the execution of multiple instructions 
»  Example: all RISC architectures; Intel x86 underneath the 

hood 
– Out-of-order execution:  

» Allow instructions to overtake each other in accordance 
with code dependencies (RAW, WAW, WAR) 

»  Example: all commercial processors (Intel, AMD, IBM, 
Oracle) 

– Branch prediction and speculative execution:  
» Reduce the number of stall cycles due to unresolved 

branches 
»  Example: (nearly) all commercial processors 
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What do we do with that many 
transistors? (II) 

– Multi-issue processors:   
» Allow multiple instructions to start execution per clock 

cycle 
»  Superscalar (Intel x86, AMD, …) vs. VLIW architectures 

–  VLIW/EPIC architectures:  
» Allow compilers to indicate independent instructions per 

issue packet 
»  Example: Intel Itanium 

–  SIMD units: 
» Allow for the efficient expression and execution of vector 

operations 
»  Example: Vector, SSE - SSE4, AVX instructions 

Everything we have learned so far 
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Limitations of optimizing a single 
instruction stream 

§  Problem: within a single instruction stream we do not find 
enough independent instructions to execute 
simultaneously due to 
–  data dependencies 
–  limitations of speculative execution across multiple branches 
–  difficulties to detect memory dependencies among 

instruction (alias analysis) 
§  Consequence: significant number of functional units are 

idling at any given time  
§  Question: Can we maybe execute instructions from 

another instructions stream  
– Another thread? 
– Another process? 
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Thread-level parallelism 
§  Problems for executing instructions from multiple 

threads at the same time 
–  The instructions in each thread might use the same register 

names 
–  Each thread has its own program counter 

§  Virtual memory management allows for the execution 
of multiple threads and sharing of the main memory 

§  When to switch between different threads: 
–  Fine grain multithreading: switches between every instruction 
– Course grain multithreading: switches only on costly stalls 

(e.g. level 2 cache misses) 
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Convert Thread-level parallelism to 
instruction-level parallelism 
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ILP to Do TLP: e.g. Simultaneous Multi-
Threading 

§  Works well if 
– Number of compute intensive threads does not exceed the 

number of threads supported in SMT 
–  Threads have highly different characteristics (e.g. one thread 

doing mostly integer operations, another mainly doing 
floating point operations) 

§  Does not work well if 
–  Threads try to utilize the same function units 

»  e.g. a dual processor system, each processor supporting 
2 threads simultaneously (OS thinks there are 4 
processors) 

»  2 compute intensive application processes might end up 
on the same processor instead of different processors 
(OS does not see the difference between SMT and real 
processors!) 
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Power, Frequency and ILP 
§  Moore’s Law to processor speed (frequency) 

Note: Even Moore’s Law 
is ending around 2021:  
http://spectrum.ieee.org/
semiconductors/devices/
transistors-could-stop-
shrinking-in-2021 

https://
www.technologyreview.com/s/
601441/moores-law-is-dead-
now-what/ 

http://www.forbes.com/sites/
timworstall/2016/07/26/
economics-is-important-the-
end-of-moores-law 

 

 

 

CPU frequency increase was 
flattened around 2000-2005 

Two main reasons: 
1.  Limited ILP and  
2.  Power consumption and 

heat dissipation  
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History – Past (2000) and Today 
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Flynn’s Taxonomy 
 
 
 
 
 
 
 
 
 
 
 
 
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy 

✔ 
✔ 
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Examples of MIMD Machines 
§  Symmetric Shared-Memory 

Multiprocessor (SMP) 
– Multiple processors in box with 

shared memory communication 
– Current Multicore chips like this 
–  Every processor runs copy of OS 

§  Distributed/Non-uniform Shared-
Memory Multiprocessor  
– Multiple processors  

»  Each with local memory 
»  general scalable network  

–  Extremely light “OS” on node 
provides simple services  

»  Scheduling/synchronization 
– Network-accessible host for I/O 

§  Cluster 
– Many independent machine 

connected with general network  
– Communication through messages  

P P P P 

Bus 

Memory 

P/M P/M P/M P/M 

P/M P/M P/M P/M 

P/M P/M P/M P/M 

P/M P/M P/M P/M 

Host 

Network 
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Symmetric (Shared-Memory) 
Multiprocessors (SMP) 

§  Small numbers of cores 
–  Typically eight or fewer, and 

no more than 32 in most cases 
§  Share a single centralized 

memory that all processors 
have equal access to,  
– Hence the term symmetric.  

