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Context

o In the last lecture, we discussed:

— how to convert a linear circuit into a set of differential
equations,

- How to convert the set of differential equations into the
frequency domain, a set of algebraic equations.
o In this lecture we will cover:

Analyzing circuits with a sinusoidal input, (in the
frequency domain, a single frequency at a time)

How to simplify our notation with Phasors
Solving a couple of example circuits

How to present information about the circuit directly in
the frequency domain using diagrams of amplitude and
phase at different frequencies (Bode plots)
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—Equation
For any linear circuit, you will be able to write:

L, v, (O} =L,o{v, ()} =
v, (1) +b, div (t)+0,

e
+Cljvin )+ cz_Uvin () + C3j_”"m () +--

Here Ll{}a L2 {} represent Linear operators, that is, if you apply
it to a function, you get a new function (it maps functions to functions),
and linear operators also have the property that:

Lia-f(O)+b-g(t)j=a-L{f(O);+b-Lig(®);

— 5 V() +
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Single frequency approach

o Another way to look at the situation is that since the
circuit is linear, we can view any input as the sum
of sin waves at various amplitudes, frequencies,
and phases. (each piece of the Fourier transform)

o Ifwe can under the circuit for an arbitrary
sinusoidal input, we then can figure out what the
circuit will do for an arbitrary input, or inputs.

(Just break all the inputs up into sinusoids, put
them through one at a time, and then add the results
for each back up at the end, and that’s your
answer!)
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Sinusoidal stimulus

o We are going to analyze circuits for a single
sinusoid at a time which we are going to write:

v, (t) =V, sin(wt + ¢)
« But we are going to use exponential notation
v () =V, sin(ot +$) =V (/P —e /@Dy /2
V. (l‘) = (Vej(¢)ef(w’) _Ve*j(¢)efj(wz))/2
1 . :
V., (t) = _[Viemﬁ) ]ej(wt) LCC.
2 Complex conjugate

(same as first term, but with
(1)—(-j) wherever it occurs)
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Sin in—Sin at every node!
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It is especially interesting because any voltage or
current in our circuit, if this is the only input, must
also be sinusoidal with the same frequency, and so
can also be written in this form.

Vo (D) = %[Vanyej(m le’“ +C.C

Iy () = %[lanyej(‘”)]ej(“’” +C.C

Because our equations will be linear, the same things
will happen to the complex conjugate terms as
happen to the first terms, so they will just tag along

Department of EECS University of California, Berkeley



EECS 105 Fall 2003, Lecture 3 Prof. J. S. Smith

Differentiating or integrating

o This form is particularly useful because it is easy to
differentiate or integrate with respect to time

Vo (1) = %[V e/ P’ +C.C.

any

any

d 1 . .
~—v _(O=(jo)=[V. &P/ +C.C.
” ay (D) =(J )2[ ]

1 1

v (t)dt =——=[V. e/?P1e/“" +C.C.
any . any
(jo) 2
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Phasor notation

« As you may have noticed, we are going to write
expressions of this form a lot, so it is very common
to take the following shortcuts in notation:

« Take the constants to include the phase, (they will
become complex constants)

 Since all expressions will include the complex
constants, stop writing C. C. everywhere.

o Since et appears everywhere, (or its C. C. in the
C. C. terms) stop writing it as well

o Don’t write the ' either

» All of these, together, are called Phasor notation
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Phasors

» Each of the voltages between nodes, and each of
the currents, can then be represented by a single
complex number (remember, this is for a single
frequency input of a particular phase and

amplityde) A
Vany (t) = E[Vanyel(ﬂf) ]ej(a)t) +C.C=> Vany
—

A

any

1 . : A
[y (1) = Sl we’ e’ +CcC=>1,,
—

~
any
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Tricky Bits:

« Phasor notation is very convenient, but there are
some tricky parts to look out for:

» You can not use phasor notation (without added
precautions) if you need to multiply voltages and
currents (such as in a power calculation), because
that is not linear!

