Today's Discussion

- Sound
- Beats \& inpulet

Sound

- Sound waves will be this course's favorite longitudinal wave
- So favorite, in fact, that all longitudinal waves will be referred to as sound waves
- seismic waves are sound
- sonar is sound
- music is sound
- We will focus on audible sound waves traveling through air

(For Certain Ears, More Sounds are Audible)

New meaning to the phrase "I'm all ears"

Some Definitions and Terms

- Imagine a source of sound
- treat it as a point/source, meaning
- the emitting region is small compared to the distance between source and detector
- example: the running motor of a farm trqctor in the middle of a field

Notice how it starts to look flat, a.k.a. planar

- Picture of a point source
- 3-d (2-d shown)
- wavefroht:
- surfdce where oscillations of the air que to the sound wave are the same
- ray: \perp to wavefronts

Speed of Sound

- In air at $0^{\circ} \mathrm{C}: 331 \mathrm{~m} / \mathrm{s}$

$$
v=(B / \rho)^{\frac{1}{2}}
$$

- In Helium: $965 \mathrm{~m} / \mathrm{s}$ $v=f \lambda \rightarrow v / \lambda$ so your voice is higherpitched after breathing Helium
- In Water: $1402 \mathrm{~m} / \mathrm{s}$
- In Steel: $5941 \mathrm{~m} / \mathrm{s}$
- In Vacuum: $0 \mathrm{~m} / \mathrm{s}$
- In String $v=\sqrt{T / \mu} \quad T=$ tension in string \& $\mu=$ mass/length

Example: Sound Wave Generator

- Tuning Fork

Interference

- Simplest case
- Two identical sources of sound emitting in phase
- What is detected at a point some distance from both sources?

Interference

- If distant point "P" is equidistant from both sources, there will be constructive interference

- If not, there might not be!

Interference: Quantitative

- The phase difference in the waves at the detection point is directly related to $\Delta L=\left|L_{1}-L_{2}\right|$, the pathlength difference
- One full wavelength difference corresponds to 2π phase difference:

$$
\phi / 2 \pi=\Delta L / \lambda \rightarrow \phi=2 \pi(\Delta L / \lambda)
$$

- fully constructive: $\phi=m(2 \pi)$
- I.e., $\Delta L / \lambda=0,1,2, \ldots$
- fully destructive: $\phi=(2 m+1) \pi$
- I.e., $\Delta L / \lambda=0.5,1.5,2.5$

Interference : example

Sound of wavelength λ travels rightward from a source through the tube structure shown below. What is the smallest value of the radius r for which an intensity minimum is detected by the detector?

Source

Detector

Beats

- If two slightly-different frequencies are emitted from a point source (say, two closely-spaced speakers) what is heard some distance away?
$-s_{1}=s_{m} \cos \left(\omega_{1} t\right)$ and $s_{2}=s_{m} \cos \left(\omega_{2} t\right)$
$-s=s_{1}+s_{2}=s_{m}\left(\cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)\right)$
- using trigonometry

$$
\begin{aligned}
& \cdot s=2 s_{m} \cos \left(\frac{1}{2}\left(\omega_{1}-\omega_{2}\right) t\right) \cos \left(\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) t\right) \\
& -\operatorname{call} \omega^{\prime}=\frac{1}{2}\left(\omega_{1}-\omega_{2}\right) \text { and } \omega=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) \\
& \cdot s=2 s_{m} \cos \left(\omega^{\prime} t\right) \cos (\omega t)
\end{aligned}
$$

- Prediction: will hear two different frequencies, the average and the half the difference

Beats

- The difference frequency is also called the "beat" frequency
- For two frequencies close together, beat frequency is low and easy to hear
- used to tune instruments to a standard

Intensity and Sound Level

- How can we measure how loud something is?
- Not as easy as it seems-we need to cover many orders of magnitude
- To surmount this problem, use logarithms
- Reminder: if $y=\log (x)$ then
- when x increases by $10, y$ increases by 1
- when x increases by 10^{12}, y increases by 12
- Define the sound level as

$$
\beta=(10 \mathrm{db}) \log \left(I / I_{0}\right)
$$

- units: "decibels"
- $I_{0}="$ standard reference intensity" $=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$

Expression for Intensity \& Variation of Intensity w/Distance

- $I=\frac{1}{2} \rho v \omega^{2} s_{m}{ }^{2}$
- derived in text
- Ignoring echos, and with sound emitted isotropically (w/equal intensity in all directions), and assuming mechanical energy of wave is conserved...
- $I=P_{s} /\left(4 \pi r^{2}\right) \quad\left(P_{s}\right.$: power of source)

Inverse square law!

The Human Ear

- The range of human hearing
- The faintest audible sounds at 1 kHz have an intensity of $I=I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
- The pain threshold is at $\mathrm{I}=1 \mathrm{~W} / \mathrm{m}^{2}$

The Who

- As detailed in the text, The Who set a record for the loudest concert-the sound level was 120 db 46 m from the stage (0.03 mi)
- How far away would you have to be to hear this concert as if it was a conversation, which is at about 60 db ?

