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Lecture #3���
Quantum Mechanics:  Introduction
•  Topics

–  Why QM for magnetic resonance?
–  Historical developments
–  Wavefunctions

•   Handouts and Reading assignments
–  Levitt, Chapter 6 (optional)
–  Miller, Chapter 1-3 (optional).
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Classical versus Quantum NMR
•  QM is only theory that correctly predicts behavior of matter 

on the atomic scale, and QM effects are seen in vivo.

•  Systems of isolated nuclei can be described with the 
intuitive picture of a classical magnetization vector rotating 
in 3D space (Bloch equations).

•  Systems of interacting nuclei, in particular spin-spin 
coupling, require a more complete QM description (density 
matrix theory).

•  We will develop a QM analysis of MR, based on density 
matrix theory, but retaining the intuitive concepts of 
classical vector models (product operator formalism).
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19th Century Physics
•  At the end of the 19th century, physicists divided the world 

into two entities:

Electromagnetic 
Fields & WavesMatter

Newtonian 
Mechanics

Lorentz 
Force

Maxwell’s 
Equations

Classical Physics
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Early 20th Century Physics

Classical
Physics

Remains valid for 
velocities << c and 

macroscopic dimensions 

Relativistic 
Quantum

Mechanics

Analogy: geometric optics versus inclusion of diffraction effects

Not used in this 
class (except for 
one important 

result).

Relativityvelocity

Quantum
Mechanics

size
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Blackbody Radiation
•  A blackbody is an object that absorbs all incident thermal 

radiation. 

ρT (ν )dν =
8πν2kT
c3

dν

Rayleigh-Jeans formula
•  Classical theory leads 

to the “ultraviolet 
catastrophe”

ρT (ν )dν =
8πν2

c3
hν

ehν / kT −1
dν

•  Max Planck solved 
problem by assuming 
energy is quantized 
such that

E=nhν
where n=integer and 

h=6.63x10-34 j·s.

Planck’s formula

Planck’s Theory of Cavity Radiation (1900)  =>  energy quantization
ref: Eisberg and Resnick, Quantum Physics, pp 3-24.
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Photons

•  EM waves (radiation) exhibit both wave and particle features 
with parameters linked by

–  Proposed a return to the particle theory of light. i.e. 
light = photons each with energy hν.

–  Note: photons not experimentally shown to exist until the 
Compton effect (1924).

–  Photons explain the photoelectric effect (1905).

•  Einstein generalized Planck’s results

  

€ 

E = hν = !ω

  

€ 

! p = "
! 
k   

€ 

! 
k = 2π /λ

  

€ 

! = h /2π
where wavelength

Planck-Einstein relations
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Matter Wave-Particle Duality
•  de Broglie (1923) hypothesis: material particles (e.g. electrons, 

protons, etc), just like photons, can have wavelike aspects.

•  Wave properties of matter later demonstrated via interference 
patterns obtained in diffraction experiments.

neutron diffraction by 
single NaCl crystal

x-ray diffraction by 
single NaCl crystal
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Matter Wave-Particle Duality

wave number   

€ 

! 
k 

€ 

ω = 2πνangular frequency
  

€ 

! p momentum

€ 

Eenergy   

€ 

E = hν = !ω

  

€ 

! p = "
! 
k 

  

€ 

λ =
2π
! 
k 

=
h
! p 

de Broglie
wavelength

(later we’ll add spin) (remember h is very small) 

•  With each particle we associate: 

•  Example 1:  baseball moving at v = 10 m/s (assume m = 0.1 kg) 

•  Example 2: dust speck with m = 10-15 kg and v = 10-3 m/s 

de Broglie
wavelength

€ 

= 6.6 ×10−24  A
  

€ 

!