» Another way to look at phasor notation is that
instead of adding the CC ( and dividing by 2), you
take the real part, which gives the same result.

o However, you must not take the real part (or add
the complex conjugate) before you put back in the
time dependence e
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Solving Linear Systems using Phasors

» Any linear circuit becomes a linear equation:
- Ll{vany (t)} = L2 {vin (t)}& LI,Z {} haVC the form

L{v(1)} = av(t)+b, %v(z‘) +b, j—;v(t) T— j v(t)dt +c, ” V(£)dt ++-

o For our complex exponential input Ve/®’ this is:

. . d d? . .
Jjoty _ Jjor ja)t Jjot Jjor Jjor
L(Ve'”)=ale +blVd +b, V—dze + +clee +c2V”e +
) ) ) e.iwt VeﬂUt
=aVe'™ +b joVe’™ +b,(jw)’ Ve’ +---+ ¢ ——+c,———
jo " (jo)

=H1Vef“”:Ve-’“’t(a+bljco+b2(ja))2+ SR I J
jo  (joy

o Where H is just some complex number (at ®)
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» Notice that linear operators acting on all of the
other voltages or currents are also a complex exp
times a complex number:

L, ()=

any

H Vanyejwtany jwt[a+bl]a)+b (]Cl)) +- +_+C—+.”J
jo (jo)

So we are now prepared to calculate our circuits
response at any frequency using algebra, instead of
differential equations!
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Complex Transfer Function

» Excite a system with an input voltage v,,
o Define the output voltage v,,, to be any node
voltage (branch current)

o For a complex exponential input, the “transfer
function” from input to output( or any voltage or
current) can then be written:

no+n, jo+n,(jo) +--
d+d,jo+d,(jo)’ +--

H(w) =

(just multiply top and bottom by e/t sufficient times)
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o The amplitude of the output is the magnitude of the
complex number and the phase of the output is the
phase of the complex number:

G

y:Hx:ej“’l(a+b1ja)+b2(ja))2+---+€—‘+ . 2+---)
jo (jo)

y= eja)t|H(a))|ej<H(w)

Re[y] = |H ()| cos(wt+ < H(w))
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Impedance

o Suppose that the “input” is defined as the voltage of
a terminal pair (port) and the “output” is defined as
the current into the port:

5, + ) o
CE T O
v(t i(t roitrary ' '
* © Circuit i(t)=1e’” =|]|ej(wt+¢,-)

«—

o The impedance Z is defined as the ratio of the
phasor voltage to phasor current (“self” transfer

function)
Z(w) = H(w) _r_ |K J @)
I |1
Deparimontof EECS Univrsiy of Galfonia, Borkeley
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Admitance

o Suppose that the “input” is defined as the current of
a terminal pair (port) and the “output” is defined as
the voltage into the port:

+

CE = apirary Lt | VO=VE =Wl
Wt it rbitrary A '
© © Circuit i(t)=Ie’” :|]|e/(wt+¢f)

o The admittance Z is defined as the ratio of the
phasor current to phasor voltage (“self” transfer
function)

1 |1

Y(w)=H(w)= 7= J(4-4,)
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Voltage and Current Gain

o The voltage (current) gain is just the voltage
(current) transfer function from one port to another

port: s .o
; Arbitrary LTI ;
y (r)(E i (1) itrary, 2 (r@)vz 0)
G (a)) :ﬁ — &ej(vﬁz—%)
v V 1
G(a)):iz Ly i)
1 ] :

o If G > 1, the circuit has voltage (current) gain
e If G <1, the circuit has loss or attenuation
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Transimpedance/admittance

o Current/voltage gain are unitless quantities

o Sometimes we are interested in the transfer of
voltage to current or vice versa

__, + .o
J Arbitrary .
VI(t)@: linear Circuit Vz(t)
J(w)= Vh_Va o/ B9 Q]
I, |1
K(w)= L _|L o/ ®H) [S]
non
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Direct Calculation of H (no DEs)

o To directly calculate the transfer function
(impedance, transimpedance, etc) we can
generalize the circuit analysis concept from the
“real” domain to the “phasor” domain

o With the concept of impedance (admittance), we
can now directly analyze a circuit without explicitly
writing down any differential equations

o Use KVL, KCL, mesh analysis, loop analysis, or
node analysis where inductors and capacitors are
treated as complex resistors
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LPF Example: Again!

« Instead of setting up the DE in the time-domain,
let’s do it directly in the frequency domain

o Treat the capacitor as an imaginary “resistance” or

impedance:
R .,,,ZK ,,,,,

+ 7 LB
vy (~) c v — (Y e Yo
L T
‘ time domain “real” circuit ‘ ‘ frequency domain “phasor” circuit

o Last lecture we calculated the impedance:
1
Z,=R Z,

Department of EECS .] a)C University of California, Berkeley
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... Voltage Divider

=

» Fast way to solve problem is to say that the LPF is
a voltage divider, using phasors:

