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Convexity is prevalent in economic theory and optimizations. To give a few examples,

an agent’s preference usually exhibits some concavity; equilibrium price can be understood

as the normal direction of some separate hyperplane of two disjoint convex sets; the interior

minimizer of a convex function is conveniently characterized by the first order condition. In

this section, we clarify the various concepts related to convexity.

It is worth noting that convexity is a concept directly related to the linear structure of

the underlining space. Although in this notes, we will restrict our attention to the convexity

in Rn, we do not make use of any topological argument. In particular, a convex set may not

have a “smooth” boundary, and a convex function may not be differentiable at some point.

1 Convex Sets

1.1 Definition and Basic Properties

A non-empty set S ⊂ Rn is convex if for all x, y ∈ S, λ ∈ [0, 1], λx+ (1− λ)y ∈ S.

Graphically, a set is convex if, for any two points in the set, the line segment connecting

them is in the set.

Example. • The unit ball B1(0) = {x ∈ Rn : ‖x‖ ≤ 1} is convex in Rn

• B1(0)− 0 = {x ∈ Rn : ‖x‖ ≤ 1, x 6= 0} is not convex in Rn

• The union of two disjoint balls is not convex
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Remark. We say non-empty set S ⊂ Rn is mid-point convex if for any two points in the

sets, their midpoint is in the set. i.e. for all x, y ∈ S, 1
2
x + 1

2
y ∈ S. While a convex set is

clearly mid-point convex, the converse is not true. For instance, Q∩ [0, 1] is mid-point convex

in R, but is not convex. Therefore, in the definition of convexity, we will need the whole line

segment in the set. That is, the part about λ ∈ [0, 1] is indispensable.

Proposition. • The intersection of convex sets is convex.

• S + T = {s+ t : s ∈ S, t ∈ T} is convex if S, T are convex

• ∀λ ≥ 0, λS = {λs : s ∈ S} is convex

Proof. Exercise. �

1.2 Convex Hull

Next, we describe how to make a non-convex set convex by adding the missing part.

Given x1, ..., xn ∈ Rn, we say x is a convex combination of x1, ..., xn if

x =
n∑
i=1

aixi

for some ai ∈ R,
∑n

i=1 ai = 1.

Proposition. For a convex set S and vectors x1, ..., xn in S, any convex combination of

x1, ..., xn is in S.

Proof. Exercise. (Hint: Prove by induction. ) �

Next, we define convex hull, which is the set containing all convex combinations of points

in the set. Formally, given a nonempty set S ⊂ Rn, the convex hull of S, denoted by co(S)

is defined by the set of the convex combinations of finitely many points in S.

It is instant from the definition that S ⊂ co(S), as a point is always a convex combination

of itself. Moreover, an equivalent way to describe the convex hull of a set is the smallest convex

set containing the set:
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Theorem. For any nonempty S ⊂ Rn,

co(S) =
⋂

S⊂G,Gconvex

G

Proof. Exercise. �

Corollary. For any nonempty S ⊂ Rn, S is convex if and only if co(S) = S.

1.3 Separating Hyperlane Theorem

On the level of sets and linear spaces, one important property of convex sets are represented

by the following graph:

Figure 1: An Illustration of The Separating Hyperplane

That is, any two disjoint convex sets can be separated by a hyperplane. Now the question

is how to write this idea formally. First, we we define hyperplane,

Figure 2: An Illustration of an Hyperplane

3



An hyperplane is defined by the set

{x ∈ Rn : p · x = b}

for some p ∈ Rn and b ∈ R. Here, p is called the normal vector of the hyperplane, and

b determines the translation of the hyperplane from the origin. The region above the the

hyperplane can be represented by the set

{x ∈ Rn : p · x ≥ b}

Here, one trick to determine the sign of number b is by checking whether the origin is in the

shaded area. In the above picture, 0 is not in the red shaded area. Therefore, p ·0 ≥ b should

not holds. That is, b should be a positive number.

Having had a definition of hyperplane, it is clear that to write a set S is in the red shaded

area in Figure 2, it is equivalent to say

S ⊂ {x ∈ Rn : p · x ≥ b}

or, equivalently,

p · x ≥ b,∀x ∈ S

Now, we are ready to write down our theorem:

Theorem (Separating Hyperplane). Let S1, S2 be two convex and disjoint in Rn, then, there

exists a normal vector p ∈ Rn, p 6= 0, and a translation b ∈ R such that

p · x ≥ b, ∀x ∈ S1

p · y ≤ b, ∀y ∈ S2

Remark. In the statement of the theorem,

1. the convexity of two sets are indispensable. (Exercise)
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2. the disjointness of two sets can be replaced by the disjointness of the relative interior

of two sets. That is, intuitively, the two sets can touch on the boundary.

3. Under the current assumption, we can not replace any inequality by a strict inequality.

(See Figure 3 below for a counter example)

4. When we impose an additional assumption that one of the convex sets is bounded, we

can replace one inequality by a strict inequality.

Figure 3: No strict inequality if no boundedness

The separating hyperplane theorem have numerous applications in economic theory. To

give a few examples: as we will see later in this course, the normal vector will give us

the equilibrium price in a competitive environment. Moreover, the separating hyperplane

theorem can be used to prove Farkas’ Lemma, which is closely related to the no-arbitrage

condition in financial economics. (Probably in the next sequence of this course.)

2 Convex Functions

Given a convex set X in Rn, we say a function f : X → R is convex if

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y),∀x, y ∈ Rn

In contrast, a function f is concave if −f is convex.
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Figure 4: Illustration of a convex function

For those who have learned calculus, a natural question might be whether we could use

the fact f ′′ ≥ 0 to define a convex function. (note we have already know the meaning that

a matrix is nonnegative) The answer is no, as we will use any topological structure of the

domain X. In other words, the function may not be differentiable. (c.f. the utility function

may not be differentiable in this course.)

2.1 Epigraph

Now, we wish to understand whether there is a relation between the convexity of a set and

the convexity of a function. The answer is assertive. Indeed, there is a one to one relationship

between the convexity of sets and convexity of functions in Rn. In this part, we explore on

this relation.

Given a function f : Rn → R, we define the graph of the function to be

{(x, y) ∈ Rn × R : y = f(x)}

and we define the epigraph of the function to be

{(x, y) ∈ Rn × R : y ≥ f(x)}
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That is, intuitively, the part above this function.

The following theorem represents the one to one relationship between the convexity of

sets and the convexity of functions.

Theorem. A function is convex if and only if its epigraph is a convex set.

Proof. Exercise. �

2.2 Another characterization of convex functions

It is valid to ask that why do we need to understand a convex function as a convex set. In

this subsection, we give one application of this relation.

Theorem. A function f is convex if and only if it is the supremum of a collection of affine

functions.1 i.e.

f(x) = sup
α∈A
{pα · x+ bα}

Figure 5: Supremum of a class of affine functions

Proof. (A Sketch of the proof) It is an exercise to prove that the supremum of affine functions

is convex.

1Recall that an affine function on Rn is in the form g(x) = p · x + b.
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Conversely, given a convex function f , we know its epigraph (shaded in blue) is a convex

set. Then for any point on the boundary of the set, the point has no intersection with the

relative interior of the epigraph. Therefore, we apply the separating hyperplane theorem,

and we argue the hyperplane must pass through the point. For each point on the boundary,

we have an affine function gα(x) = pα · x+ bα. And the equation

f(x) = sup
α∈A
{pα · x+ bα}

is followed by the definition of the separating hyperplanes. �
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