€ 

=
h
mv

€ 

λ =
h
p

€ 

= 6.6 ×10−34  m

€ 

= 6.6×10−6  A
  

€ 

!de Broglie
wavelength

€ 

=
h
mv

€ 

λ =
h
p

€ 

= 6.6×10−16  m

Conclusion:  living in a macroscopic world, we have little 
intuition regarding the behavior of matter on the atomic scale.
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Quantum vs Classical Physics
•  QM does not deal directly with observable physical quantities 

(e.g. position, momentum, Mx, My, Mz).
•  QM deals with the state of the system, as described by a 

wavefunction ψ(t) or the density operator ρ(t), independent 
of the observable to be detected.

•  Probability is fundamental.
“If we know the present exactly, 

we can predict the future.”
Classical physics:

“We cannot know the present exactly, 
as a matter of principle.”

Quantum mechanics:
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Wave Functions

- contains all info possible to obtain about the particle

  

€ 

dΡ(! r ,t)∫ =1

- wave functions typically normalized, i.e.   

€ 

ψ(! r ,t) 2∫ d3! r =1

  

€ 

1
C

= ψ(! r ,t) 2∫ d3! r   <<∞
square-integrable!

- interpreted as a probability amplitude of the particle’s presence 
with the probability density given by:

  

€ 

dΡ(! r ,t) = Cψ(! r ,t) 2 d3! r ,    C  constant.

•  For the classical concept of a trajectory (succession in time of the 
state of a classical particle), we substitute the concept of the 
quantum state of a particle characterized by a wave function,           .  

€ 

ψ(! r ,t)

•               

€ 

ψ(! r ,t)
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Schrödinger’s Equation

  

€ 

i! ∂
∂t
ψ(" r ,t) = −

!2

2m
∇2ψ(" r ,t) + V (" r ,t)ψ(" r ,t)

  

€ 

ψ(! r ,t)•  How does            change with time?

•  Time evolution given by the Schrödinger’s equation:

•  Often written:
  

€ 

∂
∂t
ψ(! r ,t) = −

i
"

Hψ(! r ,t)

potential energy

(H operator for total energy 
called the Hamiltonian)  

€ 

H = −
!2

2m
∇2 + V (" r ,t)where

Laplacian: ∇2 =
∂ 2

∂x2
+
∂ 2

∂y2
+
∂ 2

∂z2

kinetic energy potential energy

€ 

H =
p2

2m
+VNote, classically

  

€ 

p = −i! ∂
∂
" r 

In QM, physical 
quantities are 
expressed as 
operators.
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Quantum Description of a Free 
Particle

•  For a particle subject to no external forces:

  

€ 

V (! r ,t) = 0

•  Since,                   , the probability of finding the particle is 
uniform throughout space.

  

€ 

ψ(! r ,t) 2 = A 2

Note, strictly speaking,            is not square integrable, but as engineers we won’t 
worry too much about this (comparable to dealing with δ(x) in Fourier theory).

  

€ 

ψ(! r ,t)

  

€ 

i! ∂
∂t
ψ(" r ,t) = −

!2

2m
∇2ψ(" r ,t)

•  Easy to show that this equation is satisfied by:

  

€ 

ψ(! r ,t) = Aei(
! 
k ⋅
! 
r −ωt ) where

  

€ 

ω =
!
" 
k 2

2m

plane wave with wave number   

€ 

! 
k = ! p /"
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Series1

x

€ 

ψ(x) 2

Quantum Description of a Free 
Particle (cont.)

•  Linearity of Schrodinger’s equation implies superposition holds, 
i.e. general linear combination of plane waves is also a solution.

  

€ 

ψ(! r ,t) =
1

2π( )3 / 2
g(
! 
k )ei(

! 
k ⋅
! 
r −ω(

! 
k )t )d3

! 
k ∫

•  Consider 1D case evaluated at a fixed time, say t=0:

€ 

ψ(x,0) =
1
2π

g(k)eikxdk∫

wave packet
Probability of finding 
the particle at a given 

point in space.
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Wave Packets
•  Example: dust speck with m = 10-15 kg and v = 10-3 m/s 

de Broglie
wavelength

€ 

= 6.6 ×10−6  A
  

€ 

!

