Lecture #3
Quantum Mechanics: Introduction

* Topics
— Why QM for magnetic resonance’?
— Historical developments
— Wavefunctions

 Handouts and Reading assignments
— Levitt, Chapter 6 (optional)
— Miller, Chapter 1-3 (optional).



Classical versus Quantum NMR

QM is only theory that correctly predicts behavior of matter
on the atomic scale, and QM effects are seen in vivo.

Systems of 1solated nuclei can be described with the
intuitive picture of a classical magnetization vector rotating
in 3D space (Bloch equations).

Systems of interacting nuclei, in particular spin-spin
coupling, require a more complete QM description (density
matrix theory).

We will develop a QM analysis of MR, based on density
matrix theory, but retaining the intuitive concepts of
classical vector models (product operator formalism).



19th Century Physics

e At the end of the 19th century, physicists divided the world
into two entities:
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Early 20th Century Physics
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Blackbody Radiation

radiation.

e A blackbody is an object that absorbs all incident thermal
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e Max Planck solved
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where n=integer and
h=6.63x107%js.

Planck’ s Theory of Cavity Radiation (1900) => energy quantization

ref: Eisberg and Resnick, Quantum Physics, pp 3-24. :



Photons

 Einstein generalized Planck’ s results

— Proposed a return to the particle theory of light. 1.e.
light = photons each with energy hv.

— Photons explain the photoelectric effect (1905).

— Note: photons not experimentally shown to exist until the
Compton effect (1924).

e EM waves (radiation) exhibit both wave and particle features
with parameters linked by

E=hv=hw Vé‘=2n/)»

]_). _% I—{' where \wavelength

h=h/2n

Planck-Einstein relations



Matter Wave-Particle Duality

» de Broglie (1923) hypothesis: material particles (e.g. electrons,
protons, etc), just like photons, can have wavelike aspects.

* Wave properties of matter later demonstrated via interference
patterns obtained in diffraction experiments.

x-ray diffraction by neutron diffraction by
single NaCl crystal single NaCl crystal



Matter Wave-Particle Duality

* With each particle we associate:

energy £ E = hy =hw
momentum P p=hk

angular frequerlcy w =27V A= ziT _ de Broglic
wave number k ‘k ‘ p‘ wavelength

(later we’ 1l add spin) (remember £ is very small)

e Example 1: baseball moving at v = 10 m/s (assume m = 0.1 kg)

de Broglie )L=ﬁ =i —66x107*" mM=66x10"* A
wavelength p my

o Example 2: dust speck with m = 10-1> kg and v = 103 m/s

: h o
de Broghe )\.=ﬁ=— =6.6x107"°m=6.6x10" A
wavelength p my

Conclusion: living in a macroscopic world, we have little
intuition regarding the behavior of matter on the atomic scale.



Quantum vs Classical Physics

QM does not deal directly with observable physical quantities
(e.g. position, momentum, M_, My, M).

QM deals with the state of the system, as described by a
wavefunction P(t) or the density operator p(t), independent
of the observable to be detected.

Probability is fundamental.

Classical physics: “If we know the present exactly,
we can predict the future.”

Quantum mechanics: “We cannot know the present exactly,
as a matter of principle.”



Wave Functions

e For the classical concept of a trajectory (succession in time of the
state of a classical particle), we substitute the concept of the
quantum state of a particle characterized by a wave function, ¥(7 1),

L W(FJ )
- contains all info possible to obtain about the particle
- interpreted as a probability amplitude of the particle’s presence
with the probability density given by:
dP(7,t) = C‘w(?,t)‘zf?, C constant.
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- wave functions typically normalized, 1.e. f (7.1 0



Schrodinger’s Equation

 How does y(7,t) change with time?

e Time evolution given by the Schrodinger’s equation:

potential energy
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where H = ——V?* + V(¥,1)
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Quantum Description of a Free
Particle

e For a particle subject to no external forces:
B, L0 n’ B,
ViF,)=0 ®m jh—y(F.t)=——VyF,1)
ot 2m

e Easy to show that this equation is satisfied by:

(k7 2
Y(7,1) = Ae™ ™ where o= Tk

\ 2m

plane wave with wave number k = plh

e Since,W(F.1) i \A\z, the probability of finding the particle is
uniform throughout space.

Note, strictly speaking, y(7,t) is not square integrable, but as engineers we won' t
worry too much about this (comparable to dealing with 0(x) in Fourier theory).
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Quantum Description of a Free
Particle (cont.)

e Linearity of Schrodinger’s equation implies superposition holds,
1.e. general linear combination of plane waves is also a solution.

1

Y(7,1) = - fg(lg)ex/;’.;_w(/%’)z)ds]—{'

(27)

e Consider 1D case evaluated at a fixed time, say t=0:

! o
Y(x0) = [ ge™ dk
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point in space.

_~wave packet
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Wave Packets

o Example: dust speck with m = 10" kg and v = 103 m/s
deBroglie ) M _ " 66,101 m —6.6x10° A

wavelength p  my

2 4
Probability of finding — ‘?j}(x )‘
the dust speck at a

A

given point in space.

__~Wwave packet

Ax = uncertainty in x

In quantum terms, the dust speck is described by a wave packet:

— group velocity v = 103 m/s

> X

— average momentum p = 10-18 kg m/s

. 11 o . ”
— maximum represents the position

How accurately can we measure the dust speck’s position?
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Wave PaCketS iemember: p=hk
UJ(X O) \/ﬂfg(k)elkxdk — w(x) rfw(k)elkxdk

v Cof i Rf
Ax = gr}Ccertainty in x A <_>Ap - un]c{:ertainty np

»

Space momentum

Fourier theory of equivalent widths immediately yields most
common form of the uncertainty principle = Ax- Ap =7/2

Example: dust speck with m = 10-1° kg and v = 103 m/s. If the

position is measured to an accuracy of Ax=0.01u  then

h Since no momentum measuring device can
26 . achieve this level of accuracy, both Ax and
= A =10 kg m/s = Ap are negligible. Hence the we can treat
the dust speck as a classical particle.

At the atomic level, Ax and Ap are not negligible.

For NMR, we'’ 1l not be dealing with x and p, but rather
another intrinsic property of matter known as spin. s



Summary: Wave Functions

* Replaces the classical concept of a trajectory.

o Y(7.1) contains all information possible to obtain about a particle.

e Probability of finding particle in differential volume d°7 is given by

dP(7,1) = C\zp(r 0 dF

normahzatlon
constant

e Time evolution given by the Schrodinger’s equation:

%W,n _ —%wa)
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Next Lecture: Mathematics of QM
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Appendix |
Plau51b1hty of Schrodinger’s Eqn.

Given.. y
Newton: F =—p E—p—+V
/4 dt \ /4 om ‘\
force momentum energy kinetic potential
de Broglie-Einstein: k= 2% = % E=wh
wavenumber frequency

Reasonable to look for a QM wave of the form:

w ( X Z) € i (kx—or ) Sinusoidal traveling wave with constant wavenumber and
frequency (momentum and energy). For example, this satisfies
Newton and de Broglie-Einstein for V=constant.

(1 d case)
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Plausibility of Schrodinger’s Eqn.

Consider P
Zpen=if et iy (e = py
J

operator form: P = —ih—

ox
ey =-ic ey iy = Ey(en
h ot

operator form: E=inh—

ot
Substituting into operator form of energy equation:
A 2 2 2
Ew(x t) = —w(x 1)+ Vw(x t) => zh lp(x t) = —;—é’—q)(x 1)+ le(x 1)
m ox

Note: equation linear in 1, hence waves
can add yielding interference effects, etc. 19



