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Context
In the last lecture, we discussed: 
– how to convert a linear circuit into a set of differential 

equations, 
– How to convert the set of differential equations into the 

frequency domain, a set of algebraic equations.
In this lecture we will cover:
– Analyzing circuits with a sinusoidal input, (in the 

frequency domain, a single frequency at a time)
– How to simplify our notation with Phasors
– Solving a couple of example circuits
– How to present information about the circuit directly in 

the frequency domain using diagrams of amplitude and 
phase at different frequencies (Bode plots)
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For any linear circuit, you will be able to write:
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Single frequency approach

Another way to look at the situation is that since the 
circuit is linear, we can view any input as the sum 
of sin waves at various amplitudes, frequencies, 
and phases.  (each piece of the Fourier transform)
If we can under the circuit for an arbitrary 
sinusoidal input, we then can figure out what the 
circuit will do for an arbitrary input, or inputs.  
(Just break all the inputs up into sinusoids, put 
them through one at a time, and then add the results 
for each back up at the end, and that’s your 
answer!) 
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Sinusoidal stimulus

We are going to analyze circuits for a single 
sinusoid at a time which we are going to write:

But we are going to use exponential notation
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Complex conjugate
(same as first term, but with 
(j)→(-j) wherever it occurs)
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Sin in→Sin at every node!

It is especially interesting because any voltage or 
current in our circuit, if this is the only input, must 
also be sinusoidal with the same frequency, and so 
can also be written in this form.

Because our equations will be linear, the same things 
will happen to the complex conjugate terms as 
happen to the first terms, so they will just tag along
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Differentiating or integrating

This form is particularly useful because it is easy to 
differentiate or integrate with respect to time
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Phasor notation

As you may have noticed, we are going to write 
expressions of this form a lot, so it is very common 
to take the following shortcuts in notation:
Take the constants to include the phase, (they will 
become complex constants)
Since all expressions will include the complex 
constants, stop writing C. C. everywhere.
Since e-jωt appears everywhere, (or its C. C. in the 
C. C. terms) stop writing it as well
Don’t write the ½ either
All of these, together, are called Phasor notation
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Phasors

Each of the voltages between nodes, and each of 
the currents, can then be represented by a single 
complex number (remember, this is for a single 
frequency input of a particular phase and 
amplitude)
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Tricky Bits:
Phasor notation is very convenient, but there are 
some tricky parts to look out for:
You can not use phasor notation (without added 
precautions) if you need to multiply voltages and 
currents (such as in a power calculation), because 
that is not linear!
Another way to look at phasor notation is that 
instead of adding the CC ( and dividing by 2), you 
take the real part, which gives the same result.
However, you must not take the real part (or add 
the complex conjugate) before you put back in the 
time dependence e-jωt
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Solving Linear Systems using Phasors

Any linear circuit becomes a linear equation:                 
→ & L1,2{} have the form

For our complex exponential input Vejωt this is:

Where  H is just some complex number (at ω)
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Notice that linear operators acting on all of the 
other voltages or currents are also a complex exp 
times a complex number:

So we are now prepared to calculate our circuits 
response at any frequency using algebra, instead of 
differential equations!
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Complex Transfer Function

Excite a system with an input voltage  vin

Define the output voltage vany to be any node 
voltage (branch current)
For a complex exponential input, the “transfer 
function” from input to output( or any voltage or 
current) can then be written:

( just multiply top and bottom by ejωt sufficient times)
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The amplitude of the output is the magnitude of the 
complex number and the phase of the output is the 
phase of the complex number:
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Impedance

Suppose that the “input” is defined as the voltage of 
a terminal pair (port) and the “output” is defined as 
the current into the port:

The impedance Z is defined as the ratio of the 
phasor voltage to phasor current (“self” transfer 
function)
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Admitance
Suppose that the “input” is defined as the current of 
a terminal pair (port) and the “output” is defined as 
the voltage into the port:

The admittance Z is defined as the ratio of the 
phasor current to phasor voltage (“self” transfer 
function)
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Voltage and Current Gain
The voltage (current) gain is just the voltage 
(current) transfer function from one port to another 
port:

If G > 1, the circuit has voltage (current) gain
If G < 1, the circuit has loss or attenuation
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Transimpedance/admittance

Current/voltage gain are unitless quantities
Sometimes we are interested in the transfer of 
voltage to current or vice versa
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Direct Calculation of H (no DEs)

To directly calculate the transfer function 
(impedance, transimpedance, etc) we can 
generalize the circuit analysis concept from the 
“real” domain to the “phasor” domain
With the concept of impedance (admittance), we 
can now directly analyze a circuit without explicitly 
writing down any differential equations
Use KVL, KCL, mesh analysis, loop analysis, or 
node analysis where inductors and capacitors are 
treated as complex resistors
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LPF Example:  Again!
Instead of setting up the DE in the time-domain, 
let’s do it directly in the frequency domain
Treat the capacitor as an imaginary “resistance” or 
impedance:

Last lecture we calculated the impedance:

→

time domain “real” circuit frequency domain “phasor” circuit
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LPF … Voltage Divider

Fast way to solve problem is to say that the LPF is 
a voltage divider, using phasors:
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Bigger Example (no problem!)

Consider a more complicated example:
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Building Tents:  Poles and Zeros

For most circuits that we’ll deal with, the transfer 
function can be shown to be a rational function

The behavior of the circuit can be extracted by 
finding the roots of the numerator and denominator

Or another form (DC gain explicit)
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Poles and Zeros (cont)

The roots of the 
numerator are called the 
“zeros” since at these 
frequencies, the transfer 
function is zero

The roots of the 
denominator are called 
the “poles”, since at 
these frequencies the 
transfer function peaks 
(like a pole in a tent) L
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Finding the Magnitude (quickly)

The magnitude of the response can be calculated 
quickly by using the property of the mag operator:

The magnitude at DC depends on G0 and the 
number of poles/zeros at DC.  If K > 0, gain is zero.  
If K < 0, DC gain is infinite.  Otherwise if K=0, 
then gain is simply G0
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Finding the Phase (quickly)
As proved in HW #1, the phase can be computed quickly 
with the following formula:

Now the second term is simple to calculate for positive 
frequencies:

Interpret this as saying that multiplication by j is equivalent 
to rotation by 90 degrees
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Bode Plots
Simply the log-log plot of the magnitude and phase 
response of a circuit (impedance, transimpedance, gain, …)
Gives insight into the behavior of a circuit as a function of 
frequency
The “log” expands the scale so that breakpoints in the 
transfer function are clearly delineated 
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Log ratios and definition of dB

The frequency response can vary by orders of 
magnitude rapidly
We can expand range by taking the log of the 
magnitude response
dB = deciBel (deci = 10)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

sdBs V
V

V
V 00 log20



15

Department of EECS University of California, Berkeley

EECS 105 Fall 2003, Lecture 3 Prof. J. S. Smith

Why 20?  Power!

Why multiply log by “20” rather than “10”?
Power is proportional to voltage squared to make 
ratios in power and voltage come out the same, for 
power ratios use 10×, for voltage ratios, use 20×
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Example:  High-Pass Filter

Using the voltage divider rule:
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HPF Magnitude Bode Plot

Recall that log of product is the sum of log
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HPF Bode dissection

The second term can be further dissected:
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slope

At breakpoint:

Observe:  slope of signal attenuation is 20 
dB/decade in frequency
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Composite Plot

Composite is simply the sum of each component:
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