§  All existing multicores are 
SMPs.  

§  Also called uniform memory 
access (UMA) 
multiprocessors 
–  all processors have a uniform 

latency  
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Distributed Shared-Memory 
Multiprocessor 

§  Large processor count 
–  64 to 1000s 

§  Distributed memory 
– Remote vs local memory 
–  Long vs short latency 
– High vs low latency 

§  Interconnection network 
– Bandwidth, topology, etc 

§  Nonuniform memory 
access (NUMA) 

§  Each processor may has 
local I/O 
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Distributed Shared-Memory 
Multiprocessor (NUMA) 

§  Reduces the memory bottleneck compared to SMPs 
§  More difficult to program efficiently 

–  E.g. first touch policy: data item will be located in the memory 
of the processor which uses a data item first 

§  To reduce effects of non-uniform memory access, 
caches are often used 
–  ccNUMA: cache-coherent non-uniform memory access 

architectures 
§  Largest example as of today: SGI Origin with 512 

processors 
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Shared-Memory Multiprocessor 
§  SMP and DSM are all shared memory multiprocessors 

– UMA or NUMA 
§  Multicore are SMP shared memory 
§  Most multi-CPU machines are DSM 

– NUMA 

§  Shared Address Space (Virtual Address Space) 
– Not always shared memory 
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Bus-Based Symmetric Shared Memory 
§  Still an important architecture – even on chip (until very recently) 

–  Building blocks for larger systems; arriving to desktop 
§  Attractive as throughput servers and for parallel programs 

–  Fine-grain resource sharing 
–  Uniform access via loads/stores 
–  Automatic  data movement and coherent replication in caches 
–  Cheap and powerful extension 

§  Normal uniprocessor mechanisms to access data 
–  Key is extension of memory hierarchy to support multiple processors 

I/O devices Mem 

P 1 

$ $ 

P n 

Bus 
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Performance Metrics (I) 
§  Speedup: how much faster does a problem run on p 

processors compared to 1 processor? 

– Optimal: S(p) = p (linear speedup) 
§  Parallel Efficiency: Speedup normalized by the 

number of processors 

– Optimal: E(p) = 1.0 
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Amdahl’s Law (I) 
§  Most applications have a (small) sequential fraction, 

which limits the speedup 

 f: fraction of the code which can only be executed 
sequentially 

 
 

§  Assumes the problem size is constant 
–  In most applications, the sequential part is independent of the 

problem size 
–  The part which can be executed in parallel depends. 
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Challenges of Parallel Processing 
§  1. Limited parallelism available in programs 

– Amdahl’s Law 

§  0.25% can be  
    sequential 
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Cache in Shared Memory System (UMA or 
NUMA) 

P 1 
Switch 

Main memory 
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Caches and Cache Coherence 
§  Caches play key role in all cases 

– Reduce average data access time 
– Reduce bandwidth demands placed on shared interconnect 

§  Private processor caches create a problem 
– Copies of a variable can be present in multiple caches  
– A write by one processor may not become visible to others 

»  They’ll keep accessing stale value in their caches 

⇒ Cache coherence problem 

§  What do we do about it? 
– Organize the mem hierarchy to make it go away  
– Detect and take actions to eliminate the problem 
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Example Cache Coherence Problem 

Things to note: 
Processors see different values for u after event 3 
With write back caches, value written back to memory depends on 
happenstance of which cache flushes or writes back value and  when 

Processes accessing main memory may see very stale value 
Unacceptable to programs, and frequent! 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 
u  = ? 

4 
u  = ? 

u  :5 
1 

u  :5 

2 

u  :5 

3 

u  = 7 

int count = 5; 
int * u= &count; 
….  
a1 = *u;               
                              a3 = *u; 
                              *u = 7; 
b1 = *u 
                a2 = *u  
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Cache coherence (II) 
§  Typical solution: 

– Caches keep track on whether a data item is shared between 
multiple processes 

– Upon modification of a shared data item, ‘notification’ of other 
caches has to occur 

– Other caches will have to reload the shared data item on the 
next access into their cache 

§  Cache coherence is only an issue in case multiple 
tasks access the same item 
– Multiple threads 
– Multiple processes have a joint shared memory segment 
–  Process is being migrated from one CPU to another 
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Cache Coherence Protocols 
§  Snooping Protocols 

