
Lecture 26.   Blackbody Radiation   
(Ch. 7) 

Two types of bosons:

(a) Composite particles which contain an even 
number of fermions. These number of these 
particles is conserved if the energy does not 
exceed the dissociation energy (~ MeV in the 
case of the nucleus).

(b) particles associated with a field, of which the 
most important example is the photon. These 
particles are not conserved: if the total 
energy of the field changes, particles appear 
and disappear. We’ll see that the chemical 
potential of such particles is zero in 
equilibrium, regardless of density. 



Radiation in Equilibrium with Matter
Typically, radiation emitted by a hot body, or from a laser is not in equilibrium: energy 
is flowing outwards and must be replenished from some source. The first step towards 
understanding of radiation being in equilibrium with matter was made by Kirchhoff, 
who considered a cavity filled with radiation, the walls can be regarded as a heat 
bath for radiation.
The walls emit and absorb e.-m. waves. In equilibrium, the walls and radiation must 
have the same temperature T. The energy of radiation is spread over a range of 
frequencies, and we define uS (ν,T) dν as the energy density (per unit volume) of the 
radiation with frequencies between ν and ν+dν.  uS(ν,T) is the spectral energy 
density. The internal energy of the photon gas:
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In equilibrium, uS (ν,T) is the same everywhere in the cavity, and is a function of 
frequency and temperature only. If the cavity volume increases at T=const, the 
internal energy U = u (T) V also increases. The essential difference between the 
photon gas and the ideal gas of molecules: for an ideal gas, an isothermal expansion 
would conserve the gas energy, whereas for the photon gas, it is the energy density
which is unchanged, the number of photons is not conserved, but proportional to 
volume in an isothermal change.
A real surface absorbs only a fraction of the radiation falling on it. The absorptivity α
is a function of ν and T; a surface for which α(ν ) =1 for all frequencies is called a 
black body.



Photons
The electromagnetic field has an infinite number of modes (standing 
waves) in the cavity.  The black-body radiation field is a superposition 
of plane waves of different frequencies. The characteristic feature of 
the radiation is that a mode may be excited only in units of the 
quantum of energy hν (similar to a harmonic oscillators) :

( ) νε hnii
2/1+=

This fact leads to the concept of photons as quanta of the electromagnetic field. The 
state of the el.-mag. field is specified by the number n for each of the modes, or, in other 
words, by enumerating the number of photons with each frequency.

According to the quantum theory of radiation, photons are massless
bosons of spin 1 (in units ħ). They move with the speed of light :
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The linearity of Maxwell equations implies that the photons do not 
interact with each other. (Non-linear optical phenomena are 
observed when a large-intensity radiation interacts with matter). 

T

The mechanism of establishing equilibrium in a photon gas is absorption and emission
of photons by matter.  Presence of a small amount of matter is essential for establishing 
equilibrium in the photon gas. We’ll treat a system of photons as an ideal photon gas, 
and, in particular, we’ll apply the BE statistics to this system.



Chemical Potential of Photons = 0
The mechanism of establishing equilibrium in a photon gas is absorption 
and emission of photons by matter. The textbook suggests that N can be 
found from the equilibrium condition:

0=phμThus, in equilibrium, the chemical 
potential for a photon gas is zero:
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However, we cannot use the usual expression for the chemical potential, because one 
cannot increase N (i.e., add photons to the system) at constant volume and at the same 
time keep the temperature constant: 
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For μ = 0, the BE distribution reduces to the Planck’s distribution:
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Density of States for Photons
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In the classical (hν << kBT) limit: TkB=ε

The average energy in the mode:

In order to calculate the average number of photons per small energy interval dε, the 
average energy of photons per small energy interval dε, etc., as well as the total 
average number of photons in a photon gas and its total energy, we need to know the 
density of states for photons as a function of photon energy.



Spectrum of Blackbody Radiation
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The average energy of photons with frequency 
between ν and ν+dν (per unit volume):

u(ε,T) - the energy density per unit photon 
energy for a photon gas in equilibrium with 
a blackbody at temperature T.
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- the spectral density of the 
black-body radiation  

(the Plank’s radiation law)
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Classical Limit (small f, large λ), Rayleigh-Jeans Law

This equation predicts the so-called 
ultraviolet catastrophe – an infinite 
amount of energy being radiated at 
high frequencies or short 
wavelengths.

Rayleigh-Jeans Law

At low frequencies or high temperatures: ( ) νβνβνβ hhh ≅−<< 1exp1
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Rayleigh-Jeans Law (cont.)
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High ν limit,  Wien’s Displacement Law

The maximum of u(ν) shifts toward higher frequencies with increasing temperature. The 
position of maximum:
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Wien’s displacement law
- discovered experimentally 

by Wilhelm Wien

Numerous applications 
(e.g., non-contact radiation thermometry)

- the “most likely” frequency of a photon in a 
blackbody radiation with temperature T
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νmax  ⇔ λmax
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Solar Radiation
The surface temperature of the Sun  - 5,800K.

As a function of energy, the spectrum of 
sunlight peaks at a photon energy of
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Spectral sensitivity of human eye:

- close to the energy gap in Si, ~1.1 eV, which has been so far the best material for solar cells



Stefan-Boltzmann Law of Radiation
The total number of photons per unit volume:

The total energy of photons per unit volume : 
(the energy density of a photon gas) ( ) ( )
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(just slightly less than the “most” probable energy)

The value of the Stefan-Boltzmann constant: ( )248 /1076.5 mKW−×=σ

Consider a black body at 310K. The power emitted by the body: 24 /500 mWT ≈σ

While the emissivity of skin is considerably less than 1, it still emits a considerable 
power in the infrared range. For example, this radiation is easily detectable by modern 
techniques (night vision).

