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Today’s lecture

• Morning session: Hashing
– Static hashing, hash functions
– Extendible hashing
– Linear hashing
– Newer techniques:

Buffering, two-choice hashing
• Afternoon session: Index selection

– Factors relevant for choice of indexes
– Rules of thumb; examples and counterexamples
– Exercises
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What data in index?

• At least three possibilities:
1) Record of key.
2) Key and pointer to record of key.
3) Key and list of pointers to the records

containing the key (for non-unique keys).

• For simplicity, we consider the case
where there is the same number of
keys (B) in every disk block.
– Case 1 with fixed length records.
– Case 2 with fixed length keys.
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Static external hashing

• Hash table:
– Array of N disk blocks. (Notation from RG.)
– Can access block i in 1 I/O, for any i.

• Hash function h:
– Maps keys to {0,...,N-1}.
– Should be efficient to evaluate (0 I/Os).
– Idea: x is stored in block h(x).

• Problem:
– Dealing with overflows.
– Standard solution: Overflow chains.
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Problem session

• Consider the following claim from RG:

• Donald Ummy uses this hash function
in an application, and finds out that it
performs terribly, no matter how the
constants a and b are chosen.

• What might have gone wrong?
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Randomized hash functions

Another approach (not mentioned in RG):
• Choose h at random from some set of

functions.
• This can make the hashing scheme

behave well regardless of the key set.
• E.g., "universal hashing" makes

chained hashing perform well (in theory
and practice).

• Details out of scope for this course...
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Analysis, static hashing

• Notation:
– N keys inserted,
– Each block in the hash table can hold B keys.

• Suppose that we insert αN keys in the hash
table (”it is a fraction α full”, “load factor α”).

• Assume h is truly random.
• Expected number of overflow blocks:

(1-α)-2 ⋅ 2-Ω(B) N   (proof omitted!)

• Good to have many keys in each bucket (an
advantage of secondary indexes).
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Sometimes, life is easy

• If B is sufficiently large compared to N,
all overflow blocks can be kept in
internal memory.

• Lookup in 1 I/O.
• Update in 2 I/Os.
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Too many overflow chains?

Can have too many overflow chains if:
• The hash function does not distribute

the set of keys well (”skew”).
– Solution 1: Choose a new hash function.
– Solution 2?: Overflow in main memory.

• The number of keys in the dictionary
exceeds the capacity of the hash table.
– Solution: Rehash to a larger hash table.
– Better solution: ?
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Doubling the hash table

• For simplicity, assume N is a power of
2. Suppose h is a hash function that
has values of ”many” (e.g. 64) bits.

• We can map a key x to {0,...,N-1} by
taking the log N least significant bits of
h(x).

• Suppose that the hash table has
become too small:
– Want to double the size of the hash table.
– Just consider one more bit of h(x).
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Doubling the hash table, cont.

• Suppose h(x)=0111001 (in binary)
and the hash table has size 16.

• Then x is stored in block number 1001
(binary).

• After doubling to size 32, x should be
stored in block 11001.

• Generally, all keys in block 1001 should
be moved to block 01001 or 11001.

• Conclusion: Can rehash by scanning
the table and split each block into two
blocks.
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Doubling, example

10111

00110
11110

00101

10100
00100

01011

11000

01011
10111

00110
11110

00101

10100
11000

New key:
00100

For simplicity we assume: 
• No overflow chains
• h(x)=x
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Problem session

• Find some possible disadvantages of
the doubling strategy. Consider:
– Space usage vs overflows
– System response time

• Next: Alternatives that address some
of the disadvantages of doubling.
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Linear hashing

10111

00110
11110

00101

10100
00100

01011

11000

01011
10111

00110
11110

00101

10100
11000

10111

00110
11110

00101

10100
00100

01011
10111

00110
11110

11000

”Virtual” blocks
• Merged with previous blocks

by considering one bit less
• Turned into physical blocks

as the hash table grows
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Linear hashing - performance

The good:
• Resizes hash table one block at a time:

Split a block or merge two blocks.
• Cost of resize: 3 I/Os. Cheap!

The bad:
• Increasing size of hash table may not

eliminate any overflow chain.
• Uneven distribution of hash values; works

best for relatively low load factors, 50-80%.
(But variants of linear hashing improve this.)

• No worst-case guarantee on query time.
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Extendible hashing

10111

00110
11110

00101

10100
00100

01011

11000

”Virtual”
hash table

- no
overflows

01011
10111

00110
11110

00101

10100
00100

11000

physical
hash table

”Directory”
- mapping virtual

to physical
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Extendible hashing invariants

• Virtual hash table has no overflows - may
need to increase in size.

• Physical hash table has no overflows.
• Virtual hash table is as small as possible -

may need to shrink.
• ”Compression”: For any bit string s, if we

consider the virtual hash table blocks whose
index ends with s then either:
– These blocks contain more than B keys, or
– The corresponding entries in the directory all point

to the same block. (In other words, these blocks are
merged.)
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Extendible hashing performance

• At most 2 I/Os for every lookup.
• Only 1 I/O if directory fits in internal

memory.
• Space utilization in physical hash table

is 69% (expected).
• Size of directory is roughly

(expected) - this is much smaller than
the hash table if B is moderately large.
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Buffering

• Same trick as in buffered B-trees:
Don’t do updates right away, but put
them in a buffer.

