
1Database Tuning, Spring 2007

Lecture 3:
Hash indexing,
index selection

Rasmus Pagh

2Database Tuning, Spring 2007

Today’s lecture

• Morning session: Hashing
– Static hashing, hash functions
– Extendible hashing
– Linear hashing
– Newer techniques:

Buffering, two-choice hashing
• Afternoon session: Index selection

– Factors relevant for choice of indexes
– Rules of thumb; examples and counterexamples
– Exercises

3Database Tuning, Spring 2007

What data in index?

• At least three possibilities:
1) Record of key.
2) Key and pointer to record of key.
3) Key and list of pointers to the records

containing the key (for non-unique keys).

• For simplicity, we consider the case
where there is the same number of
keys (B) in every disk block.
– Case 1 with fixed length records.
– Case 2 with fixed length keys.

4Database Tuning, Spring 2007

Static external hashing

• Hash table:
– Array of N disk blocks. (Notation from RG.)
– Can access block i in 1 I/O, for any i.

• Hash function h:
– Maps keys to {0,...,N-1}.
– Should be efficient to evaluate (0 I/Os).
– Idea: x is stored in block h(x).

• Problem:
– Dealing with overflows.
– Standard solution: Overflow chains.

5Database Tuning, Spring 2007

Problem session

• Consider the following claim from RG:

• Donald Ummy uses this hash function
in an application, and finds out that it
performs terribly, no matter how the
constants a and b are chosen.

• What might have gone wrong?

6Database Tuning, Spring 2007

Randomized hash functions

Another approach (not mentioned in RG):
• Choose h at random from some set of

functions.
• This can make the hashing scheme

behave well regardless of the key set.
• E.g., "universal hashing" makes

chained hashing perform well (in theory
and practice).

• Details out of scope for this course...

7Database Tuning, Spring 2007

Analysis, static hashing

• Notation:
– N keys inserted,
– Each block in the hash table can hold B keys.

• Suppose that we insert αN keys in the hash
table (”it is a fraction α full”, “load factor α”).

• Assume h is truly random.
• Expected number of overflow blocks:

(1-α)-2 ⋅ 2-Ω(B) N (proof omitted!)

• Good to have many keys in each bucket (an
advantage of secondary indexes).

8Database Tuning, Spring 2007

Sometimes, life is easy

• If B is sufficiently large compared to N,
all overflow blocks can be kept in
internal memory.

• Lookup in 1 I/O.
• Update in 2 I/Os.

9Database Tuning, Spring 2007

Too many overflow chains?

Can have too many overflow chains if:
• The hash function does not distribute

the set of keys well (”skew”).
– Solution 1: Choose a new hash function.
– Solution 2?: Overflow in main memory.

• The number of keys in the dictionary
exceeds the capacity of the hash table.
– Solution: Rehash to a larger hash table.
– Better solution: ?

10Database Tuning, Spring 2007

Doubling the hash table

• For simplicity, assume N is a power of
2. Suppose h is a hash function that
has values of ”many” (e.g. 64) bits.

• We can map a key x to {0,...,N-1} by
taking the log N least significant bits of
h(x).

• Suppose that the hash table has
become too small:
– Want to double the size of the hash table.
– Just consider one more bit of h(x).

11Database Tuning, Spring 2007

Doubling the hash table, cont.

• Suppose h(x)=0111001 (in binary)
and the hash table has size 16.

• Then x is stored in block number 1001
(binary).

• After doubling to size 32, x should be
stored in block 11001.

• Generally, all keys in block 1001 should
be moved to block 01001 or 11001.

• Conclusion: Can rehash by scanning
the table and split each block into two
blocks.

12Database Tuning, Spring 2007

Doubling, example

10111

00110
11110

00101

10100
00100

01011

11000

01011
10111

00110
11110

00101

10100
11000

New key:
00100

For simplicity we assume:
• No overflow chains
• h(x)=x

13Database Tuning, Spring 2007

Problem session

• Find some possible disadvantages of
the doubling strategy. Consider:
– Space usage vs overflows
– System response time

• Next: Alternatives that address some
of the disadvantages of doubling.

14Database Tuning, Spring 2007

Linear hashing

10111

00110
11110

00101

10100
00100

01011

11000

01011
10111

00110
11110

00101

10100
11000

10111

00110
11110

00101

10100
00100

01011
10111

00110
11110

11000

”Virtual” blocks
• Merged with previous blocks

by considering one bit less
• Turned into physical blocks

as the hash table grows

15Database Tuning, Spring 2007

Linear hashing - performance

The good:
• Resizes hash table one block at a time:

Split a block or merge two blocks.
• Cost of resize: 3 I/Os. Cheap!

The bad:
• Increasing size of hash table may not

eliminate any overflow chain.
• Uneven distribution of hash values; works

best for relatively low load factors, 50-80%.
(But variants of linear hashing improve this.)

• No worst-case guarantee on query time.

16Database Tuning, Spring 2007

Extendible hashing

10111

00110
11110

00101

10100
00100

01011

11000

”Virtual”
hash table

- no
overflows

01011
10111

00110
11110

00101

10100
00100

11000

physical
hash table

”Directory”
- mapping virtual

to physical

17Database Tuning, Spring 2007

Extendible hashing invariants

• Virtual hash table has no overflows - may
need to increase in size.

• Physical hash table has no overflows.
• Virtual hash table is as small as possible -

may need to shrink.
• ”Compression”: For any bit string s, if we

consider the virtual hash table blocks whose
index ends with s then either:
– These blocks contain more than B keys, or
– The corresponding entries in the directory all point

to the same block. (In other words, these blocks are
merged.)

