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Lecture 3: Counting and probability

Relevant textbook passages:
Pitman [10]: Sections 1.5–1.6, 2.1, 2.5; pp. 47–77; Appendix 1, pp. 507–514.
Larsen–Marx [9]: Sections 2.4, 2.5, 2.6, 2.7, pp. 67–101.

3.1 Laplace’s model: Uniform probability on finite sets

Recall (Section 1.2) Laplace’s [8, pp. 6–7] model of probability as a fraction whose number is
the number of favorable cases and whose denominator is the number of all possible cases, where
the cases are equally likely. We formalize this as follows. The uniform probability on a finite
sample space Ω assigns equal probability to each outcome, and every subset of Ω is an event.

3.1.1 Theorem (Uniform probability) With a uniform probability 1 P on a finite set Ω,
then for any subset E of Ω,

P (E) = # E

# Ω
.

Throughout this course and in daily life, if you come across the phrase at random and the
sample space is finite, unless otherwise specified, you should assume the probability measure
is uniform.

Note that in Laplace’s probability model, the only event of probability zero is the empty set,
and the only event of probability one is the entire sample space.

3.2 A taxonomy of classic experiments

Many random experiments can be reduced to one of a small number of classic experiments. This
characterization is inspired by Ash [2].

• The first kind of random experiment is sampling from an urn (see Figure 3.1). In this
kind of experiment an urn filled with balls of different colors, or labeled balls. A ball is selected
at random (meaning each ball is equally probable).

◦ Note that coin tossing is reducible to sampling from an urn with an equal number of balls
labeled Heads and Tails.
◦ Rolling a die can be viewed as sampling from an urn with balls labeled 1, . . . , 6 (or of six
different colors).
◦ Dealing a card is like sampling from an urn with balls labeled A♣, A♡, . . . , K♠.
◦ Roulette is akin to sampling from an urn with balls labeled 1, . . . , 36, 0, 00.

For repeated sampling, there are two variations, sampling with replacement and sampling
without replacement.

1 Some of my colleagues reserve the term “uniform” to refer to a probability space where the sample space
is an interval of real numbers, and the probability of a subinterval is proportional to its length. They need to
expand their horizons.
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Figure 3.1. The archetypal urn.

◦ In sampling with replacement, after being drawn, the ball is replaced in the urn, and the
contents are remixed. Repeated coin tossing or dice rolling is like sampling with replacement.
◦ In sampling with replacement, after being drawn, the ball is discarded, and the composition
of the urn has changed. Dealing a poker or bridge game is like sampling without replacement.

• Another kind of random experiment is a matching experiment. In this kind of experiment,
a randomly selected ball is dropped into a randomly selected labeled bin.

◦ A classic textbook question deals with randomly stuffing letters into addressed envelopes.
◦ A classic paper [5] treats aerial bombardment like dropping balls into bins. We’ll discuss it
in Lecture 13.
◦ Radioactive decay experiments can be viewed as having bins corresponding time intervals,
into which balls symbolizing decays are placed. (This is one way to think about Poisson pro-
cesses, to be discussed in Lecture 14.)

• Another kind of experiment is waiting for something special to occur in another experiment.

◦ For instance, we might want to know how long it will take to go broke playing roulette.
◦ Or how long between radioactive decays or Southern California earthquakes.

We can also categorize some of the calculations we want to do in connection with these
experiments as to whether order matters or order doesn’t matter. But whatever the
experiment or type of result we are interested in, remember Laplace’s maxim.

To calculate the probability of the event E, when the experimental outcomes are all “equally
likely,” simply count the number of outcomes that belong to E and divide by the total
number of outcomes in the outcome space Ω.

3.2.1 Remark In sampling balls from urns note that all probabilities derived from Laplace’s
maxim are rational numbers.
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3.3 Repeated sampling with replacement

3.3.1 How many different outcomes are there for the experiment of tossing a coin
n times?

This is equivalent to repeated sampling with replacement of drawing from an urn with two balls,
labeled H and T . Here an outcome is the ordered list of T ’s and H’s, so the sample space is
Ω = {H, T}n, and the number of possible outcomes is

2n.

3.3.2 More general sampling with replacement

For repeated sampling with replacement n times from an urn with m types of balls, the sample
space is the set of distinct sequences of draws. Each draw has m possibilities, so there are m
choices for the first draw, m for the second draw, etc., so the sample space is Ω = {1, . . . , m}n,
so the number of possible outcomes is

m × · · · × m︸ ︷︷ ︸
n terms

= mn.

3.4 Repeated sampling without replacement

Suppose I now have an urn with n distinct objects, (or a deck of cards), and I draw one object
at a time, until there are none left. This is sampling without replacement. This gives an
ordered list of length n. How many such lists are there?

3.4.1 Number of lists of length n

Well there are n possibilities for the first draw, and once one has been drawn, there are n − 1
left, so there are n − 1 possibilities for the second draw. The with two gone, there are n − 2
possibilities for the third draw, etc. The total number of lists is gotten by multiplying these, so
we have the following.

3.4.1 Proposition There are

n! = n × (n − 1) × (n − 2) × · · · × 2 × 1

distinct lists of n objects.

The number n! is read as “n factorial.”

By definition,
0! = 1,

and we have the following recursion

n! = n · (n − 1)! (n > 0).

By convention, if n < 0, then n! = 0.
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3.4.2 Example (Number of lists of 4 objects) Suppose the objects are a, b, c, d. The
above calculation says that there should be 4 · 3 · 2 · 1 = 24 distinct lists. Here they are (in
alphabetical order):

abcd, abdc, acbd, acdb, adbc, adcd,

bacd, badc, bcad, bcda, bdac, bdca,

cabd, cadb, cbad, cbda, cdab, csba,

cabc, dacb, dbac, dbca, dcab, dcba.

You can see that each row corresponds to a different first element in the list, etc. All of these
lists have the same four letters, but they are different lists because order matters. □

3.4.2 Number of lists of length k of n objects

Suppose when sampling without replacement, I do not take all n of the objects out of the urn,
but only k of them. How many distinct lists of length k can I make with n objects? As before,
there are n choices of the first position on the lists, and then n−1 choices for the second position,
etc., down to n − (k − 1) = n − k + 1 choices for the kth position on the list. Thus there are

n × (n − 1) × · · · × (n − k + 1)︸ ︷︷ ︸
k terms

distinct lists of k items chosen from n items. There is a more compact way to write this. Observe
that

n × (n − 1) × · · · × (n − k + 1)

=n × (n − 1) × · · · × (n − k + 1) × (n − k) × (n − k − 1) × · · · × 2 × 1
(n − k) × (n − k − 1) × · · · × 2 × 1

= n!
(n − k)!

