PHY492: Nuclear & Particle Physics

Lecture 25

Particle Detectors

http://pdg.lbl.gov/2006/reviews/contents_sports.html

Minimum ionization in thin solids

$$S(T) = -\frac{dT}{dx} \propto nZ = \rho A_0 \frac{Z}{A}$$

Units for energy loss

Z : atomic number of medium

n : number of atoms/unit volume

 $n = \frac{\rho A_0}{A}$; A : atomic number of medium

- Z/A ~ 0.4 at large A, energy loss proportional to density, S~ ρ ,
- Divided by the density -> value nearly independent of material.
- (dE/dx)_{min} for materials in MeV/(g/cm²)
 - Polystyrene scintillator: 1.95

$$\rho_{\text{scintillator}} = 1.03 \text{ g/cm}^3$$
$$-\frac{dT}{dx}\Big|_{\text{min}} = 1.95 \left(\frac{\text{MeV}}{\text{g/cm}^2}\right)\rho_{\text{Scintillator}} = 2.0 \text{ MeV/cm}$$

- Iron (steel): 1.45

$$\rho_{\text{iron}} = 7.87 \text{ g/cm}^3$$

$$-\frac{dT}{dx}\Big|_{\text{min}} = 1.45 \left(\frac{\text{MeV}}{\text{g/cm}^2}\right)\rho_{\text{iron}} = 11.4 \text{ MeV/cm}$$

Relativistic muon loses ~2 MeV/cm in plastic, ~11.4 MeV/cm in Iron

High energy particles in matter

- Particles can be deflected, degraded or absorbed
- Characteristic length is particle, energy, and material dependent Long lived particles ($\tau > 10^{-10}$ s)
- Muons (mass $m_{\mu} \sim 200 m_e$)
 - lose energy mostly by ionization -> energy determines range
 - rare energy loss by photon radiation in the EM field of nucleus
 - very rare EM interaction on nuclear charges, nuclear disintegration
 - deflection by multiple scatterings on atomic electrons
- Electrons and photons at high energy (T > 1 GeV)
 - Electron radiates photons: X₀ is the "radiation length"
 - Photon converts to e^+e^- pair: $9X_0/7$ is the "pair creation length"
 - Electrons and Photons interact with the charge of the nucleus
- Hadrons (proton, neutron, charged pi-meson, K-meson, ...)
 - nuclear interactions; absorption length, X_{abs} proportional to density ρ
 - additional hadrons often created

Muon multiple scattering

- 5 GeV muon (m=105.6 MeV/c²) through 1 m of steel looses about
 1.1 GeV by ionization. Some atomic electrons are kicked hard.
- Muon will be deflected (either direction) with a probability distribution that peaks at θ = 0 but spread by θ_{rms} .

Bremsstrahlung

- High energy electrons loose energy primarily by radiating photons
- The characteristic length, X_0 is material dependent
- Kinetic energy (on average) will drop exponentially.

Photons in matter

- E < 1 MeV, photoelectric absorption and Compton scattering dominate the interactions of photons
- E = 1 10 MeV, Compton scattering dominates but pair production is rising
- E > 10 MeV, pair production dominates the interactions

Cascading interactions

- 1. 1 GeV photon enters a block of lead ($X_0 = 0.56$ cm)
- 2. After 5 mm the photon produces a e+e- pair (0.4 and 0.6 GeV)
- 3. After 3 mm the e+ "brems" a 100 MeV photon. After 6 mm the e-"brems" a 300 MeV photon (e+ and e- are both 300 MeV).
- 4. After a few more mm each, the 100 MeV and 300 MeV photons pair produce, the 300 MeV e+ and e- both brems
- 5. Repeats until photons and electrons drop below 1 MeV.

