Lecture 3
 Gaussian Probability Distribution

Introduction

- Gaussian probability distribution is perhaps the most used distribution in all of science.
\square also called "bell shaped curve" or normal distribution
- Unlike the binomial and Poisson distribution, the Gaussian is a continuous distribution:

$$
P(y)=\frac{1}{\square \sqrt{2 \square}} e^{\square \frac{(y \square \square)^{2}}{2 \square^{2}}}
$$

$\square=$ mean of distribution (also at the same place as mode and median)
$\square^{2}=$ variance of distribution
y is a continuous variable $(-\infty \square y \square \infty)$
\square Probability (P) of y being in the range $[a, b]$ is given by an integral:

$$
P(a<y<b)=\frac{1}{\square \sqrt{2 \square}}{ }_{a}^{b} e^{\square \frac{(y \square \square)^{2}}{2 \square^{2}}} d y
$$

- The integral for arbitrary a and b cannot be evaluated analytically

Karl Friedrich Gauss 1777-1855

- The value of the integral has to be looked up in a table (e.g. Appendixes A and B of Taylor).

K.K. Gan L3: Gaussian Probability Distribution
\square The total area under the curve is normalized to one.
\square the probability integral:

$$
P(\square<y<)=\frac{1}{\square \sqrt{2 \square}} \square e^{\frac{(y \square \square)^{2}}{2 \square^{2}}} d y=1
$$

- We often talk about a measurement being a certain number of standard deviations (\square) away from the mean (\square) of the Gaussian.
\square We can associate a probability for a measurement to be $I \square-n \square$ from the mean just by calculating the area outside of this region.

$n \square$	Prob. of exceeding $\pm n \square$	
0.67	0.5	It is very unlikely (< 0.3% that a.
1	0.32	measurement taken at random from a.
2	0.05	Gaussian $p d f$ will be more than $\pm 3 \square$
3	0.003	from the true mean of the distribution.

Relationship between Gaussian and Binomial distribution

\square The Gaussian distribution can be derived from the binomial (or Poisson) assuming:

- p is finite
- N is very large
\square we have a continuous variable rather than a discrete variable
\square An example illustrating the small difference between the two distributions under the above conditions:
\square Consider tossing a coin 10,000 time.
$p($ heads $)=0.5$
$N=10,000$
\square For a binomial distribution:

$$
\text { mean number of heads }=\square=N p=5000
$$

$$
\text { standard deviation } \square=[N p(1-p)]^{1 / 2}=50
$$

- The probability to be within $\pm 1 \square$ for this binomial distribution is:

$$
P=\square_{m=5000 \square 50}^{5000+50} \frac{10^{4}!}{\left(10^{4} \square m\right)!m!} 0.5^{m} 0.5^{10^{4} \square m}=0.69
$$

- For a Gaussian distribution:

$$
P(\square \square \square<y<\square+\square)=\frac{1}{\square \sqrt{2 \square}} \square_{\square \square}^{\square+\square} e^{\square \frac{(y \square \square)^{2}}{2 \square^{2}}} d y \square 0.68
$$

\square Both distributions give about the same probability!

Central Limit Theorem

\square Gaussian distribution is important because of the Central Limit Theorem
\square A crude statement of the Central Limit Theorem:
\square Things that are the result of the addition of lots of small effects tend to become Gaussian.

- A more exact statement:
- Let $Y_{1}, Y_{2}, \ldots Y_{\mathrm{n}}$ be an infinite sequence of independent random variables each with the same probability distribution.

Actually, the Y 's can be from different $p d f$'s!

- Suppose that the mean (\square) and variance $\left(\nabla^{2}\right)$ of this distribution are both finite.
\square For any numbers a and b :

$$
\lim _{n \square} P_{\square}^{\square}<\frac{Y_{1}+Y_{2}+\ldots Y_{n} \square n \square}{\square \sqrt{n}}<b \underset{\square}{\square}=\frac{1}{\sqrt{2 \square}} \square_{a}^{b} e^{\square \frac{1}{2} y^{2}} d y
$$

\square C.L.T. tells us that under a wide range of circumstances the probability distribution that describes the sum of random variables tends towards a Gaussian distribution as the number of terms in the sum $\square \infty$.
K.K. Gan

L3: Gaussian Probability Distribution

- Alternatively:
$\lim _{n \square} P_{\square}^{\square}<\frac{\bar{Y} \square \square}{\square / \sqrt{n}}<b_{\square}^{\square}=\lim _{n \square} P \square_{\square}^{a}<\frac{\bar{Y} \square \square}{\square_{m}}<b \square=\frac{1}{\sqrt{2 \square}} \square_{a}^{b} e^{\square \frac{1}{2} y^{2}} d y$
$\square \square_{m}$ is sometimes called "the error in the mean" (more on that later).
- For CLT to be valid:
$\square \quad \square$ and \square of $p d f$ must be finite.
\square No one term in sum should dominate the sum.
- A random variable is not the same as a random number.
- Devore: Probability and Statistics for Engineering and the Sciences:
\square A random variable is any rule that associates a number with each outcome in S $\square \quad S$ is the set of possible outcomes.
- Recall if y is described by a Gaussian $p d f$ with $\square=0$ and $\square=1$ then the probability that $a<y<b$ is given by:

$$
P(a<y<b)=\frac{1}{\sqrt{2 \square}}{ }_{a}^{b} e^{\square \frac{1}{2} y^{2}} d y
$$

- The CLT is true even if the Y 's are from different $p d f$'s as long as the means and variances are defined for each $p d f$!
- See Appendix of Barlow for a proof of the Central Limit Theorem.
- Example: A watch makes an error of at most $\pm 1 / 2$ minute per day.