3.4.3 Proposition There are
n!

(n − k)!
distinct lists of length k chosen from n objects.

We may write this as (n)k, which is read as “n order k.” Note that when k = n this reduces
to n! (since 0! = 1), which agrees with the result in the previous section. When k = 0 this
reduces to 1, which makes sense since there is exactly one list of 0 objects, namely, the empty
list.

3.4.4 Example (Number of lists of length 2 from 4 objects) Suppose the objects are
a, b, c, d, but I just want to make lists of length 2. The above calculation says that there should
be 4 · 3 = 4!/2! = 12 distinct lists. Here they are (in alphabetical order):

ab, ac, ad,

ba, bc, bd,

ca, cb, cd,

da, db, dc.

You can see that each row corresponds to a different first element in the list, etc. The lists ab
and ba both appear, because again, order matters. □
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3.5 Lists versus sets

It very useful to distinguish lists and sets. Both are collections of n objects, but two lists are
different unless each object appears in the same position in both lists.

For lists, order matters.
For sets, order does not matter.

For instance,

abcd and dcba are distinct lists of four elements, but they comprise the same set.

A list is sometimes referred to as a permutation and a set is often referred to as combi-
nation.

3.5.1 Number of subsets of size k of n objects

How many distinct subsets of size k can I make with n objects (without repetition, that is
sampling without replacement)? (A subset is usually referred to as a combination of elements.
I find that terminology uninformative at best and misleading at worst.)

Well there are n!
(n−k)! distinct lists of length k chosen from n objects. But when I have a

set of k objects, I can write it k! different ways as a list. Thus each set appears k! times in my
listing of lists. So I have to take the number above and divide it by k! to get the number of
sets.

3.5.1 Proposition There are
n!

(n − k)! · k!
distinct subsets of size k chosen from n objects.

3.5.2 Definition For natural numbers 0 ⩽ k ⩽ n(
n

k

)
= n!

(n − k)! · k!
,

is read as
“n choose k”

For k > n define
(

n
k

)
= 0.

It is the number of distinct subsets of size k chosen from a set with n elements. It is also
known as the binomial coefficient. Note if k > n, there are no subsets of size k of a set
of size n, so by convention we agree that in this case

(
n
k

)
= 0.

Other notations you may encounter include C(n, k), nCk, and nCk. (These notations were
easier to typeset in lines of text before the invention of computerized typesetting.)

3.5.3 Example (Number of sets of size 2 from 4 objects) Going back to Example 3.4.4
with four items, a, b, c, d, we had twelve lists of length 2, but if you look at the enumeration,
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you will find each 2-element set, such as ab at least twice, once as ab and again ba. Thus there
are 2 =

(2
1
)

times as many lists as sets. The collection of
(4

2
)

sets of size 2 is
{ab}, {ac}, {ad}, {bc}, {bd}, {cd}.

□

3.5.2 Some useful identities (
n

0

)
=
(

n

n

)
= 1

(
n

1

)
= n

(
n

k

)
=
(

n

n − k

)
(

n + 1
k + 1

)
=
(

n

k + 1

)
+
(

n

k

)
(1)

Here is a simple proof of (1):
(

n+1
k+1
)

is the number of subsets of size k + 1 of a set A with
n + 1 elements. So fix some element ā ∈ A and put B = A \ {ā}. If E is a subset of A of size
k +1, then either (i) E ⊂ B, or else (ii) E consists of ā and k elements of B . (A subset may not
satisfy both (i) and (ii).) There are

(
n

k+1
)

subsets E satisfying (i), and
(

n
k

)
subsets satisfying (ii).

Equation (1) gives rise to Pascal’s Triangle, which gives
(

n
k

)
as the kth entry of the nth

row (where the numbering starts with n = 0 and k = 0). Each entry is the sum of the two (or
one) entries diagonally above it:(0

0
)(1

0
) (1

1
)(2

0
) (2

1
) (2

2
)(3

0
) (3

1
) (3

2
) (3

4
)(4

0
) (4

1
) (4

2
) (4

3
) (4

4
)(5

0
) (5

1
) (5

2
) (5

3
) (5

4
) (5

5
)(6

0
) (6

1
) (6

2
) (6

3
) (6

4
) (6

5
) (6

6
)

etc.

=

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
etc.

Equation (1) also implies (by the telescoping method) that(
n

0

)
−
(

n

1

)
+
(

n

2

)
− · · · + (−1)k

(
n

k

)
= (−1)k

(
n − 1

k

)
.

3.5.3 Number of all subsets of a set

You should already know the following,

There are 2n distinct subsets of a set of n objects.

The set of subsets of a set is known as its power set. Let c(n) denote the cardinality of
the power set of a set with n elements. Then it is easy to see that c(0) = 1, c(1) = 2. More
generally, c(n + 1) = 2c(n): There are two kinds of subsets of {x1, . . . , xn+1}, those that are
subsets of {x1, . . . , xn} and those of the form A ∪{xn+1} where A is a subset of {x1, . . . , xn}.
So c(n) = 2n.
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3.5.4 And so …

If we sum the number of sets of size k from 0 to n, we get the total number of subsets, so

n∑
k=0

(
n

k

)
= 2n.

This is a special case of the following result, which you may remember from high school.
(The special case is a = b = 1.)

3.5.4 Binomial Theorem

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k

3.5.5 Binomial random variables

The number of Heads in n independent tosses of a fair coin is a simple, yet nontrivial example,
of a random variable, called a binomial random variable. The distribution of a binomial
random variable is called a binomial distribution. To find its probability mass function, weed
to calculate the probability that there are k Heads in n independent coin tosses.

Let’s do this carefully. The sample space Ω is the set of sequences ω = (ω1, . . . , ωn) of length
n where each term ωi in the sequence is H or T , that is, Ω = {H, T}n. For each point ω ∈ Ω,
let Aω = {i : ωi = H}. Since there are only two outcomes, if you know Aω, you know ω and
vice versa.

Now let E be any subset of Ω that has exactly k elements. There is exactly one point ω ∈ Ω
such that Aω = E. Thus the number of elements of Ω such that # Aω = k is precisely the same
as the number of subsets of Ω of size k, namely

(
n
k

)
. Thus

Prob(exactly k Heads) = # {ω ∈ Ω : # Aω = k}
# Ω

=
(

n
k

)
2n

= n!
k!(n − k)!2n

.

