Today's Discussion

1

- Sound
 - Beats &

Sound

- Sound waves will be this course's favorite longitudinal wave
- So favorite, in fact, that all longitudinal waves will be referred to as sound waves
 - seismic waves are sound
 - sonar is sound
 - music is sound
- We will focus on audible sound waves traveling through air

(For Certain Ears, More Sounds are Audible)

New meaning to the phrase "I'm all ears"

© Copyright Spook, 1996

Some Definitions and Terms

- Imagine a source of sound
 - treat it as a point source, meaning
 - the emitting region is small compared to the distance between source and detector
 - example: the running motor of a farm tractor in the middle of a field
- Picture of/a point source
 - 3-d (2-d shown)
 - wavefront:
 - surface where oscillations of the air due to the sound wave are the same
 - ray: \perp to wavefronts

Notice how it starts to look flat, a.k.a. planar

Speed of Sound

- In air at 0°C: 331m/s
 - $v = (B/\rho)^{\frac{1}{2}}$
- In Helium: 965m/s

 $v=f\lambda \to v/\lambda\,$ so your voice is higher-pitched after breathing Helium

- In Water: 1402m/s
- In Steel: 5941m/s
- In Vacuum: Om/s

• In String
$$v = \sqrt{T/\mu}$$
 $T=$ tension in string & $\mu =$ mass/length

Example: Sound Wave Generator

• Tuning Fork

Interference

Simplest case

- Two identical sources of sound emitting in phase
- What is detected at a point some distance from both sources?

Interference

- If distant point "P" is equidistant from both sources, there will be constructive interference
- If not, there might not be!

Interference: Quantitative

- The phase difference in the waves at the detection point is directly related to $\Delta L = |L_1 - L_2|$, the pathlength difference
- One full wavelength difference corresponds to 2π phase difference:

$$\phi/2\pi = \Delta L/\lambda \rightarrow \phi = 2\pi(\Delta L/\lambda)$$

- fully constructive: $\phi = m(2\pi)$

• I.e., $\Delta L/\lambda = 0, 1, 2, ...$

- fully destructive: $\phi = (2m+1)\pi$
 - I.e., $\Delta L/\lambda = 0.5$, 1.5, 2.5

Interference : example

Sound of wavelength λ travels rightward from a source through the tube structure shown below. What is the smallest value of the radius r for which an intensity minimum is detected by the detector?

Beats

 If two slightly-different frequencies are emitted from a point source (say, two closely-spaced speakers) what is heard some distance away?

- $s_1 = s_m cos(\omega_1 t)$ and $s_2 = s_m cos(\omega_2 t)$

- $-s = s_1 + s_2 = s_m(\cos(\omega_1 t) + \cos(\omega_2 t))$
- using trigonometry
 - $\cdot \mathbf{s} = 2\mathbf{s}_{\mathsf{m}} \cos(\frac{1}{2}(\omega_1 \omega_2)\mathbf{t}) \cos(\frac{1}{2}(\omega_1 + \omega_2)\mathbf{t})$
 - call $\omega' = \frac{1}{2}(\omega_1 \omega_2)$ and $\omega = \frac{1}{2}(\omega_1 + \omega_2)$
 - s = $2s_m \cos(\omega't) \cos(\omega t)$
- Prediction: will hear two different frequencies, the average and the half the difference

Beats

- The difference frequency is also called the "beat" frequency
- For two frequencies close together, beat frequency is low and easy to hear
 - used to tune instruments to a standard

Intensity and Sound Level

- How can we measure how loud something is?
 - Not as easy as it seems—we need to cover many orders of magnitude
 - To surmount this problem, use logarithms
 - Reminder: if y=log(x) then
 - \cdot when x increases by 10, y increases by 1
 - when x increases by 10^{12} , y increases by 12
- Define the sound level as
 - $\beta = (10 \text{ db}) \log(I/I_{o})$
 - units: "decibels"
 - I_o ="standard reference intensity"=10⁻¹²W/m²

Expression for Intensity & Variation of Intensity w/Distance

• $I = \frac{1}{2}\rho v \omega^2 s_m^2$

- derived in text

 Ignoring echos, and with sound emitted isotropically (w/equal intensity in all directions), and assuming mechanical energy of wave is conserved...

- I =
$$P_s/(4\pi r^2)$$
 (P_s : power of source)

Inverse square law!

The Human Ear

- The range of human hearing
 - The faintest audible sounds at 1kHz have an intensity of I=I_o=10⁻¹²W/m²
 - The pain threshold is at I=1W/m²

The Who

- As detailed in the text, The Who set a record for the loudest concert—the sound level was 120db 46m from the stage (0.03 mi)
- How far away would you have to be to hear this concert as if it was a conversation, which is at about 60 db?