After one year, what's the probability that the watch is accurate to within ± 25 minutes?

- Assume that the daily errors are uniform in [-1/2, 1/2].
\square For each day, the average error is zero and the standard deviation $1 / \sqrt{ } 12$ minutes.
\square The error over the course of a year is just the addition of the daily error.
\square Since the daily errors come from a uniform distribution with a well defined mean and variance
\square Central Limit Theorem is applicable:

$$
\lim _{n \square} P_{\square}^{\square}<\frac{Y_{1}+Y_{2}+\ldots Y_{n} \square n \square}{\square \sqrt{n}}<b_{\square}^{\square}=\frac{1}{\sqrt{2 \square}}{ }_{a}^{b} e^{\square \frac{1}{2} y^{2}} d y
$$

- The upper limit corresponds to +25 minutes:

$$
b=\frac{Y_{1}+Y_{2}+\ldots Y_{n} \square n \square}{\square \sqrt{n}}=\frac{25 \square 365 \square 0}{\sqrt{\frac{1}{12}} \sqrt{365}}=4.5
$$

- The lower limit corresponds to -25 minutes:

$$
a=\frac{Y_{1}+Y_{2}+\ldots Y_{n} \square n \square}{\square \sqrt{n}}=\frac{\square 25 \square 365 \square 0}{\sqrt{\frac{1}{12}} \sqrt{365}}=\square 4.5
$$

- The probability to be within ± 25 minutes:

$$
P=\frac{1}{\sqrt{2 \square}} \square_{\square 4.5}^{4.5} e^{\square \frac{1}{2} y^{2}} d y=0.999997=1 \square 3 \square 10^{\square 6}
$$

less than three in a million chance that the watch will be off by more than 25 minutes in a year!

- Example: Generate a Gaussian distribution using random numbers.
- Random number generator gives numbers distributed uniformly in the interval [0,1]

$$
\square=1 / 2 \text { and } \square^{2}=1 / 12
$$

\square Procedure:

- Take 12 numbers $\left(r_{\mathrm{i}}\right)$ from your computer's random number generator
- Add them together
- Subtract 6
- Get a number that looks as if it is from a Gaussian $p d f$!

$$
\begin{aligned}
& P_{\square}^{\square}<\frac{Y+Y_{2}+\ldots Y_{n} \square n \square}{\square \sqrt{n}}<b_{E}^{[} \\
& =\stackrel{\square_{\square}^{\square}<\frac{\square_{i=1}^{12} r_{i} \square 12 \cdot \frac{1}{2}}{\sqrt{\frac{1}{12}} \cdot \sqrt{12}}<b \xrightarrow[\square]{\square}}{\stackrel{\square}{\square}} \\
& =P \text { 而 } 6<\prod_{i=1}^{12} r_{i} \square 6<6 \square \\
& =\frac{1}{\sqrt{2 \square}} \square_{\square 6}^{6} e^{\square \frac{1}{2} y^{2}} d y
\end{aligned}
$$

Thus the sum of 12 uniform random numbers minus 6 is distributed as if it came from a Gaussian $p d f$ with $\square=0$ and $\square=1$.

■ Example: The daily income of a "card shark" has a uniform distribution in the interval [-\$40,\$50].
What is the probability that $\mathrm{s} /$ he wins more than $\$ 500$ in 60 days?
\square Lets use the CLT to estimate this probability:

$$
\lim _{n \square} P_{\square}^{\square}<\frac{Y_{1}+Y_{2}+\ldots Y_{n} \square n \square}{\square \sqrt{n}}<b \square=\frac{1}{\sqrt{2 \square}}{ }_{a}^{b} e^{\square \frac{1}{2} y^{2}} d y
$$

- The probability distribution of daily income is uniform, $p(y)=1$.
\square need to be normalized in computing the average daily winning ($\square \square$) and its standard deviation (\square).

$$
\begin{aligned}
& \square^{2}=\underset{\substack{\square 40 \\
\square y^{2} p(y) d y \\
\square 40}}{\stackrel{50}{50}(y) d y} \square \nabla^{2}=\frac{\frac{1}{3}\left[50^{3} \square(\square 40)^{3}\right]}{50 \square(\square 40)} \square 25=675
\end{aligned}
$$

- The lower limit of the winning is $\$ 500$:

$$
a=\frac{Y_{1}+Y_{2}+\ldots Y_{n} \square n \square}{\square \sqrt{n}}=\frac{500 \square 60 \square 5}{\sqrt{675} \sqrt{60}}=\frac{200}{201}=1
$$

- The upper limit is the maximum that the shark could win ($50 \$ /$ day for 60 days):

$$
\begin{aligned}
& b=\frac{Y_{1}+Y_{2}+\ldots Y_{n} \square n \square}{\square \sqrt{n}}=\frac{3000 \square 60 \square 5}{\sqrt{675} \sqrt{60}}=\frac{2700}{201}=13.4 \\
& P=\frac{1}{\sqrt{2 \square}} \square_{1}^{13.4} e^{\square \frac{1}{2} y^{2}} d y \square \frac{1}{\sqrt{2 \square}} \square e^{\square \frac{1}{2} y^{2}} d y=0.16
\end{aligned}
$$

- 16% chance to win $>\$ 500$ in 60 days
K.K. Gan L3: Gaussian Probability Distribution