Here is an example with n = 3:
ω Aω

HHH {1, 2, 3}
HHT {1, 2}
HTH {1, 3}
HTT {1}
THH {2, 3}
THT {2}
TTH {3}
TTT ∅

For k = 2, the set of points ω ∈ Ω with exactly two heads is the set {HHT, HTH, THH}, which
has 3 =

(3
2
)

elements, and probability 3/8.
We can use Pascal’s Triangle to write down these probabilities.
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1 (Prob of 0 Heads in 0 tosses)
1
2

1
2 (Prob of 0, 1 Heads in 1 toss)

1
4

2
4

1
4 (Prob of 0, 1, 2 Heads in 2 tosses)

1
8

3
8

3
8

1
8 (Prob of 0, 1, 2, 3 Heads in 3 tosses)

1
16

4
16

6
16

4
16

1
16 (Prob of 0, ..., 4 Heads in 4 tosses)

etc.

3.6 Some examples from card games

3.6.1 How many ways can a standard deck of 52 cards be arranged?

Here the order matters, so we want the number of lists, which is

52! ≈ 8.06582 × 1067

or more precisely:

80, 658, 175, 170, 943, 878, 571, 660, 636, 856, 403, 766, 975, 289, 505, 440, 883, 277, 824, 000, 000, 000, 000.

This is an astronomically large number. In fact, since the universe is about 10–20 billion
years old and there are about 7.28 billion people (according to Siri), if every person on the planet
were set to work arranging a deck in a given order, and could do so in one second, it would take
about 2 × 1040 lifetimes (to date) of the universe to go through all the possible arrangements of
the deck. Nevertheless for this course we make the usual assumption that after shuffling the deck
a few times all possible arrangements are equally likely. This is ludicrous. But the assumption
may actually give reasonably good results for typical questions we ask about card games, such
as those that follow.

For more about the distribution of cards after shuffling, see the papers by Bayer and Diaco-
nis [4] and Assaf, Diaconis, and Soundararajan [3]. A rule of thumb is that it takes at least seven
riffle shuffles for the deck to sufficiently mixed up to be able to use the model that all orders of
the cards are equally likely—provided what you want to do is to calculate the probabilities of
events typically associated with card games.

It is important that when shuffling the deck the deck, the shuffles have some “noise” in them.
A perfect shuffle is one where the deck is split perfectly in half, and the cards from each half
are perfectly alternately interleaved. There are actually two kinds of perfect shuffles—one in
which the top of the deck remains the top, and one in which the top card becomes the second
card. The problem with perfect shuffles is that the order of cards is known. In fact after eight
perfect shuffles fixing the top card, the deck is in the same order as it started. If you can
perform perfect shuffles and have an amazing memory (and I have met such people), then you
can astonish your friends and family by announcing what the sixteenth card in the deck is.

3.6.2 How many different five-card poker hands are there?

In standard five-card draw poker, each player buys into the game by contributing a fixed
ante to the pot. Then each player is dealt five cards before any betting occurs. A round of
betting then ensues, after which the players who have not folded (dropped out) may discard
some of the cards and draw fresh ones. They end up with five cards, and more betting ensues.
The order in which you receive your cards does not matter for the final outcome, only the set
of cards in your hand. But it matters for the betting which cards you get before the draw, and
which you get after the draw. In fact, the decision to discard some cards and draw new ones
depends on the cards initially dealt, but not their order.
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In various forms of stud poker, there is no draw, but there is betting before the players
receive all their cards, so the order in which you receive cards may influence your bets. Moreover
some kinds of stud poker give each player seven cards, from which they select their best five, so
the probabilities of your hand being beaten are different from those in five-card poker.

And then there is Texas hold’em, which is actually televised, in which each player is dealt
two cards and an additional five cards are common to all players. All the computations here are
for five-card stud or for the initial hand in five-card draw.

There are (
52
5

)
= 52 · 51 · 50 · 49 · 48

5 · 4 · 3 · 2 · 1
= 2, 598, 960

distinct five-card hands.

3.6.3 How many different deals?

How many distinct deals of five-card draw poker hands for a seven-player game are there? (The
order of hands matters to the betting, but the order of cards within hands does not.)

The number of distinct deals is(
52
5

)(
47
5

)(
42
5

)(
37
5

)(
32
5

)(
27
5

)(
22
5

)
︸ ︷︷ ︸

7 terms

≈ 6.3 × 1038.

Each succeeding hand has five fewer cards to choose from, the others being used by the earlier
hands.

3.6.4 How many five-card poker hands are flushes?

To get a flush all five cards must be of the same suit. (The suits are clubs, diamonds, hearts,
and spades, with sigils inspired by medieval weapons of war.) There are thirteen ranks in each
suit, so there are

(13
5
)

distinct flushes from a given suit. There are four suits, so there are

4
(

13
5

)
= 5148 possible flushes.

(This includes straight flushes.)
A straight flush is a flush in which the five cards have consecutive ranks. Counting the

Ace as a high card, a straight flush may start on any of the nine numbers 2, 3, . . . , 10, so there
are 4 × 9 = 36 possible straight flushes. (I include royal flushes as straight flushes. A royal
flush is a straight flush with a 10, Jack, Queen, King, and Ace.) Some variants of the rules allow
an Ace to be either high or low for the purposes of a straight, which adds another 4 straight
flushes for a total of 40.

The probability of a straight flush (without low Aces) is

36
2, 598, 000

= 3
216, 580

≈ 0.000014.

Thus there are 5148 − 36 = 5112 flushes that are not straight flushes (allowing for low Aces).
So what is the probability of a flush that is not a straight flush?

5112
2, 598, 960

≈ 0.0020
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3.6.5 Probability of 4 of a kind

What is the number of (five-card) poker hands that have four of a kind (four cards of the same
rank)? Well, there are 13 choices for the rank of the four-of-a-kind, and 48 choices for the fifth
card, called the kicker, so there are 13 × 48 distinct hands with four of a kind. There are

(52
5
)

poker hands, so the probability of four of a kind is

13 × 48(52
5
) = 1

4165
≈ 0.00024.

3.6.6 Probability of a full house

A full house is a poker hand with three cards of one rank and two cards of another rank. How
many poker hands are full houses? Well, there are 13 choices for the rank of the three-of-a-kind,
and 12 choices for the ranks of the pair, but there are 4 cards of any given rank, so there are(4

3
)

= 4 sets of three of a kind of a given rank. Like wise there are
(4

2
)

= 4 pairs of a given ranks.
So there are

(
13 ×

(4
3
))

×
(
12 ×

(4
2
))

distinct full houses. The probability of a full house is

13 ×
(4

3
)

× 12 ×
(4

2
)(52

5
) = 6

4165
≈ 0.00144 ≈ 1/700.