–  Send all requests for data to all processors, the address 
–  Processors snoop a bus to see if they have a copy and 

respond accordingly  
– Requires broadcast, since caching information is at 

processors 
– Works well with bus (natural broadcast medium) 
– Dominates for centralized shared memory machines 

§  Directory-Based Protocols  
– Keep track of what is being shared in centralized location 
– Distributed memory => distributed directory for scalability 

(avoids bottlenecks) 
–  Send point-to-point requests to processors via network 
–  Scales better than Snooping 
– Commonly used for distributed shared memory machines 
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Snoopy Cache-Coherence Protocols 

§  Works because bus is a broadcast medium & Caches 
know what they have 

§  Cache Controller “snoops” all transactions on the 
shared bus 
–  relevant transaction if for a block it contains 
–  take action to ensure coherence 

»  invalidate, update, or supply value 
–  depends on state of the block and the protocol 

State 

Address 

Data 

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Basic Snoopy Protocols 
§  Write Invalidate Protocol: 

– Multiple readers, single writer 
– Write to shared data:  an invalidate is sent to all caches which 

snoop and invalidate any copies 
– Read Miss:  

»  Write-through: memory is always up-to-date 
»  Write-back: snoop in caches to find most recent copy 

§  Write Update Protocol (typically write through): 
– Write to shared data: broadcast on bus, processors snoop, 

and update any copies 
– Read miss: memory is always up-to-date 

§  Write serialization: bus serializes requests! 
– Bus is single point of arbitration 
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Write Invalidate Protocol 
§  Basic Bus-Based Protocol 

–  Each processor has cache, state 
– All transactions over bus snooped 

§  Writes invalidate all other caches 
–  can have multiple simultaneous readers 

of block,but write invalidates them 
§  Two states per block in each cache 

–  as in uniprocessor 
–  state of a block is a p-vector of states 
– Hardware state bits associated with 

blocks that are in the cache  
–  other blocks can be seen as being in 

invalid (not-present) state in that cache I 

V 
BusWr / - 

PrRd/ -- 

PrWr / BusWr 

PrWr / BusWr 

PrRd / BusRd 

State  Tag   Data 

I/O devices Mem 

P 1 

$ $ 

P n 

Bus 

State  Tag   Data 
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Example: Write Invalidate 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 
u  = ? 

4 
u  = ? 

u  :5 
1 

u  :5 

2 

u  :5 

3 

u  = 7 

u  = 7 

u  :7 
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Write-Update (Broadcast)  
§  Update all the cached copies of a data item when that 

item is written.  
–  Even a processor may not need the updated copy in the 

future 
§  Consumes considerably more bandwidth 
§  Recent multiprocessors have opted to implement a 

write invalidate protocol 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 
u  = ? 

4 
u  = ? 

u  :5 
1 

u  :5 

2 

u  :5 

3 

u  = 7 

u  = 7 

 u=7 
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Implementation of Cache Coherence 
Protocol -- 1 

§  When data are coherent, the cache block is shared 
–  “Memory” could be the last level shared cache, e.g. shared L3 

1. When there is a write by CPU 0, Invalidate the shared copies in 
the cache of other processors/cores 

–  Copy in CPU 0’s cache is exclusive/unshared,  
–  CPU 0 is the owner of the block 
–  For write-through cache, data is also written to the memory 

»  Memory has the latest 
–  For write-back cache: data in memory is obsoleted 
–  For snooping protocol, invalidate signals are broadcasted by CPU 0 

»  CPU 0 broadcasts; and CPU 1 snoops, compares and invalidates 

 

Memory 

CPU 0 

Cache 

CPU 1 

Cache 
Written by CPU 0 

Invalidated by CPU 0 
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Implementation of Cache Coherence 
Protocol -- 2 

§  CPU 0 owned the block (exclusive or unshared) 
2. When there is a read/write by CPU 1 or others à Miss since 
already invalidated 

–  For write-through cache: read from memory 
–  For write-back cache: supply from CPU 0 and abort memory access 
–  For snooping: CPU 1 broadcasts mem request because of a miss; 

CPU 0 snoops, compares and provides cache block (aborts the 
memory request) 

Memory 

CPU 0 

Cache 

CPU 1 

Cache 
Owned by CPU 0 

Read/write miss 
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Finite State Machine (FSM) for 
Implementation 

§  Mathematical model of computation 
used to design both computer programs 
and sequential logic circuits 
–  Events trigger state change 