€ 

=
h
mv

€ 

λ =
h
p

€ 

= 6.6 ×10−16  m

Series1

x

€ 

ψ(x) 2
wave packet

Probability of finding 
the dust speck at a 

given point in space.

–  group velocity v = 10-3 m/s 
–  average momentum p = 10-18 kg m/s 
–  maximum represents the “position”

•  In quantum terms, the dust speck is described by a wave packet:
€ 

Δx = uncertainty in x

How accurately can we measure the dust speck’s position?
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Wave Packets

Series1

x

ψ (x)2

space

•   

€ 

ψ(x,0) =
1
2π

g(k)eikxdk∫

Fourier theory of equivalent widths immediately yields most 
common form of the uncertainty principle   

€ 

Δx⋅ Δp ≥ ! /2

Series1

k

ψ (k)2

momentum

  

€ 

p = !kremember:

€ 

ψ(x) =
1
2π

ψ (k)eikxdk∫

€ 

Δp= uncertainty in p

€ 

Δx = uncertainty in x

•  Example: dust speck with m = 10-15 kg and v = 10-3 m/s.  If the 
position is measured to an accuracy of                    , then

€ 

Δx = 0.01 µ

  

€ 

Δp ≅ !
Δx

=10−26  kg ⋅m/s
Since no momentum measuring device can 
achieve this level of accuracy, both Δx and 
Δp are negligible.  Hence the we can treat 
the dust speck as a classical particle.

•  For NMR, we’ll not be dealing with x and p, but rather 
another intrinsic property of matter known as spin.

•  At the atomic level, Δx and Δp are not negligible.
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Summary: Wave Functions
•  Replaces the classical concept of a trajectory.

•  Time evolution given by the Schrödinger’s equation:

  

€ 

∂
∂t
ψ(! r ,t) = −

i
"

Hψ(! r ,t)

•             contains all information possible to obtain about a particle.  

€ 

ψ(! r ,t)

  

€ 

dΡ(! r ,t) = Cψ(! r ,t) 2d3! r 
normalization 

constant

•  Probability of finding particle in differential volume       is given by  

€ 

d3! r 
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Next Lecture: Mathematics of QM
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Appendix I���
Plausibility of Schrodinger’s Eqn.

Given…

€ 

F =
d
dt
p

€ 

E =
p2

2m
+VNewton:

de Broglie-Einstein:

force momentum energy kinetic potential

  

€ 

k = 2π λ = p
!   

€ 

E =ω!

wavenumber frequency

Reasonable to look for a QM wave of the form:

€ 

ψ (x,t) = ei kx−ωt( ) Sinusoidal traveling wave with constant wavenumber and 
frequency (momentum and energy).  For example, this satisfies 
Newton and de Broglie-Einstein for V=constant.

(1 d case)
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Plausibility of Schrodinger’s Eqn.
Consider:

€ 

ˆ E ψ(x,t) =
ˆ p 2

2m
ψ(x, t) + ˆ V ψ(x,t)

  

€ 

∂
∂x
ψ (x,t) = i p

!
ei kx−ωt( )

  

€ 

−i! ∂
∂x
ψ (x,t) = pψ (x,t)

  

€ 

ˆ p = −i! ∂
∂x

operator form:

  

€ 

∂
∂t
ψ (x,t) = −i E

!
ei kx−ωt( )

  

€ 

i! ∂
∂t
ψ(x,t) = Eψ(x, t)

  

€ 

ˆ E = i! ∂
∂t

operator form:

Substituting into operator form of energy equation:

  

€ 

i! ∂
∂t
ψ(x,t) = −

!2

2m
∂ 2

∂x 2ψ(x,t) + ˆ V ψ(x, t)

Note: equation linear in ψ, hence waves 
can add yielding interference effects, etc.