3.6.7 Probability of a three-of-a-kind hand

A three-of-a-kind poker hand is a hand with three cards of one rank r1, and two cards of two
different ranks, r2 and r3, where r1, r2, and r3 are distinct. How many poker hands are a
three-of-a-kind?

Here are two ways to approach the problem.
1.) There are 13 ranks to choose from, and for each rank r1 there are

(4
3
)

= 4 ways to choose
the suits for the three-of-a-kind. For each of these 13 × 4 = 52 choices, there are 49 cards left,
from which we must choose the remaining two cards.

There are twelve remaining ranks and we must choose two distinct ranks—there are
(12

2
)

ways to do this. Given the choices for the ranks, there are 4 choices of suit each rank, so there
are

(12
2
)

× 4 × 4 ways to choose the remaining two cards. There are thus(
13 ×

(
4
3

))
×
((

12
2

)
× 4 × 4

)
= 54, 912

distinct three-of-a-kind hands, and the probability is

84, 912(52
5
) = 88

4165
≈ 0.0211 ≈ 1/48.

2.) Another way to reason about the problem is this. As before, there are 13 ranks to choose
from, and for each rank r1 there are

(4
3
)

= 4 ways to choose the three-of-a-kind. For each of
these 13×4 = 52 choices, there are 49 cards left, from which we must choose the remaining dyad
(two cards, not necessarily of the same rank). There are

(49
2
)

ways to do this. But not all of
(49

2
)

these lead to three-of-a-kind. If one of these two has the same rank r1 as our first triple, we end
up with four-of-a kind, which is a stronger hand. How many ways can this happen? Well there
is only one card of rank r1 left in our remaining 49 and there are 48 not of rank r1, so there are
48 ways to choose the remaining dyad to get four of a kind. Also, if the two remaining cards
have the same rank, then we get a full house. There are 12 remaining ranks and for each one
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there are
(4

2
)

ways to choose two cards of that rank, and thus end up with a full house. So the
number of three-of-a-kind hands is

52 ×
( (

49
2

)
︸ ︷︷ ︸

remaining dyads

− 1 × 48︸ ︷︷ ︸
fours-of-a-kind

− 12 ×
(

4
2

)
︸ ︷︷ ︸
full houses

)
= 54, 912,

which agrees with the answer above.

3.6.8 Deals in bridge

In Contract Bridge, all fifty-two cards are dealt out to four players, so each player has thirteen.
The first player can have any one of

(52
13
)

hands, so the second may have any of
(39

13
)

hands, the
third may have any of

(26
13
)

hands, and the last player is stuck with the
(13

13
)

= 1 hand left over.
Thus there are (

52
13

)(
39
13

)(
26
13

)(
13
13

)
≈ 5.36447 × 1028.

distinct deals in bridge.
After the deal there is a round of bidding, which results in one player becoming declarer. The

players are divided into teams of two, and arranged around a four-sided table with sides labeled
North, East, South, and West. The declarer sits at the South position, and their partner 2

sits at the North position. North’s cards are displayed for all the players to see, but the other
players are the only ones to see their own hands. South will makes all the plays for North, so
North is known as the dummy. This gives the declarer and advantage because the declarer sees
their cards plus the dummy’s cards, so the declare knows which cards their team holds, and by
elimination knows which 26 cards the opponents have, but not how they split up. By contrast,
West or East does not know the cards held by the other player on their team.

3.6.9 Splits in bridge

Suppose the declarer’s opponents have n Clubs between them. What is the probability that
they are split k–(n − k) between West and East? This is the probability that West (the player
on declarer’s left) has k of the n. East will have the remaining n − k.

There are
(26

13
)

= 10, 400, 600 possible hands for West. In order for West’s hand to have k

Clubs, they must have one of the
(

n
k

)
subsets of size k from the n Clubs. The remaining 13 − k

must be made up from the 26 − n non-Clubs. There are
(26−n

13−k

)
possibilities. Thus there are(

n

k

)(
26 − n

13 − k

)
hands in which West has k clubs, so the probability is(

n
k

)(26−n
13−k

)(26
13
)

that West has k clubs.
For the case n = 3 this is 11/100 for k = 0, 3, and 39/100 for k = 1, 2.

2 Some pedants will claim that the use of they or their as an ungendered singular pronoun is a grammatical
error. There is a convincing argument that those pedants are wrong. See, for instance, Huddleston and Pullum [7,
pp. 103–105]. Moreover there is a great need for an ungendered singular pronoun, so I will use they in that role.
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3.6.10 Aside: Some practical advice on gambling

Knowing the probabilities for card or dice games is useful, but probably not the most useful thing to
know about gambling. For instance, Nelson Algren’s three rules for life from his 1956 novel A Walk on
the Wild Side start with, “Never play cards with a man called Doc.” (wikipedia)

But seriously, you should know that it is never a good idea to carry large amounts of cash into a
back-alley room full of strangers. Even if they are not just going to rob you at kifepoint, they may try
to cheat you, so you have to be very skilled at detecting card manipulation. (I have a friend who, to
demonstrate, turned over the top card of a deck of cards and dealt several hands while leaving it in
place. Even though everyone knew he was not dealing from the top, no one could see anything amiss.)
Even if no one is manipulating the cards, the other players may have signals to share information and
coordinate bets. Even if the strangers don’t try to cheat you, if you win too much, they may assume
that you are cheating them, and unpleasantness may ensue. (This is true even in reputable Las Vegas
casinos.)

You are probably better off hustling pool, but that is not perfectly safe either. (E.g., see the 1961
film The Hustler directed by Robert Rossen, starring Paul Newman, Jackie Gleason, and Piper Laurie,
and nominated for nine Oscars.)

3.7 Bernoulli Trials

A Bernoulli trial is a random experiment with two possible outcomes, traditionally labeledPitman [10]:
p. 27 “success” and “failure.” The probability of success is traditionally denoted p. The probability

of failure (1 − p) is often denoted q. A Bernoulli random variable is simply the indicator of
success in a Bernoulli trial. That is,

X =

{
1 if the trial is a success
0 if the trial is a failure.