Some numbers:



Power Emitted by a Black Body

For the “uni-directional” motion, the flux of energy per unit area
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Thus, the power emitted by a unit-area 
surface at temperature T in all directions: ( ) 444
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The total power emitted by a black-body sphere of radius R:

(the hole size must be >> the wavelength)



Sun’s Mass Loss
The spectrum of the Sun radiation is close to the black body spectrum with the 
maximum at a wavelength λ = 0.5 μm. Find the mass loss for the Sun in one second. 
How long it takes for the Sun to loose 1% of its mass due to radiation? Radius of the 
Sun: 7·108 m, mass - 2 ·1030 kg.
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This result is consistent with the flux of the solar radiation energy received by the Earth 
(1370 W/m2)  being multiplied by the area of a sphere with radius 1.5·1011 m (Sun-Earth 
distance).
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Radiative Energy Transfer
Dewar 

Liquid nitrogen and helium are stored in a vacuum or Dewar flask, a 
container surrounded by a thin evacuated jacket. While the thermal 
conductivity of gas at very low pressure is small, energy can still be 
transferred by radiation. Both surfaces, cold and warm, radiate at a rate:
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The net ingoing flux:
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Let the total ingoing flux be J, 
and the total outgoing flux be J’:

i=a for the outer (hot) wall, i=b for the inner (cold) wall,
r – the coefficient of reflection, (1-r) – the coefficient of emission
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If r=0.98 (walls are covered with silver mirror), the net flux is reduced to 1% of the 
value it would have if the surfaces were black bodies (r=0).



Superinsulation
Two parallel black planes are at the temperatures T1 and T2 respectively. The 
energy flux between these planes in vacuum is due to the blackbody 
radiation. A third black plane is inserted between the other two and is allowed 
to come to an equilibrium temperature T3. Find T3 , and show that the energy 
flux between planes 1 and 2 is cut in half because of the presence of the third 
plane. T1 T2T3
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The equilibrium temperature of the third plane can be found from the energy balance:
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The energy flux between the 1st and 2nd planes in the presence of the third plane:
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Superinsulation: many layers of aluminized Mylar foil loosely 
wrapped around the helium bath (in a vacuum space between the 
walls of a LHe cryostat). The energy flux reduction for N heat 
shields:
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The Greenhouse Effect

Transmittance of the Earth atmosphere

Absorption:

Emission: 424outPower EE TR σπ=

the flux of the solar radiation energy 
received by the Earth ~ 1370 W/m2
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α = 1 – TEarth = 280K

Rorbit = 1.5·1011 m RSun = 7·108 m

In reality α = 0.7 – TEarth = 256K

To maintain a comfortable temperature on the 
Earth, we need the Greenhouse Effect !

However, too much of the greenhouse effect 
leads to global warming:



Thermodynamic Functions of Blackbody Radiation
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Now we can derive all thermodynamic functions of blackbody radiation:

the Helmholtz free energy:

the Gibbs free energy:

The heat capacity of a photon gas at constant volume: ( ) 316 VT
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This equation holds for all T (it agrees with 
the Nernst theorem), and we can integrate it 
to get the entropy of a photon gas:
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For comparison, for a non-relativistic monatomic gas – PV = (2/3)U. The difference 
– because the energy-momentum relationship for photons is ultra-relativistic, and 
the number of photon depends on T. 

In terms of the average 
density of phonons:
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Radiation in the Universe

The dependence of the radiated energy 
versus wavelength illustrates the main 
sources of the THz radiation: the 
interstellar dust, emission from light and 
heavy molecules, and the 2.7-K cosmic 
background radiation.

 

In the spectrum of the Milky Way galaxy, 
at least one-half of the luminous power is 
emitted at sub-mm wavelengths 

Approximately  98% of all the photons 
emitted since the Big Bang are observed 
now  in the submillimeter/THz range.



Cosmic Microwave Background

In the standard Big Bang model, the radiation 
is decoupled from the matter in the Universe 
about 300,000 years after the Big Bang, 
when the temperature dropped to the point 
where neutral atoms form (T~3000K). At this 
moment, the Universe became transparent 
for the “primordial” photons.  The further 
expansion of the Universe  can be 
considered as quasistatic adiabatic 
(isentropic) for the radiation:

Nobel 1978
A. Penzias

R. Wilson
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Since V ∝ R3, the isentropic expansion 
leads to :                
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CMBR (cont.)

Alternatively, the later evolution of the radiation temperature may be considered as a 
result of the red (Doppler) shift (z). Since the CMBR photons were radiated at T~3000K, 
the red shift z~1000.

At present, the temperature of the Planck’s 
distribution for the CMBR photons is 2.735 
K. The radiation is coming from all 
directions and is quite distinct from the 
radiation from stars and galaxies. 

Mather, Smoot,  Nobel 2006

“… for their 
discovery of the 
blackbody form and 
anisotropy of the 
CMBR”. 



Problem 2006 (blackbody radiation)
The cosmic microwave background radiation (CMBR) has a temperature of 

approximately 2.7 K.
(a)  (5)  What wavelength λmax (in m) corresponds to the maximum spectral density 

u(λ,T) of the cosmic background radiation?
(b) (5)  What frequency νmax (in Hz) corresponds to the maximum spectral density 

u(ν,T) of the cosmic background radiation?
(c) (5)  Do the maxima u(λ,T) and u(ν,T) correspond to the same photon energy? If 

not, why?
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the maxima u(λ,T) and u(ν,T) do not correspond to the same photon energy. The 
reason of that is
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Problem 2006 (blackbody radiation)
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(d)   (15)  What is approximately the number of CMBR photons hitting the earth per 
second per square meter [i.e. photons/(s·m2)]?
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