18Database Tuning, Spring 2007

Extendible hashing performance

• At most 2 I/Os for every lookup.
• Only 1 I/O if directory fits in internal

memory.
• Space utilization in physical hash table

is 69% (expected).
• Size of directory is roughly

(expected) - this is much smaller than
the hash table if B is moderately large.

19Database Tuning, Spring 2007

Buffering

• Same trick as in buffered B-trees:
Don’t do updates right away, but put
them in a buffer.

1000
0101
1100

0110
1110
1111

0100 overflow
block

0111
1010

buffer

• Advantage: Several keys moved to the
overflow block at once.

• Disadvantage: Buffer takes space.

20Database Tuning, Spring 2007

Two-choice hashing

• Idea:
– Use two hash functions, h1 and h2.
– x is stored in either block h1(x) or h2(x),

use two I/Os for lookup.
– When inserting x, choose the least loaded

block among h1 and h2.

• Can be shown that overflow
probabilities are much smaller than
with one function, especially when B is
small.

• If two disks are available, the 2 I/Os
can be done in parallel.

21Database Tuning, Spring 2007

Today’s lecture, part 2

• Index selection
– Factors relevant for choice of indexes
– Rules of thumb; examples and counterexamples

• Exercises

22Database Tuning, Spring 2007

Workload

• The workload (mix of operations to be
carried out by the DBMS) has a large
influence on what indexes should be
created in a database.

• Other factors are:
– the data in relations, and
– the query plans produced by the DBMS.

23Database Tuning, Spring 2007

Rules of thumb

• Rules of thumb can be used to guide
thinking, and as a checklist.

• Are often valid in most cases, but there
are always important exceptions.

• Quote from SB:

• You don’t yet have the entire picture
(query optimization, concurrency), but
we can start reasoning about rules
anyway.

24Database Tuning, Spring 2007

Rule of thumb 1:
Index the most selective attribute

• Argument: Using an index on a
selective attribute will help reducing
the amount of data to consider.

• Example:
SELECT count(*) FROM R
WHERE a>’UXS’ AND b BETWEEN 100 AND 200

• Counterexamples:
– Full table scan may be faster than an index
– It may not be possible/best to apply an

index.

25Database Tuning, Spring 2007

Rule of thumb 2:
Cluster the most important index of a relation

• Argument:
– Range and multipoint queries are faster.
– Usually sparse, uses less space.

• Counterexamples:
– May be slower on queries ”covered” by a

dense index.
– If there are many updates, the cost of

maintaining the clustering may be high.
– Clustering does not help for point queries.
– Can cluster according to several attributes

by duplicating the relation!

26Database Tuning, Spring 2007

Rule of thumb 3:
Prefer a hash index over a B-tree if point

queries are more important than range queries

• Argument:
– Hash index uses fewer I/Os per operation

than a B-tree.
– Joins, especially, can create many point

queries.

• Counterexamples:
– If a real-time guarantee is needed, hashing

can be a bad choice.
– Might be best to have both a B-tree and a

hash index.

27Database Tuning, Spring 2007

Hashing and range queries

RG page 371:

• But: they can be used to answer range
queries in O(1+Z/B) I/Os, where Z is the
number of results. (Alstrup, Brodal, Rauhe, 2001;
Mortensen, Pagh, Patrascu 2005)

• Theoretical result on external memory
(why?) - and out of scope for DBT.

28Database Tuning, Spring 2007

Problem session

• Comparison of B-trees and extendible
hashing.
– Case 1: Directory fits internal memory.
– Case 2: Directory on external memory.
– Case A: B=4, N=220.
– Case B: B=28, N=220.

• Consider cases 1A, 1B, 2A, 2B.

29Database Tuning, Spring 2007

Rule of thumb 4:
Balance the increased cost of updating with

the decreased cost of searching

• Argument: The savings provided by an
index should be bigger than the cost.

• Counterexample:
– If updates come when the system has

excess capacity, we might be willing to
work harder to have indexes at the peaks.

• If buffered B-trees are used, the cost
per update of maintaining an index
may be rather low. Especially if binary
(!) trees are used.

30Database Tuning, Spring 2007

Rule of thumb 5:
A non-clustering index helps when the

number of rows to retrieve is smaller than the
number of blocks in the relation.

• Argument:In this case it surely reduces
I/O cost.

• Counterexample:
– Even for a non-clustered index, the rows to

retrieve can sometimes be found in a small
fraction of the blocks (e.g. salary, clustered
on date of employment).

31Database Tuning, Spring 2007

Rule of thumb 6:
Avoid indexing of small tables.

• Argument: Small tables can be kept in
internal memory, or read entirely in 1
or 2 I/Os.

• Counterexample:
– If the index is in main memory, it might

still give a speedup.

32Database Tuning, Spring 2007

Conclusion

• Indexing is a complicated business!
• Understanding the various index types

and their performance characteristics,
as well as the characteristics of the
database at hand and its workload
allows informed indexing decisions.

• Rules of thumb can be used to guide
thinking.

• More complications to come!

33Database Tuning, Spring 2007

Tip: Clustered indexing in Oracle

• Default in Oracle is to store tuples in a
heap (think insertion order).

• Is clustered according to the primary
key, if ”ORGANIZATION INDEX” is added
after the schema when creating the
relation.

• To cluster according to a non-unique
attribute A, declare a composite
primary key (A,P), where P is a unique
key.

34Database Tuning, Spring 2007

Exercises

Hand-outs:

• ADBT exam, June 2005, problem 1.

• ADBT exam, June 2006, problem 1.