§  Snooping protocol FSM 
–  Implemented as part of cache controller 

– Responds to requests from the processor in 
the core and from the bus (or other broadcast 
medium): Events 

– Changing the state of the selected cache 
block, as well as using the bus to access data 
or to invalidate it: Change state and action 
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An Example Snoopy Protocol 
§  Invalidation protocol, write-back cache 
§  Each block of memory is in one state: 

– Clean in all caches and up-to-date in memory (Shared) 
– OR Dirty in exactly one cache (Exclusive) 
– OR Not in any caches 

§  Each cache block is in one state (track these): 
–  Shared : block can be read 
– OR Exclusive : cache has only copy, its writeable, and dirty 
– OR Invalid : block contains no data 

§  Read misses: cause all caches to snoop bus 
§  Writes to clean line are treated as misses 
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State Table of Snoopy Protocol 
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Snoopy-Cache State Machine-I  
§  State machine 

for CPU requests 
for each  
cache block Invalid 

Shared 
(read/only) 

Exclusive 
(read/write) 

CPU Read 

CPU Write 

Place read miss on bus 

Place Write  
Miss on bus 

CPU Write miss 
Place Write Miss on Bus 

CPU Read miss 
Place read miss  
on bus 

CPU Write Miss 
Write back cache block 
Place write miss on bus 

CPU read hit 
CPU write hit 

CPU read hit 
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Snoopy-Cache State Machine-II 
§  State machine 

for bus requests 
 for each  
cache block 

 
Invalid Shared 

(read/only) 

Exclusive 
(read/write) 

Write Back 
Block; (abort 
memory access) 

Write miss  
for this block 

Read miss  
for this block 

Write miss  
for this block 

Write Back 
Block; (abort 
memory access) 

Invalidate for this block 

Read miss  
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Snoopy-Cache State Machine-III  
§  State machine 

for CPU requests 
for each  
cache block and 
 for bus requests 
 for each  
cache block 

Place read miss 
on bus 

Invalid 
Shared 

(read/only) 

Exclusive 
(read/write) 

CPU Read 

CPU Write 

CPU Read hit 

Place Write  
Miss on bus 
CPU read miss 
Write back block, 
Place read miss 
on bus CPU Write 

Place Write Miss on Bus 

CPU Read miss 
Place read miss  
on bus 

CPU Write Miss 
Write back cache block 
Place write miss on bus 

CPU read hit 
CPU write hit 

Write miss  
for this block 

Write Back 
Block; (abort 
memory access) 

Write miss  
for this block 

Read miss  
for this block 

Write Back 
Block; (abort 
memory access) 
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Example 

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state  

is invalid and A1 and A2 map  
to same cache block, 

but A1 !=  A2 

Processor 1 Processor 2 Bus Memory 

Remote 

 Write 

Write Back 

Remote Write  

Invalid Shared 

 

Exclusive 

 

CPU Read hit 

Read  
miss on bus 

Write  
miss on bus CPU Write 

Place Write  
Miss on Bus 

CPU read hit 

CPU write hit 

Remote Read  
 Write Back 

CPU Write Miss 

Write Back 

CPU Read Miss 
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Example: Step 1 

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state  

is invalid and A1 and A2 map  
to same cache block, 

but A1 !=  A2. 

Active arrow  = 

Remote 

 Write 

Write Back 

Remote Write  

Invalid Shared 

 

Exclusive 

 

CPU Read hit 

Read  
miss on bus 

Write  
miss on bus CPU Write 

Place Write  
Miss on Bus 

CPU read hit 

CPU write hit 

Remote Read  
 Write Back 

CPU Write Miss 

Write Back 

CPU Read Miss 
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P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Example: Step 2 

Assumes initial cache state  

is invalid and A1 and A2 map  
to same cache block, 

but A1 !=  A2 
Remote 

 Write 

Write Back 

Remote Write  
 

Invalid Shared 

 

Exclusive 

 

CPU Read hit 

Read  
miss on bus 

Write  
miss on bus CPU Write 

Place Write  
Miss on Bus 

CPU read hit 

CPU write hit 

Remote Read  
 Write Back 

CPU Write Miss 

Write Back 

CPU Read Miss 
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Example: Step 3 

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state  

is invalid and A1 and A2 map  
to same cache block, 

but A1 !=  A2. 