1
H(a)):ﬂz ZC = ‘]a)C = 1 /
Vi Ze+Zp po 1 1+jeRC
joC

xample (no problem!)
o Consider a more complicated example:
Rl R2
YW YW
+
v (~) € == Zeff] €y V(D)
L
Z
H(a’)=£=¢ Zeﬁ=R2+R1”ZC1
Vs Zeﬁ‘ + Zcz
H(w)= Zes
RZ +R1 || ZCl +ZC2
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ents: Poles and Zeros

o For most circuits that we’ll deal with, the transfer
function can be shown to be a rational function

_mnjo+n(jo) +--

H(w
(@) d+d,jo+d,(jo)’ +-

o The behavior of the circuit can be extracted by
finding the roots of the numerator and denominator
H(w)= G i jo) TG je)
(p—jo)p,—jo)-- [](p.—jo)
e Or another form (DC gain explicit)
i _ - jor. .
)= Gyt A=som I jors) g e 102 0%
(I_Ja)TpZ)(l_.]a)TpZ)'” H(l_.]a)rp,i)
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s and Zeros (cont)

o The roots of the poles
numerator are called the /\
“zeros” since at these \

frequencies, the transfer
function is zero

o The roots of the
denominator are called
the “poles”, since at
these frequencies the
transfer function peaks H(w) = (2, —jo)z, — jo)-
(like a pole in a tent) (p,—jo)p,—jw)--
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Finding the Magnitude (quickly)

o The magnitude of the response can be calculated
quickly by using the property of the mag operator:

oo sl
|H () =|G, (j@) (1_ja)rp2)(1—ja)7pz)""

|1—ja)fzl l-jor,,

=|G.|o*
| 0|a) ‘l—ja)rpzul—ja)rpz‘---

o The magnitude at DC depends on G, and the
number of poles/zeros at DC. If K> 0, gain is zero.
If K <0, DC gain is infinite. Otherwise if K=0,
then gain is simply G,
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Finding the Phase (quickly)

o Asproved in HW #1, the phase can be computed quickly
with the following formula:

=< H(a)) == GO(]a))K (1_.(a)Tzl)(]'_‘].a)T22)“.
(I_Ja)z-pZ)(l_.]a)TpZ)”.
=< G,+ < (jo) +<(1-jor )+ =<(1-jor_)+ -
-<(-jor,)-<(1-jor,)—"-
o Now the second term is simple to calculate for positive
frequencies:
<(jo)* =K

o Interpret this as saying that multiplication by j is equivalent
to rotation by 90 degrees
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Bode Plots

o Simply the log-log plot of the magnitude and phase
response of a circuit (impedance, transimpedance, gain, ...)

o Gives insight into the behavior of a circuit as a function of
frequency

o The “log” expands the scale so that breakpoints in the
transfer function are clearly delineated
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Log ratios and definition of dB

o The frequency response can vary by orders of
magnitude rapidly

o We can expand range by taking the log of the
magnitude response
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hy 20? Power!

o Why multiply log by “20” rather than “10”?

» Power is proportional to voltage squared to make
ratios in power and voltage come out the same, for
power ratios use 10x, for voltage ratios, use 20x

2
% v
dB=10log| -~ | =20log| -~
4%) 4%)
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le: High-Pass Filter

« Using the voltage divider rule: . ja)£
_ JjoL R
H((())— . - L
R+ joL 1+ jo~
R
R T
W H(w)=—1%
I+ jor
+ .
vy () LB gosws |- 1
- jot
0
©—>0= |H|—>——=0
= 1+0
o=t=  |H=|-L|--L
T I+ \/E
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agnitude Bode Plot

o Recall that log of product is the sum of log
jot
I+ jor

|H(w)|dB = = |ja)r|d3 +

1+ jor

dB dB

o, Increase by 20 dB/decade
wr=1=|jwr|  =0dB Equals unity at breakpoint

400B |

20dB

L 0.1 1 10 100
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Bode dissection

e The second term can be further dissected:

1
=0dB—-[1+ jor
o, 0o,
1
Az Uz 10/t wo<<— 0dB
0dB : T
: é 1
20dB | NN 5 IZO ®  >> . -20 dB/dec
ol -
T
-60 dB
-3dB
1
Department of EECS T University of California, Berkeley
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slope

o At breakpoint:
a)=1/r—>[%] —-3dB

o Observe: slope of signal attenuation is 20
dB/decade in frequency
w=100/r—>(£] ——40dB

dB

K

a)=1000/r—>[5J =-60dB
aB
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omposite Plot

o Composite is simply the sum of each component:

|jan|d3+1 - |jor| High fi ~ 0 dB Gai
+]COT 4B ] dB Igh Trequency ain
0dB .l/7 10/7
quency attenuation
\ -20d 1
I+ jor|,
-40 dB
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