3.8 The Binomial Distribution

If there are n stochastically independent Bernoulli trials with the same probability p of success,
the number of successes is a Binomial random variable, and its distribution is called the
Binomial distribution with parameters n and p. This is like sampling with replacement from
an urn with a fraction p of Successes and 1 − p of Failures. To get exactly k successes, therePitman [10]:

§ 2.1 must be n − k failures, but the order (of the successes and failures) does not matter for the
count. There are (

n

k

)
= n!

k! (n − k)!

such outcomes, and by independence each has probability pk(1 − p)n−k. (Recall that 0! = 1.)
For coin tossing, p = (1 − p) = 1/2, but in general p need not be 1/2. The counts

(
n
k

)
are

weighted by their probabilities pk(1 − p)n−k. Thus

P (k successes in n independent Bernoulli trials) =
(

n

k

)
pk(1 − p)n−k.

Another way to write this is in terms of the binomial random variable X that counts success in
n trials:

P (X = k) =
(

n

k

)
pk(1 − p)n−k.

Note that the binomial random variable is simply the sum of the Bernoulli random variables
for each trial. Compare this to the analysis in Subsection 3.5.5, and note that it agrees because
1/2n = (1/2)k(1/2)n−k. Since p + (1 − p) = 1 and 1n = 1, the Binomial Theorem assures us
that the binomial distribution is a probability distribution.
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Figure 3.2. Binomial Probabilities

3.8.1 Example (The probability of n heads in 2n coin flips) For a fair coin the proba-
bility of n heads in 2n coin flips is (

2n

n

)(
1
2

)2n

.

We can see what happens to this for large n by using Stirling’s approximation:

3.8.2 Proposition (Stirling’s approximation) For all n ⩾ 1,

n! =
√

2π nn+(1/2)e−n eεn

where εn → 0 as n → ∞. Indeed, 1/(12n + 1) < εn < 1/12n.

Apostol [1, Theorem 15.19, pp. 616–618] provides a proof of all but the last sentence, proving
only that 0 < εn < 1/(8n). See Supplement 6 for a more detailed discussion of Stirling’s
approximation.

Thus we may write

(2n)!
n! n!

=
√

2π (2n)2n+(1/2) e−2neε2n

2π n2n+1 e−2n e2εn
= 22n

√
πn

eδn ,

where δn → 0 as n → ∞.

So the probability of n heads in 2n attempts is

22n

√
πn

2−2n eδn = 1√
πn

eδn −→ 0 as n → ∞.
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What about the probability of between n − k and n + k heads in 2n tosses? Well the
probability of getting j heads in 2n tosses is

(2n
j

)
(1/2)2n, and this is maximized at j = n (See,

e.g., Pitman [10, p. 86].) So we can use this as an upper bound. Thus for k ⩾ 1

P (between n − k and n + k heads) <
2k + 1√

πn
eδn

−→ 0

as n → ∞.
So any reasonable “law of averages” will have to let k grow with n. We will come to this in

a few more lectures. □

3.9 The Multinomial Distribution
Larsen–
Marx [9]:
Section 10.2,
pp. 494–499

The binomial distribution arises from sampling with replacement from an urn with only two
types of balls, Success and Failure. The multinomial distribution arises from sampling with
replacement from an urn with m types of balls. A summary of the outcome of a repeated random
experiment where each experiment has only two types of outcomes is sometimes represented by
a random variable X, which counts the number of “successes.” With more than two type of
outcomes, the similar summary would be a random vector X, where the ith component Xi of
X counts the number of occurrences of outcome type i. With m possible outcome types where
the ith type has probability pi, then in n independent trials, if k1 + · · · + km = n,Pitman [10]:

p. 155
P (ki outcomes of type i, i = 1, . . . , m) = n!

k1! · k2! · · · km!
pk1

1 · pk2
2 · · · pkm

m .

This is referred to as the Multinomial(n, p) distribution where p = (p1, . . . , pm). Note that
if m = 2, then this is just the binomial distribution. In terms of the random vector X =
(X1, . . . , Xm) we write

P (X = (k1, . . . , km)) = n!
k1! · k2! · · · km!

pk1
1 · pk2

2 · · · pkm
m .

Proof : If you find the above claim puzzling, this may help. Recall that in Subsection 3.5.5 we
looked at the number of sets of size k and showed that there was a one-to-one correspondence
between sets of size k and points in the sample space with exactly k heads. The same sort of
reasoning shows that there is a one-to-one correspondence between partitions of the set of trials,
{1, . . . , n}, into m sets E1, . . . , Em with # Ei = ki for each i and the set of points ω in the
sample space where there are ki outcomes of type i for each i = 1, . . . , m. Each such sample
point has probability pk1

1 pk2
1 · · · pkm

m . How many are there?
Well there are

(
n

n−k1

)
sets of trials of size k1. But now we have to chose a set of size k2 from

the remaining n − k1 trials, so there are
(

n−k1
k2

)
ways to do this for each of the

(
n

n−k1

)
choices

we made earlier. Now we have to choose a set of k3 trials from the remaining n − k1 − k2 trials,
etc. The total number of possible partitions of the set of trials is thus(

n

k1

)
×
(

n − k1

k2

)
×
(

n − k1 − k2

k3

)
× · · · ×

(
n − k1 − k2 − · · · − km−1

km

)
.

Expanding this gives

n!
k1!(n − k1)! × (n − k1)!

k2!(n − k1 − k2)! × (n − k1 − k2)!
k3!(n − k1 − k2 − k3)! × · · · × (n − k1 − k2 − · · · − km−1)!

km! (n − k1 − k2 − · · · − km−1 − km)!︸ ︷︷ ︸
=0!

.
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Now observe that the second term in each denominator cancels the numerator in the next
fraction, and (recalling that 0! = 1) we are left with

n!
k1! · k2! · · · km!

points in the sample space, each of which has probability pk1
1 · pk2

2 · · · pkm
m .

3.9.1 Example Suppose you roll 9 dice. What is the probability of getting 3 aces (ones) and
6 boxcars (sixes)?

9!
3! 0! 0! 0! 0! 6!

(
1
6

)9

= 84
10, 077, 696

≈ 8.3 × 10−6.

(Recall that 0! = 1.) □

3.10 More on sampling with and without replacement
Move this?

Suppose you have an urn holding N balls, of which B are black and the remaining W = N − B
are white. If the urn is sufficiently well churned, 3 the probability of drawing a black ball is
simply B/N . Now think of drawing a sample of size n ⩽ N from this underlying population,
and ask what the probability distribution of the composition of the sample is.