 

Remote 

 Write 

Write Back 

Remote Write  

Invalid Shared 

 

Exclusive 

 

CPU Read hit 

Read  
miss on bus 

Write  
miss on bus CPU Write 

Place Write  
Miss on Bus 

CPU read hit 

CPU write hit 

Remote Read  
 Write Back 

A1 
A1 

CPU Write Miss 

Write Back 

CPU Read Miss 
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Example: Step 4 
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state  

is invalid and A1 and A2 map  
to same cache block, 

but A1 !=  A2 
Remote 

 Write 

Write Back 

Remote Write  
 

Invalid Shared 

 

Exclusive 

 

CPU Read hit 

Read  
miss on bus 

Write  
miss on bus CPU Write 

Place Write  
Miss on Bus 

CPU read hit 

CPU write hit 

Remote Read  
 Write Back 

A1 
A1 
A1 

CPU Write Miss 

Write Back 

CPU Read Miss 
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Remote 

 Write 

Write Back 

Remote Write  
 

Invalid Shared 

 

Exclusive 

 

CPU Read hit 

Read  
miss on bus 

Write  
miss on bus CPU Write 

Place Write  
Miss on Bus 

CPU read hit 

CPU write hit 

Remote Read  
 Write Back 

Example: Step 5 
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1 

A1 

Assumes initial cache state  

is invalid and A1 and A2 map  
to same cache block, 

but A1 !=  A2 

A1 
A1 
A1 

CPU Write Miss 

Write Back 

CPU Read Miss 
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Snooping Cache Variations 

§  Owner can update via bus invalidate operation 
§  Owner must write back when replaced in cache 

–  If read sourced from memory, then Private Clean 
–  if read sourced from other cache, then Shared 
– Can write in cache if held private clean or dirty 

Berkeley  
Protocol 

Owned Exclusive 

Owned Shared 

Shared 

Invalid 

Basic  
Protocol 

 

Exclusive 

Shared 

Invalid 

Illinois  
Protocol 

Private Dirty 

Private Clean 

Shared 

Invalid 

MESI  
Protocol 

Modfied (private,!=Memory) 

Exclusive (private,=Memory) 

Shared (shared,=Memory) 

Invalid 
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Shared Memory Multiprocessor 

   Use snoopy mechanism to keep all 
processors’ view of memory coherent 

M1 

M2 

M3 

Snoopy 
 Cache 

DMA 

Physical 
 Memory 

Memory 
   Bus 

Snoopy 
 Cache 

Snoopy 
 Cache  DISKS 
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Cache Line for Snooping  
§  Cache tags for implementing snooping 

– Compares the addresses on the bus with the tags of the 
cache line 

§  Valid bit for being invalidated 
§  State bit for shared/exclusive 

§  We will use write-back cache 
–  Lower bandwidth requirement  
than write-through cache 
– Dirty bit for write-back 
– Write-buffer complicates things 
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Categories of cache misses 
§  Up to now: 

– Compulsory Misses: first access to a block cannot be in the 
cache (cold start misses) 

– Capacity Misses: cache cannot contain all blocks required for 
the execution 

– Conflict Misses:  cache block has to be discarded because of 
block replacement strategy 

§  In multi-processor systems: 
– Coherence Misses: cache block has to be discarded because 

another processor modified the content 
»  true sharing miss: another processor modified the 

content of the request element 
»  false sharing miss: another processor invalidated the 

block, although the actual item of interest is unchanged. 
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False Sharing 

§  A cache line contains more than one word 

§  Cache-coherence is done at the line-level and not 
word-level 

§  Suppose M1 writes wordi and M2 writes wordk and 
–  both words have the same line address. 

§  What can happen? 
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state   line addr  data0  data1        ...        dataN 
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Example: True v. False Sharing v. Hit? 
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Time	 P1	 P2	 True,	False,	Hit?	Why?	
1	 Write	x1	

2	 Read	x2	

3	 Write	x1	

4	 Write	x2	

5	 Read	x2	

• 	Assume	x1	and	x2	in	same	cache	line.		
		P1	and	P2	both	read	x1	and	x2	before.	

True	miss;	invalidate	x1	in	P2	
False	miss;	x1	irrelevant	to	P2	
False	miss;	x1	irrelevant	to	P2	
True	miss;	x2	not	writeable	

True	miss;	invalidate	x2	in	P1	
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Performance 

§  Coherence influences cache miss rate 
– Coherence misses 

» True sharing misses 
• Write to shared block (transmission of invalidation) 
• Read an invalidated block 

» False sharing misses 
• Read an unmodified word in an invalidated block 
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Performance Study:  Commercial Workload 
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