1000
0101
1100

0110
1110
1111

0100 overflow
block

0111
1010

buffer

• Advantage: Several keys moved to the
overflow block at once.

• Disadvantage: Buffer takes space.
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Two-choice hashing

• Idea:
– Use two hash functions, h1 and h2.
– x is stored in either block h1(x) or h2(x),

use two I/Os for lookup.
– When inserting x, choose the least loaded

block among h1 and h2.

• Can be shown that overflow
probabilities are much smaller than
with one function, especially when B is
small.

• If two disks are available, the 2 I/Os
can be done in parallel.
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Today’s lecture, part 2

• Index selection
– Factors relevant for choice of indexes
– Rules of thumb; examples and counterexamples

• Exercises
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Workload

• The workload (mix of operations to be
carried out by the DBMS) has a large
influence on what indexes should be
created in a database.

• Other factors are:
– the data in relations, and
– the query plans produced by the DBMS.
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Rules of thumb

• Rules of thumb can be used to guide
thinking, and as a checklist.

• Are often valid in most cases, but there
are always important exceptions.

• Quote from SB:

• You don’t yet have the entire picture
(query optimization, concurrency), but
we can start reasoning about rules
anyway.
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Rule of thumb 1:
Index the most selective attribute

• Argument: Using an index on a
selective attribute will help reducing
the amount of data to consider.

• Example:
SELECT count(*) FROM R
WHERE a>’UXS’ AND b BETWEEN 100 AND 200

• Counterexamples:
– Full table scan may be faster than an index
– It may not be possible/best to apply an

index.
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Rule of thumb 2:
Cluster the most important index of a relation

• Argument:
– Range and multipoint queries are faster.
– Usually sparse, uses less space.

• Counterexamples:
– May be slower on queries ”covered” by a

dense index.
– If there are many updates, the cost of

maintaining the clustering may be high.
– Clustering does not help for point queries.
– Can cluster according to several attributes

by duplicating the relation!
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Rule of thumb 3:
Prefer a hash index over a B-tree if point

queries are more important than range queries

• Argument:
– Hash index uses fewer I/Os per operation

than a B-tree.
– Joins, especially, can create many point

queries.

• Counterexamples:
– If a real-time guarantee is needed, hashing

can be a bad choice.
– Might be best to have both a B-tree and a

hash index.
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Hashing and range queries

RG page 371:

• But: they can be used to answer range
queries in O(1+Z/B) I/Os, where Z is the
number of results. (Alstrup, Brodal, Rauhe, 2001;
Mortensen, Pagh, Patrascu 2005)

• Theoretical result on external memory
(why?) - and out of scope for DBT.



28Database Tuning, Spring 2007

Problem session

• Comparison of B-trees and extendible
hashing.
– Case 1: Directory fits internal memory.
– Case 2: Directory on external memory.
– Case A: B=4, N=220.
– Case B: B=28, N=220.

• Consider cases 1A, 1B, 2A, 2B.
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Rule of thumb 4:
Balance the increased cost of updating with

the decreased cost of searching

• Argument: The savings provided by an
index should be bigger than the cost.

• Counterexample:
– If updates come when the system has

excess capacity, we might be willing to
work harder to have indexes at the peaks.

• If buffered B-trees are used, the cost
per update of maintaining an index
may be rather low. Especially if binary
(!) trees are used.
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Rule of thumb 5:
A non-clustering index helps when the

number of rows to retrieve is smaller than the
number of blocks in the relation.

• Argument:In this case it surely reduces
I/O cost.

• Counterexample:
– Even for a non-clustered index, the rows to

retrieve can sometimes be found in a small
fraction of the blocks (e.g. salary, clustered
on date of employment).
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Rule of thumb 6:
Avoid indexing of small tables.

• Argument: Small tables can be kept in
internal memory, or read entirely in 1
or 2 I/Os.

• Counterexample:
– If the index is in main memory, it might

still give a speedup.
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Conclusion

• Indexing is a complicated business!
• Understanding the various index types

and their performance characteristics,
as well as the characteristics of the
database at hand and its workload
allows informed indexing decisions.

• Rules of thumb can be used to guide
thinking.

• More complications to come!



33Database Tuning, Spring 2007

Tip: Clustered indexing in Oracle

• Default in Oracle is to store tuples in a
heap (think insertion order).

• Is clustered according to the primary
key, if ”ORGANIZATION INDEX” is added
after the schema when creating the
relation.

• To cluster according to a non-unique
attribute A, declare a composite
primary key (A,P), where P is a unique
key.
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Exercises

Hand-outs:

• ADBT exam, June 2005, problem 1.

• ADBT exam, June 2006, problem 1.


