Lecture 26

- Energy and Power
- Resistors in Series
- Real batteries
- Resistors in Parallel
- Example of Resistor Circuits
- Grounding

Energy and Power

- In battery: chemical energy \rightarrow potential...of charges: $\Delta U = q \Delta V_{bat} = q \mathcal{E}$
- power (rate at which energy supplied to charges): $P_{bat} = \frac{dU}{dt} = \frac{dq}{dt} \mathcal{E}$

$$P_{\text{bat}} = I\mathcal{E}$$
 (power delivered by an emf)

• In resistor: work done on charges $qEd \longrightarrow$ kinetic (accelerate) between collisions \longrightarrow thermal energy of lattice after collisions

Electron

current

The electric field causes electrons to speed

Atoms in

the lattice

Current

up. The energy transformation is $U \rightarrow K$.

After many collisions over length L of resistor:

$$\Delta E_{th} = qEL = q\Delta V_R$$

Collisions transfer energy to the lattice. The energy transformation is $K \rightarrow E_{th}$.

rate at which energy is transferred from current to resistor:

$$P_R = \frac{dE_{th}}{dt} = \frac{dq}{dt} \Delta V_R = I \Delta V_R$$

For basic circuit: $P_R = P_{bat}$ (energy conservation)

Using Ohm's law:
$$P_R = I\Delta V_R = I^2R = \frac{(\Delta V_R)^2}{R}$$
 (power dissipated by a resistor) $E_{chem} \to U \to K \to E_{th} \to \text{light...}$

• Common units: P_R kW in Δt hours $\to P_R \Delta t$ kilowatt hours

Example on electric power

• A standard 100 W (120 V) lightbulb contains a 9.00 cm-long tungsten filament. The high-temperature resistivity of tungsten is 9.0 x 10⁻⁷ ohm-meter. What is the diameter of the filament?

Resistors in Series

(a) Two resistors in series

(b) An equivalent resistor

- current same in each resistor: $\Delta V_1 = IR_1$; $\Delta V_2 = IR_2 \Rightarrow \Delta V_{ab} = I(R_1 + R_2)$
- ullet equivalent resistor: $R_{ab}=rac{\Delta V_{ab}}{I}=rac{I(R_1+R_2)}{I}=R_1+R_2$

$$R_{\rm eq} = R_1 + R_2 + \cdots + R_N$$
 (series resistors)

Ammeters

measures current in circuit element (placed in series):

$$R_{eq} = R_{load} + R_{ammeter}$$

ideal, $R_{ammeter}=0\Rightarrow ext{current}$ to the publication of the publication $R_{ammeter}=0$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

terminal (user) voltage

$$\Delta V_{\text{bat}} = \mathcal{E} \quad \Delta V_{bat} = E - Ir$$

for resistor connected:

$$I=rac{\mathcal{E}}{R_{eq}}=rac{\mathcal{E}}{R+r}$$
 all $\Delta V_R=IR=rac{R}{R+r}\mathcal{E}$ $\Delta V_{bat}=\mathcal{E}-Ir$ $\Delta V_{bat}=\mathcal{E}V_{bat}
otag$

Real battery

• replace high by $I_{short} = \frac{E}{r}$ zero resistance (∞) for ideal, r = 0)

Pearson Education, Inc., publishing as Addison Wesley Current battery can produce

Real Batteries

Although physically separated, the internal resistance *r* is electrically in series with *R*.

This means the two circuits are equivalent.

Parallel Resistors

potential differences same:

$$\Delta V_1 = \Delta V_2 = V_{cd}$$

- Kirchhoff's junction law: $I = I_1 + I_2$
- Ohm's law:

$$I = \frac{\Delta V_1}{R_1} + \frac{\Delta V_2}{R_2} = \Delta V_{cd} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

• Replace by equivalent resistance:

$$R_{cd} = \frac{\Delta V_{cd}}{I} = \left[\frac{1}{R_1} + \frac{1}{R_2} \right]^{-1}$$

$$R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} \right)^{-1}$$

(a) Two resistors in parallel

(b) An equivalent resistor

Copyright @ 2004 Pearson Education, Inc., publishing as Addison Wesley

(parallel resistors)

- Identical resistors $(R_1 = R_2)$: $R_{series\ eq} = 2R$; $R_{parallel\ eq} = \frac{R}{2}$
- In general, $R_{eq} < R_1$ or R_2 ...in parallel

- measure potential difference across circuit element (place in parallel; don't need to break connections, unlike for ammeter)
- total resistance: $R_{eq} = \frac{1}{R} + \frac{1}{R_{voltmeter}}$
- in order not to change voltage:

$$R_{voltmeter} \gg R \text{ (ideally, } \infty)$$

Strategy for Resistor Circuits

- assume ideal wires, batteries
- use Kirchhoff's laws and rules for series and parallel resistors

Voltmeters

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wes

- reduce to equivalent resistor (basic circuit)
- rebuild using current same for series and potential difference same for parallel

Example of Resistor Circuit

 600Ω

(a) Break down the circuit

Find / and Δ // for each resistor

Parallel

Parallel

Equivalent

Series

- so far, potential difference, △ 1/ (physically meaningful), enters Ohm's law (no need to establish zero point)
- need common reference point for connecting 2 circuits
- grounding: connect | point in circuit to earth (_{Vearth} = 0) by ideal wire: no return wire (no current); wire is equipotential point in circuit has earth's potential specific value of potential at each point
- does not change how circuit functions...
 unless malfunction/breaking of circuit
 (enclose circuit in grounded case insulated
 from circuit): case comes in contact with
 circuit (→ touching would have caused
 electrocution) → current thru' wire (fuse
 blows...)

Grounding