3.10.1 Sampling without replacement

Sampling without replacement means that a ball is drawn from the urn and set aside.
The next time a ball is drawn from the urn, the composition of the balls has changed, so the
probabilities have changed as well. Need a better way

to refer to this
material.For b ⩽ n, what is the probability that exactly b of the balls are black, and w = n − b? are

white?
Let’s dispose of some obvious cases. In order to have b black and w white balls, we must

have
b ⩽ min{B, n} and w ⩽ min{W, n}.

There are
(

B
b

)
sets of size b of black balls and

(
W
w

)
sets of size w of white balls. Thus there

are
(

B
b

)(
W
w

)
possible ways to get exactly b black balls and w white balls in a sample of size

n = w + b, out of
(

N
n

)
possible samples of size n. Thus

P (b black & w white) =
(

B
b

)(
W
w

)(
N
n

) =
(

B
b

)(
W
w

)(
B+W
b+w

) .

Note that if b > B or w > W , by convention
(

B
b

)
=
(

W
w

)
= 0 (there are no subsets of size b of a

set of size B < b), so this formula works even in this case.
These probabilities are known as the hypergeometric distribution.

Aside: According to Larsen and Marx Larsen–Marx [9, p. 111], a hypergeometric series is an infinite
sum of the form

1 + αβ

γ
x + α(α + 1) β(β + 1)

2!γ(γ + 1) x2 + · · · +
(n−1∏

j=0

(α + j)(β + j)
(1 + j)(γ + j)

)
xn + · · ·

that were first studied by Euler in 1769.
3 To churn an urn has a nice poetic ring. In fact, in James Taylor’s song Steamroller he refers to himself as

“a churning urn of burning funk.”
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A special case is where α = 1, and β = γ, in which case it reduces to the geometric series
1 + x + x2 + · · · . For its relation to the hypergeometric distribution, take a sample of size n from an
urn with W white balls and B black balls (N = B + W ). Set α = −n, β = −B, and γ = W − n + 1.
Then (multiplying each α and β term by −1)), the coefficient of xk in the hypergeometric series is

n(n − 1) · · · (n − k + 1) B(B − 1) · · · (B − k + 1)
k!(W − n + 1)(W − n + 2) · · · (W − n + k) =

n!
(n − k)!

B!
(B − k)!

k!
(
W − (n − k)

)
!

(W − n)!

= B!
k!(B − k)!

(W − n)!(
W − (n − k)

)
!

n!
(n − k)!

=
(

B

k

)(
W

n − k

)
n!(W − n)!

W !

=

(
B

k

)(
W

n − k

)
(

N

n

)
︸ ︷︷ ︸

·

(
N

n

)
(

W

n

) ,

where the underbraced term is the hypergeometric probability of getting k black balls in the sample.

3.10.2 Sampling without replacement with more than two types

Suppose an urn has three types of balls, Good, Bad, and Ugly. If the urn has N = B + G + U
balls, the probability of getting g good, b bad, and u ugly, is just

P (g good & b bad & u ugly) =
(

G
g

)(
B
b

)(
U
u

)(
G+B+U
g+b+u

) .

And you can generalize from here.

3.10.3 Sampling with replacement

Sampling with replacement means that after a ball is drawn from the urn, it is returned,
and the balls are mixed well enough so that each is equally likely. Thus repeated draws are
independent and the probabilities are the same for each draw.

What is the probability that sample consists of b black and w white balls? This is just the
binomial probability

P (b black & w white) =
(

n

b

)(
B

N

)b(
W

N

)w

.

3.10.4 Comparing the two sampling methods

Intuition here can be confusing, since without replacement every black ball drawn reduces the
pool of black balls making it less likely to get another black ball relative sampling with replace-
ment, but every white ball drawn makes more likely to get a black ball. On balance you might
think that sampling without replacement favors a sample more like the underlying population.

To compare the probabilities of sampling without replacement to those with replacement,
we can rewrite the hypergeometric probabilities to make them look more like the binomial
probabilities as follows.

P (exactly b balls out of n are black) =
(

B
b

)(
W
w

)(
N
n

) =
B!

b!(B−b)!
W !

w!(W −w)!
N !

n!(N−n)!
=

B!
(B−b)!

W !
(W −w)!

N !
(N−n)!

n!
b!w!

,
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or in terms of the “order notation” (Subsection 3.4.2) we have

P (b black & w white) =
(

n

b

)
(B)b (W )w

(Nn)

=
(

n

b

) b terms︷ ︸︸ ︷
B(B − 1) · · · (B − b + 1) ·

w terms︷ ︸︸ ︷
W (W − 1) · · · (W − w + 1)

N(N − 1) · · · (N − n + 1)︸ ︷︷ ︸
n terms

for sampling without replacement versus

P (b black & w white) =
(

n

b

)(
B

N

)b(
W

N

)w

=
(

n

b

) b terms︷ ︸︸ ︷
B × · · · × B ×

w terms︷ ︸︸ ︷
W × · · · W

N × · · · × N︸ ︷︷ ︸
n = b + w terms

.

for sampling with replacement.
The ratio of the probability without replacement to the probability with replacement can be

written as

B

B
· B − 1

B
· · · B − b + 1

B
· W

W
· W − 1

W
· · · W − w + 1

W
· N

N
· N

N − 1
· · · N

N − n + 1
.

If b = 0, the terms involving B do not appear, and similarly for w = 0. Whether this ratio is
greater or less than one is not obvious. But if we increase N keeping B/N (and hence W/N)
constant, then holding the sample size n fixed, each term in this ratio converges to 1 for each b.
Therefore the ratio converges to one.

That is, the difference between sampling with and without replacement holding the sample
size constant becomes insignificant as N gets large, holding B/N and W/N fixed.

But how big is big enough? The only time sampling with replacement makes a difference is
when the same ball is chosen more than once. The probability that all n balls are distinct is
N
N · N−1

N · · · · · N−n+1
N , so the complementary probability (of a duplicate) is 1−

∏n
k=0
(
1− (1/N)

)
.

Now us the Taylor series approximation that ln(1 − x) ≈ −x, to get that log P (duplicate) ≈
−
∑n

k=0 k/N = −n(n + 1)/2N . (The probability is less than one, so its logarithm is negative.)
So as Pitman [10, p. 125] asserts, if n ≪

√
N , this probability is very small. With modern

software, you can see for yourself how the two sampling methods compare. See Table 3.1 for a
modest example of results calculated by Mathematica 12.