(A) 0.3 mi (B) 3 mi (C) 30 mi (D) 300 mi

The Who

- 120db = 10db $\log(I/I_{o})$ at 46m
 - $-I = 1 W/m^2 at 46m$
- I = $P_{s}/(4\pi r^{2})$
 - $-P_{s} = 26.6 kW$
- At 60db, conversation level:
 - $-I = 10^{-6} W/m^2$
- At what distance?
 - 26,600W = $(10^{-6} \text{ W/m}^2)(4\pi r^2)$
 - r = 46km!!! ~ 30 mi

Musical Sound: Organ Pipes

- Recall:
 - a string (e.g., a guitar string) attached at both ends can support standing waves
 - for suitable wavelengths, waves traveling from one end reflect off the other end & all the waves interfere with one another to produce a standing wave
 - A standing wave is what you hear—all other wavelengths get removed by destructive interference

Musical Sound: Organ Pipes

- Other musical instruments operate in a similar way
- Consider standing waves in a pipe
 - if an end of the pipe is closed, that must be a node (zero displacement)
 - if an end is open, that must be an antinode
- For a pipe with two open ends:

Musical Sound: Organ Pipes

- This is called the "fundamental mode" or "first harmonic"
 - It represents the least wiggly wave pattern that will fit in the pipe
- Can also put in wigglier patterns
 - 2nd harmonic, 3rd harmonic...
- A pipe with one closed end looks a little different

Quantifying Standing Wave Patterns in Pipes

- Pipe with two open ends:
 - f = v/λ = nv/2L
 - n = 1, 2, 3,...
- Pipe with one open end:
 - f = v/λ = nv/4L
 - n = 1, 3, 5...

Pipe waves Example

 Organ pipe A, with both ends open, has a fundamental frequency of 300Hz. The third harmonic of organ pipe B, with one end open, has the same frequency as the second harmonic of pipe A. How long are pipes A & B?

Doppler Effect. Qualitative.

- The Doppler effect occurs when there is relative motion between the source and detector of waves
 - The detected frequency may be either increased or decreased as a result
 - All velocities are measured relative to velocity of air (i.e., wind speed) medium, through which waves propagate
- Doppler effect applies to ALL waves, including light. Heavily used in astronomy to measure speeds of, say, stars.

Left observer counts fewer wavefronts, i.e. *wavelength dilates*

Right observer counts more wavefronts, i.e. wavelength shrinks

The Doppler Effect for a moving sound source

Doppler Effect. Quantitative.

Detector moving, source not

$$f' = f \frac{v \pm v_D}{v}$$

Source moving, detector not

$$f' = \frac{v}{\lambda'} = \frac{v}{(vT \pm v_S T)} = f \frac{v}{v \pm v_S}$$

Source & detector moving

$$f' = f \frac{v \pm v_D}{v \pm v_S}$$

•Remembering which sign to use

-frequency should increase whenever source and/or detector move toward one another; decrease otherwise

Doppler Examples: Some Notes

- Note 1: The Doppler effect and the beats that result when a source wave is added to a reflected wave are often used together in devices
- Note 2: When a device emits waves that bounce off a moving object, the Doppler effect occurs <u>twice</u>
 - First, when the moving object "hears" the waves, which are Doppler-shifted by virtue of the motion of the object (the "detector")
 - Second, when the <u>moving</u> object reflects (re-emits) the wave, it is Doppler-shifted again—now the moving object has become the source

Doppler Examples: Qualitative

Police radar

- K-band broadcast at 30
 GHz (30x10⁹Hz)
- Doppler-shifted waves reflect, off your car as you move towards the police car
- Radar unit then measures the beat frequency arising from the original 30 GHz signal mixed with the reflected (30+δ) GHz signal
 - at 65mph, beat frequency is about 5,800Hz
 - at 75mph, beat frequency is about 6,700Hz

- Questions to ask yourself (not the officer):
 - how well is 30 GHz calibrated?
 - how well can beat frequency be measured?
 - what happens if the police car is also moving?
 - if you wire up a K-band broadcaster at (30+ δ) GHz, with δ suitably small, can you defeat the system?
 - warning: some radars run in the X band, at 10.6 GHz

Doppler Examples: Qualitative

- Rate of blood flow
 - reflect ultrasound off red-blood cells in an artery
 - reflected ultrasound is Doppler shifted

Doppler Example: Quantitative

- An acoustic burglar alarm consists of a source emitting waves of frequency 28kHz. What is the beat frequency between the source waves and the waves reflected from an intruder walking at an average speed of 0.95m/s directly away from the alarm?
 - use f' = f (v v_D)/(v + v_S)
 - beat freq. = $f-f' = f(1 (v v_D)/(v + v_S))$
 - with v = 343m/s, $v_D = v_s = 0.95$, f-f'=155Hz
- Important to note: there were two Doppler shifts in this problem!
 - burglar receives waves, Doppler shifted
 - burglar re-broadcasts the Doppler shifted waves, with another Doppler shifting!

What we learned

- Intensity of sound
 - $-I = P_{s}/(4\pi r^{2})$
- Pipes w/ ends
 - Draw 'em
- Interference of waves $\phi/2\pi = \Delta L/\lambda$
- Intensity of sound

- f' = f (v
$$\pm$$
 v_D)/(v \pm v_S)

Next Time

- Thermodynamics
- Zeroth Law of Thermodynamics
- Temperature
- Thermal expansion
- Heat