Lecture #3

Quantum Mechanics: Introduction

1

- Topics
 - Why QM for magnetic resonance?
 - Historical developments
 - Wavefunctions
- Handouts and Reading assignments
 - Levitt, Chapter 6 (optional)
 - Miller, Chapter 1-3 (optional).

Classical versus Quantum NMR

- QM is only theory that correctly predicts behavior of matter on the atomic scale, and QM effects are seen in vivo.
- Systems of isolated nuclei can be described with the intuitive picture of a classical magnetization vector rotating in 3D space (Bloch equations).
- Systems of interacting nuclei, in particular spin-spin coupling, require a more complete QM description (density matrix theory).
- We will develop a QM analysis of MR, based on density matrix theory, but retaining the intuitive concepts of classical vector models (product operator formalism).

19th Century Physics

• At the end of the 19th century, physicists divided the world into two entities:

Classical Physics

Early 20th Century Physics

Analogy: geometric optics versus inclusion of diffraction effects

Blackbody Radiation

• A blackbody is an object that absorbs all incident thermal radiation.

Planck's Theory of Cavity Radiation (1900) => energy quantization

ref: Eisberg and Resnick, Quantum Physics, pp 3-24.

5

Photons

- Einstein generalized Planck's results
 - Proposed a return to the particle theory of light. i.e.
 light = photons each with energy hv.
 - Photons explain the photoelectric effect (1905).
 - Note: photons not experimentally shown to exist until the Compton effect (1924).
- EM waves (radiation) exhibit both wave and particle features with parameters linked by

$$\begin{bmatrix} E = h\nu = \hbar\omega \\ \vec{p} = \hbar\vec{k} \end{bmatrix} \text{ where } \begin{vmatrix} \vec{k} \end{vmatrix} = 2\pi/\lambda \text{ wavelength} \\ \hbar = h/2\pi \end{aligned}$$

Planck-Einstein relations

Matter Wave-Particle Duality

- de Broglie (1923) hypothesis: material particles (e.g. electrons, protons, etc), just like photons, can have wavelike aspects.
- Wave properties of matter later demonstrated via interference patterns obtained in diffraction experiments.

x-ray diffraction by single NaCl crystal

neutron diffraction by single NaCl crystal

Matter Wave-Particle Duality

- With each particle we associate: energy Emomentum \vec{p} angular frequency $\omega = 2\pi v$ wave number \vec{k} (later we'll add spin) • $E = hv = \hbar\omega$ $\vec{p} = \hbar \vec{k}$ $\lambda = \frac{2\pi}{|\vec{k}|} = \frac{h}{|\vec{p}|}$ de Broglie wavelength (remember h is very small)
- Example 1: baseball moving at v = 10 m/s (assume m = 0.1 kg) de Broglie wavelength $\lambda = \frac{h}{p} = \frac{h}{mv} = 6.6 \times 10^{-34}$ m = 6.6×10^{-24} Å
- Example 2: dust speck with $m = 10^{-15}$ kg and $v = 10^{-3}$ m/s de Broglie wavelength $\lambda = \frac{h}{p} = \frac{h}{mv} = 6.6 \times 10^{-16}$ m $= 6.6 \times 10^{-6}$ Å

Conclusion: living in a macroscopic world, we have little intuition regarding the behavior of matter on the atomic scale.

Quantum vs Classical Physics

- QM does not deal directly with observable physical quantities (e.g. position, momentum, M_x , M_y , M_z).
- QM deals with the state of the system, as described by a wavefunction $\psi(t)$ or the density operator $\rho(t)$, independent of the observable to be detected.
- Probability is fundamental.

Classical physics: "If we know the present exactly, we can predict the future."

Quantum mechanics: "We *cannot* know the present exactly, as a matter of principle."

Wave Functions

- For the classical concept of a trajectory (succession in time of the state of a classical particle), we substitute the concept of the quantum state of a particle characterized by a *wave function*, $\psi(\vec{r},t)$.
- $\psi(\vec{r},t)$
 - contains all info possible to obtain about the particle
 - interpreted as a probability amplitude of the particle's presence with the probability density given by:

$$d\mathbf{P}(\vec{r},t) = C |\psi(\vec{r},t)|^2 d^3 \vec{r}, \quad C \text{ constant.}$$

$$\int d\mathbf{P}(\vec{r},t) = 1 \implies \frac{1}{C} = \int \left| \psi(\vec{r},t) \right|^2 d^3 \vec{r} \ll \infty$$
square-integrable!

- wave functions typically normalized, i.e. $\int |\psi(\vec{r},t)|^2 d^3\vec{r} = 1$

Schrödinger's Equation

- How does $\psi(\vec{r},t)$ change with time?
- Time evolution given by the Schrödinger's equation:

$$i\hbar \frac{\partial}{\partial t}\psi(\vec{r},t) = -\frac{\hbar^2}{2m} \nabla^2 \psi(\vec{r},t) + V(\vec{r},t)\psi(\vec{r},t)$$

Laplacian: $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

• Often written:
$$\frac{\partial}{\partial t}\psi(\vec{r},t) = -\frac{i}{\hbar}H\psi(\vec{r},t)$$

where $H = -\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r},t)$ (*H* operator for total energy kinetic energy potential energy Note, classically $H = \frac{p^2}{2m} + V$ \implies $p = -i\hbar \frac{\partial}{\partial \vec{r}} \begin{bmatrix} \ln QM, physical quantities are expressed as operators. \end{bmatrix}_{11}$

Quantum Description of a Free Particle

• For a particle subject to no external forces:

$$V(\vec{r},t) = 0 \quad \Longrightarrow \quad i\hbar \frac{\partial}{\partial t} \psi(\vec{r},t) = -\frac{\hbar^2}{2m} \nabla^2 \psi(\vec{r},t)$$

• Easy to show that this equation is satisfied by:

$$\psi(\vec{r},t) = Ae^{i(\vec{k}\cdot\vec{r}-\omega t)} \text{ where } \omega = \frac{\hbar\vec{k}^2}{2m}$$

$$\bigvee_{\text{plane wave with wave number } \vec{k} = \vec{p}/\hbar}$$

• Since, $|\psi(\vec{r},t)|^2 = |A|^2$, the probability of finding the particle is uniform throughout space.