Aside: David Freedman [6] notes the following inequality regarding the difference between the two
methods. Consider an urn with n distinct balls, and let N = {1, . . . , n}. A sample of size k can be
thought of as an element of Nk. The probability measure P on Nk induced by sampling with replacement
is given by P (i1, . . . , ik) = 1/nk. There are (n)k = n!/(n − k)! distinct samples of size k when sampling
without replacement, so the probability measure Q on Nk satisfies Q(i1, . . . , ik) = 1/(n)k if i1, . . . , ik

are all distinct, and = 0 otherwise.
The total variation norm ∥P − Q∥ is defined to be sup{|P (E) − Q(E)| : E ⊂ Nk} and it is

achieved for the event G = {(i1, . . . , ik) ∈ Nk : all ij are distinct} and

∥P − Q∥ = Q(G) − P (G) = 1 − P (G) = 1 − (n)k/nk.

He derives as a corollary, the following inequality:

1 − e− 1
2

k(k−1)
n < ∥P − Q∥ <

1
2

k(k − 1)
n

.
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Without With
b Replacement Replacement Ratio
0 0.33048 0.34868 0.94780
1 0.40800 0.38742 1.0531
2 0.20151 0.19371 1.0403
3 0.051794 0.057396 0.90240
4 0.0075532 0.011160 0.67680
5 0.00063980 0.0014880 0.42997
6 0.000030998 0.00013778 0.22498
7 8.1440 × 10−7 8.7480 × 10−6 0.093096
8 1.0411 × 10−8 3.6450 × 10−7 0.028564
9 5.1992 × 10−11 9.0000 × 10−9 0.0057769
10 5.7769 × 10−14 1.0000 × 10−10 0.00057769

Probability of b black balls in a sample of size n = 10 for a population of size N = 100,
B = 10, W = 90.

Without With
b Replacement Replacement Ratio
0 0.34850 0.34868 0.99950
1 0.38761 0.38742 1.0005
2 0.19379 0.19371 1.0004
3 0.057348 0.057396 0.99917
4 0.011125 0.011160 0.99683
5 0.0014782 0.0014880 0.99340
6 0.00013625 0.00013778 0.98887
7 8.6016 × 10−6 8.7480 × 10−6 0.98326
8 3.5597 × 10−7 3.6450 × 10−7 0.97660
9 8.7200 × 10−9 9.0000 × 10−9 0.96889
10 9.6017 × 10−11 1.0000 × 10−10 0.96017

Probability of b black balls in a sample of size n = 10 for a population of size N = 10, 000,
B = 1000, W = 9000.

Table 3.1. Sampling without replacement vs. sampling with replacement.

Freedman then uses this to illustrate the difference between a sample of size k = 1000 versus a smale
of size k = 5000 for an un urn with n = 100, 000, 000 balls. (Think a poll of U.S. voters.) But we don’t
need the inequality if we have Mathematica. After about 73 seconds for each calculation we find that
for k = 1000 that ∥P − Q∥ ≈ 0.00498, but for k = 5000, ∥P − Q∥ ≈ 0.117. To three decimal places,
these are Freedman’s lower bounds. The point is, that for the worst case event, sampling 5000 balls
with or without replacement can lead to a significant difference in the probabilities of particular events.
But as Freeman pointed out, the worst case is not usually what we care about.

So where does the inequality come from? Note that

(n)k

nk
= n(n − 1)(n − 2) · · · (n − k + 1)

nk
=

k−1∏
j=0

n − j

n
=

k−1∏
j=1

(
1 − j

n

)
.
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Now use the inequality that 4

1 −
∑k

j=1 xj <
∏k

j=1(1 − xj) < e
−
∑k

j=1
xj

and applied to the case xj = j/n, so that
∑k−1

j=1 j/n = 1
2

k(k−1)
n

. (The first inequality is strict only if
the sample size k > 1.)

3.11 Symmetry

When all the points in the sample space are equally likely (the uniform probability case) the
probability of an event depends only on its cardinality, that is, the number of points of the
sample space that it contains. This is the whole basis for the counting approach to calculating
probabilities. Sometimes though it is perhaps not obvious that two events have the same number
of points, and hence the same probabilities.

One way to show that two events E and F have the same number of points is to find a
one-to-one function from the sample space Ω onto itself that maps E onto F . (Such a function
is known as a permutation of Ω, or a bijection of Ω onto itself, or sometimes a symmetry
of Ω.)

3.11.1 Symmetry Lemma Let P be the uniform (counting) probability on the finite set
Ω, and let φ : Ω → Ω be a one-to-one function from Ω onto itself. If

φ(E) = {φ(ω) : ω ∈ Ω} = F,

then # E = # F , so
P (E) = P (F ).

This nothing deep, but it has some useful consequences.

• Let
U = {1, . . . , m}.

Think of U as an urn with m distinct balls. We assume that each ball is equally likely to be
drawn so that P (k) = 1/m for each k ∈ U . If we draw n balls independently from U with
replacement, the sample space

Ω = Um.

4 The first inequality is proven by induction on k, and is strict only if k > 1. Note that for 0 < xj < 1,
j = 1, . . . , k, we have

(1 − x1)(1 − x2) = 1 − x1 − x2 + x1x2 > 1 − (x1 + x2).
Now assume

(1 − x1) · · · (1 − xk−1) > 1 − (x1 + · · · + xk−1).
Multiplying both sides by 1 − xk > 0 we get

(1 − x1) · · · (1 − xk) >
(

1 − (x1 + · · · + xk−1)
)

(1 − xk)

= 1 − (x1 + · · · + xk) + xk(x1 + · · · + xk−1)
> 1 − (x1 + · · · + xk).

To get the second inequality above, the subgradient inequality days that for any strictly convex function f
we have

f(x) > f(x0) + f ′(x0)(x − x0), for x ̸= x0,

evaluated at x0 = 0 and x = −xj to get

e−xj > 1 − xj =⇒ e
−
∑

j
xj

>
∏

j
(1 − xj), (0 < xj < 1, j = 1, . . . , k).
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A typical element of Ω will be denoted ω = (u1, . . . , un), and by independence each has proba-
bility 1/mn.
Pick some subset A ⊂ U , and fix i and j and consider the two events,

Ei = {ω = (u1, . . . , un) ∈ Um : ui ∈ A} and Ej = {ω = (u1, . . . , un) ∈ Um : uj ∈ A}.

These are the events that ith and the jth balls drawn belong to A.
Consider now the permutation of Ω = Un that switches the ith and the jth terms in the sequence:

φ(u1, . . . , ui−1, ui, ui+1, . . . , uj−1, uj , uj+1, . . . , un)
= (u1, . . . , ui−1, uj , ui+1, . . . , uj−1, ui, uj+1, . . . , un),

assuming i < j, which entails no loss of generality.
Then

φ(Ei) = Ej , so P (Ei) = P (Ej).