Measuring a particle's momentum, energy, and mass

- Charged particle tracking
 - Gas: MWPC, Drift Chamber, GEM
 - Solid state: Silicon, diamond
- Scintillators
 - scintillation and conversion -> electronic signals
 - Organic: Plastic, liquid hydrocarbon, fibers
 - Inorganic: Crystals, liquid noble gas
- Calorimeters
 - total absorption
 - sampling
- Particle identification (ID)
 - time of flight
 - ionization
 - Cerenkov light
 - transition radiation

- MWPC = Multi-Wire Proportional Chamber
 - GEM = Gas Electron Multiplier

Charge Q bending in a magnetic field

 $\frac{\text{Relativistic}}{\text{Derivation}} \quad p = \gamma mv$ $dp = pd\theta = p\frac{vdt}{R}$ $\frac{dp}{dt} = p\frac{v}{R} = QvB$ $\underline{p = QBR}$

Transform to more useful units

 $p \approx 0.3 qBR$

 $p \text{ in GeV/c}, \quad q \text{ in } \# \text{ of } e'\text{s}$ $B \text{ in Tesla}, \quad R \text{ in meters}$ $Q = \frac{p}{d\theta} dp$ R<u>B field</u>
<u>Units transformation</u> $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \quad q = Q/(1.6 \times 10^{-19} \text{ C})$ $p = QBR \left(1 \frac{\text{kg} \cdot \text{m} \cdot \text{s}^{-1}}{\text{C} \cdot \text{T} \cdot \text{m}} \right) \left[\left(\frac{c}{c} \right) \left(\frac{e}{e} \right) \right]$

$$= qBR\left(\frac{3 \times 10^8 \text{ eV/}c}{\text{T} \cdot \text{m}}\right)$$
$$= 0.3qBR\left(\frac{\text{GeV/}c}{\text{T} \cdot \text{m}}\right)$$

Using the sagitta to find R

- Bending of elementary charge in a magnetic field
 - large radius -> weak bending -> large momentum
 - typically see only a small portion of the circle
 - measurement of momentum is equivalent to a measurement of the sagitta.

• Momentum errors minimized by big B, or even better by big L

Basics of wire chamber tracking

- Wire chamber features
 - Isolated gas volume ("chamber")
 - Anode wire, Au plated W, dia. $<50\mu$
 - Cathodes at high voltage
- Gas properties (big subject)
 - Noble gas (Ar) no negative ions
 - UV quencher (hydrocarbon)
 - Cost
 - Cheap (flow & exhaust)
 - Expensive (recirculate & clean)
 - Electronics
 - 1 circuit for each wire
 - fast, low noise
 - multi-channel ICs

<u>avalanche</u> ~ 100μ from wire

Multiwire proportional chambers (MWPC)

- MWPC capable of very high rates
- Mechanically difficult (wires break)

<u>typical dimensions</u> d = 2mm, L = 10mm anode wire dia. < 50µ

Resolution: know only hit wire Flat probability distribution Gaussian equivalent: $\sigma = \sqrt{\langle x^2 \rangle} = \frac{d}{2\sqrt{3}}$ $\approx 600\mu, d = 2 \,\mathrm{mm}$

$$\langle x \rangle = 0$$
; where $x = x' - x'_{wire}$
 $\langle x^2 \rangle = \frac{\int_{0}^{d/2} x^2 dx}{\int_{0}^{d/2} dx} = \frac{2}{d} \frac{x^3}{3} \Big|_{0}^{d/2} = \frac{d^2}{12}$

Drift chambers

- Graded potential, ~uniform drift field
- Drift followed by avalanche at wire

Particle crosses at time t Ionization arrives at $t + \Delta t$ $x = \pm v(t) \Delta t$ +/- left right ambiguity

- Position resolution ($\sigma = 50-200\mu$)
 - v(t) distortions, e.g., near wire
 - ionization fluctuations
 - dispersion while drifting
 - electronic noise

CDF muon chambers

Drift chambers for colliders

- CDF "jet chamber" technique
 - up to 30,000 wires, many samples
 - I/r resolved easily
 - ionization (pulse width)
 - magnetic field complications

- Other technologies (at LHC)
 - Micro-strip Gas Chambers
 - Gas Electron Multiplier (GEM)

CDF Central Outer Tracker (COT) during wire/field sheet installation

- Second coordinate techniques
 - stereo wire planes
 - timing or charge division
 - induced charge on cathode strips