Note, strictly speaking, $\psi(\vec{r},t)$ is not square integrable, but as engineers we won't worry too much about this (comparable to dealing with $\delta(x)$ in Fourier theory).

Quantum Description of a Free Particle (cont.)

• Linearity of Schrodinger's equation implies superposition holds, i.e. general linear combination of plane waves is also a solution.

$$\psi(\vec{r},t) = \frac{1}{(2\pi)^{3/2}} \int g(\vec{k}) e^{i(\vec{k}\cdot\vec{r}-\omega(\vec{k})t)} d^3\vec{k}$$

• Consider 1D case evaluated at a fixed time, say t=0:

$$\psi(x,0) = \frac{1}{\sqrt{2\pi}} \int g(k) e^{ikx} dk$$

Wave Packets

- Example: dust speck with $m = 10^{-15}$ kg and $v = 10^{-3}$ m/s de Broglie wavelength $\lambda = \frac{h}{p} = \frac{h}{mv} = 6.6 \times 10^{-16}$ m $= 6.6 \times 10^{-6}$ Å Probability of finding $\langle \psi(x) |^2$ the dust speck at a given point in space. $\langle \psi(x) |^2$ $\Delta x = uncertainty in x$
- In quantum terms, the dust speck is described by a wave packet:
 - group velocity $v = 10^{-3}$ m/s
 - average momentum $p = 10^{-18}$ kg m/s
 - maximum represents the "position"

How accurately can we measure the dust speck's position?

•
$$\psi(x,0) = \frac{1}{\sqrt{2\pi}} \int g(k)e^{ikx}dk \implies \psi(x) = \frac{1}{\sqrt{2\pi}} \int \overline{\psi}(k)e^{ikx}dk$$

 $|\psi(x)|^2 \int \Delta x = \text{uncertainty in } x$
 $\lim_{\text{space}} \int \Delta x = \text{uncertainty in } x$

Fourier theory of equivalent widths immediately yields most common form of the uncertainty principle $\Rightarrow \Delta x \cdot \Delta p \ge \hbar/2$

• Example: dust speck with $m = 10^{-15}$ kg and $v = 10^{-3}$ m/s. If the position is measured to an accuracy of $\Delta x = 0.01 \,\mu$, then

$$\implies \Delta p \cong \frac{\hbar}{\Delta x} = 10^{-26} \text{ kg} \cdot \text{m/s} \implies$$

Since no momentum measuring device can achieve this level of accuracy, both Δx and Δp are negligible. Hence the we can treat the dust speck as a classical particle.

- At the atomic level, Δx and Δp are *not* negligible.
- For NMR, we'll not be dealing with *x* and *p*, but rather another intrinsic property of matter known as spin.

Summary: Wave Functions

- Replaces the classical concept of a trajectory.
- $\psi(\vec{r},t)$ contains all information possible to obtain about a particle.
- Probability of finding particle in differential volume $d^3 \vec{r}$ is given by

$$d\mathbf{P}(\vec{r},t) = C |\psi(\vec{r},t)|^2 d^3 \vec{r}$$

normalization constant

• Time evolution given by the Schrödinger's equation:

$$\frac{\partial}{\partial t}\psi(\vec{r},t) = -\frac{i}{\hbar}H\psi(\vec{r},t)$$

Next Lecture: Mathematics of QM

Appendix I Plausibility of Schrodinger's Eqn. Given...

kinetic

energy

potential

wavenumber

 $E = \omega \hbar$ frequency

Reasonable to look for a QM wave of the form:

$$\psi(x,t) = e^{i(kx - \omega t)}$$

Sinusoidal traveling wave with constant wavenumber and frequency (momentum and energy). For example, this satisfies Newton and de Broglie-Einstein for V=constant.

Plausibility of Schrodinger's Eqn.

Consider:

$$\frac{\partial}{\partial x}\psi(x,t) = i\frac{p}{\hbar}e^{i(kx-\omega t)} \implies -i\hbar\frac{\partial}{\partial x}\psi(x,t) = p\psi(x,t)$$

operator form: $\hat{p} = -i\hbar\frac{\partial}{\partial x}$

$$\frac{\partial}{\partial t}\psi(x,t) = -i\frac{E}{\hbar}e^{i(kx-\omega t)} \implies i\hbar\frac{\partial}{\partial t}\psi(x,t) = E\psi(x,t)$$
operator form: $\hat{E} = i\hbar\frac{\partial}{\partial t}$

Substituting into operator form of energy equation:

$$\hat{E}\psi(x,t) = \frac{\hat{p}^2}{2m}\psi(x,t) + \hat{V}\psi(x,t) \implies i\hbar\frac{\partial}{\partial t}\psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) + \hat{V}\psi(x,t)$$

Note: equation linear in ψ , hence waves can add yielding interference effects, etc.