In fact, since we are making independent draws with replacement, P (Ei) = P (Ej) is just the
probability of drawing an element of A out of the urn, namely # A/m.

• The point just made is fairly obvious, but now consider what happens if we draw n ⩽ m
balls without replacement. Now the sample space Ω is the set of lists of length n of elements
of U , which has cardinality m!/n!.
Now with events Ei and Ej as above and the mapping φ as above, we still have

φ(Ei) = Ej , so P (Ei) = P (Ej).

In fact, by considering E1, we see that its probability is just the same as drawing an element of
A out of the urn, namely # A/m.

• 3.11.2 Proposition So the probability that the ith ball drawn belongs to A is
the same as the probability that the first ball belongs to A, namely # A/m, regardless of
whether we are sampling with or without replacement!

• So for instance, in dealing cards from a deck (which is just like sampling without replace-
ment) the probability that the first card is an Ace is 1/13 = 4/52, which is the same as the
probability that the second card is an Ace, which is the same as the probability that the fifty-
second card is an Ace.

• Which answers a question my physical therapist asked. He and his cousin play a card game
where one player turns over cards until a red ace appears. Then the second player turns over
cards until the second red ace appears. The winner is the player who turns over the fewest cards.
A recent game did not end until the last card. He was disappointed to find out that this was
not as rare as he had thought. It is just the probability that the last card is a red ace (1/26).

• Now letting Ei be the event that the ith card is an Ace, doesn’t the above imply that the
probability that the first card is an Ace and the second card is an Ace and etc. and the fifty-
second card is an Ace must be equal to (1/13)52? NO! These events are clearly not independent
events. The probability that every card is an Ace is zero, at least for a standard deck of cards.

• The last point suggests the following ugly calculations.
The number of sequences of deck of cards that put an Ace on top is 4 × 51!, as there are four
aces and once one is on top the remaining 51 can be in any order.
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To get an Ace in the second position, you can have either an Ace on top or a non-Ace on top.
There are 4 × 3 × 50! to have an Ace on top and in second place. There are 48 × 4 × 50! ways
to put one of 48 non-Aces on top, and an Ace second, and the remaining 50 cards can be in any
order. Adding these two (the events are disjoint) gives a total of 4 × (48 + 3) × 50! = 4 × 51!,
same as an Ace on top.
You could continue on to calculate the probability that the third cards is an Ace, etc., but the
calculations just get uglier. The symmetry argument is much simpler.

3.12 Matching

There are n consecutively numbered balls and n consecutively numbered bins. The balls are
arranged in the bins (one ball per bin) at random (all arrangements are equally likely). What
is the probability that at least one ball matches its bin? (See Exercise 28 on page 135 of
Pitman [10].)

Intuition is not a lot of help here for understanding what happens for large n. When n is
large, there is only a small chance that any given ball matches, but there are a lot of them, so
one could imagine that the probability could converge to zero, or to one, or perhaps something
in between.

Let Ai denote the event that Ball i is placed in Bin i. We want to compute the probability
of

n
∪

i=1
Ai. This looks like it might be a job for the Inclusion–Exclusion Principle, since these

events are not disjoint. Recall that it asserts that

P

(
n⋃

i=1
Ai

)
=

∑
i

p(Ai)

−
∑
i<j

P (AiAj)

+
∑

i<j<k

P (AiAjAk)

...

+ (−1)k
∑

i1<i2<···<ik

P (Ai1Ai2 · · · Aik
)

...
+ (−1)n+1P (A1A2 · · · An).

Consider the intersection Ai1Ai2 · · · Aik
, where i1 < i2 < · · · < ik. In order for this event to

occur, ball ij must be in bin ij for j = 1, . . . , k. This leaves n − k balls unrestricted, so there
are (n − k)! arrangements in this event. And there are n! total arrangements. Thus

P (Ai1Ai2 · · · Aik
) = (n − k)!

n!
.

Note that this probability depends only on k (and n), not on the particular set {i1, . . . , ik}. Now
there are

(
n
k

)
size-k sets of balls. Thus the k-term in the formula above is∑

i1<i2<···<ik

P (Ai1Ai2 · · · Aik
) =

(
n

k

)
(n − k)!

n!
.

Therefore the Inclusion–Exclusion Principle reduces to

P
(

n
∪

i=1
Ai

)
=

n∑
k=1

(−1)k+1
(

n

k

)
(n − k)!

n!
=

n∑
k=1

(−1)k+1 1
k!

.
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Here are the values for n = 1, . . . , 10:

n: Prob(match)

1: 1

2: 1
2 = 0.5

3: 2
3 ≈ 0.666667

4: 5
8 = 0.625

5: 19
30 ≈ 0.633333

6: 91
144 ≈ 0.631944

7: 177
280 ≈ 0.632143

8: 3641
5760 ≈ 0.632118

9: 28673
45360 ≈ 0.632121

10: 28319
44800 ≈ 0.632121

Notice that the results converge fairly rapidly, but to what? The answer is
∑∞

k=1(−1)k+1/k!,
which you may recognize as 1 − e−1. (See Supplement 1.)

3.13 Waiting: The Negative Binomial Distribution
Pitman [10]:
p. 213
Larsen–
Marx [9]:
§ 4.5

The Negative Binomial Distribution is the probability distribution of the number of inde-
pendent trials need for a given number of heads. What is the probability that the rth success
occurs on trial t, for t ⩾ r?

For this to happen, there must be t − r failures and r − 1 successes in the first t − 1 trials,
with a success on trial t. By independence, this happens with the binomial probability for r − 1
successes on t − 1 trials times the probability p of success on trial t:

NB(t; r, p) =
(

t − 1
r − 1

)
pr−1(1 − p)(t−1)−(r−1) × p =

(
t − 1
r − 1

)
pr(1 − p)t−r (t ⩾ r).

Of course, the probability is 0 for t < r. The special case r = 1 (number of trials to the first
success) is called the Geometric Distribution:

NB(t; 1, p) =
(

t − 1
0

)
p0(1 − p)t−1 × p = p(1 − p)t−1 (t ⩾ 1).

Warning: The definition of the negative binomial distribution here is the same as the one
in Pitman [10, p. 213] and Larsen–Marx [9, p. 262]. Both Mathematica and R use a different
definition. They define it to be the distribution of the number of failures that occurs before the
rth success. That is, Mathematica’s PDF[NegativeBinomialDistribution[r, p], t] is our
NB(t + r; r, p). Mathematica and R’s definition assigns positive probability to 0, ours does
not.
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