> (A) 0.3 mi (B) 3 mi (C) 30 mi (D) 300 mi

The Who

- $120 \mathrm{db}=10 \mathrm{db} \log \left(I / I_{0}\right)$ at 46 m
-I $=1 \mathrm{~W} / \mathrm{m}^{2}$ at 46 m
- $I=P_{s} /\left(4 \pi r^{2}\right)$
$-P_{s}=26.6 \mathrm{~kW}$
- At 60db, conversation level:
- I = $10^{-6} \mathrm{~W} / \mathrm{m}^{2}$
- At what distance?
$-26,600 \mathrm{~W}=\left(10^{-6} \mathrm{~W} / \mathrm{m}^{2}\right)\left(4 \pi \mathrm{r}^{2}\right)$
- $r=46 \mathrm{~km}!!$ ~ 30 mi

Musical Sound: Organ Pipes

- Recall:
- a string (e.g., a guitar string) attached at both ends can support standing waves
- for suitable wavelengths, waves traveling from one end reflect off the other end \& all the waves interfere with one another to produce a standing wave
- A standing wave is what you hear-all other wavelengths get removed by destructive interference

Musical Sound: Organ Pipes

- Other musical instruments operate in a similar way
- Consider standing waves in a pipe
- if an end of the pipe is closed, that must be a node (zero displacement)
- if an end is open, that must be an antinode
- For a pipe with two open ends:

Musical Sound: Organ Pipes

- This is called the "fundamental mode" or "first harmonic"
- It represents the least wiggly wave pattern that will fit in the pipe
- Can also put in wigglier patterns
- $2^{\text {nd }}$ harmonic, $3^{\text {rd }}$ harmonic...
- A pipe with one closed end looks a little different

Quantifying Standing Wave Patterns in Pipes

- Pipe with two open ends:
- $f=v / \lambda=n v / 2 L$
$-n=1,2,3, \ldots$
- Pipe with one open end:
- $f=v / \lambda=n v / 4 L$
- $n=1,3,5$...

Pipe waves Example

- Organ pipe A, with both ends open, has a fundamental frequency of 300 Hz . The third harmonic of organ pipe B, with one end open, has the same frequency as the second harmonic of pipe A. How long are pipes A \& B ?

Doppler Effect. Qualitative.

- The Doppler effect occurs when there is relative motion between the source and detector of waves
- The detected frequency may be either increased or decreased as a result
- All velocities are measured relative to velocity of air (i.e., wind speed) - medium, through which waves propagate
- Doppler effect applies to ALL waves, including light. Heavily used in astronomy to measure speeds of, say, stars.

Left observer counts fewer wavefronts, i.e. wavelength dilates

The Doppler Effert for a moring sound sounce

Right observer counts more wavefronts, i.e. wavelength shrinks

Doppler Effect. Quantitative.

- Detector moving, source not

$$
f^{\prime}=f \frac{v \pm v_{D}}{v}
$$

- Source moving, detector not

$$
f^{\prime}=\frac{v}{\lambda^{\prime}}=\frac{v}{\left(v T \pm v_{S} T\right)}=f \frac{v}{v \pm v_{S}}
$$

- Source \& detector moving

$$
f^{\prime}=f \frac{v \pm v_{D}}{v \pm v_{S}}
$$

-Remembering which sign to use -frequency should increase whenever source and/or detector move toward one another; decrease otherwise

Doppler Examples: Some Notes

- Note 1: The Doppler effect and the beats that result when a source wave is added to a reflected wave are often used together in devices
- Note 2: When a device emits waves that bounce off a moving object, the Doppler effect occurs twice
- First, when the moving object "hears" the waves, which are Doppler-shifted by virtue of the motion of the object (the "detector")
- Second, when the moving object reflects (re-emits) the wave, it is Doppler-shifted again-now the moving object has become the source

Doppler Examples: Qualitative

- Police radar
- K-band broadcast at 30 $6 \mathrm{~Hz}\left(30 \times 10^{9} \mathrm{~Hz}\right)$
- Doppler-shifted waves reflect, off your car as you move towards the police car
- Radar unit then measures the beat frequency arising from the original 30 GHz signal mixed with the reflected $(30+\delta) \mathrm{GHz}$ signal
- at 65 mph , beat frequency is about $5,800 \mathrm{~Hz}$
- at 75 mph , beat frequency is about $6,700 \mathrm{~Hz}$

- Questions to ask yourself (not the officer):
- how well is 30 GHz calibrated?
- how well can beat frequency be measured?
- what happens if the police car is also moving?
- if you wire up a K-band broadcaster at $(30+\delta) \mathrm{GHz}$, with δ suitably small, can you defeat the system?
- warning: some radars run in the X band, at 10.6 GHz

Doppler Examples: Qualitative

- Rate of blood flow
- reflect ultrasound off red-blood cells in an artery
- reflected ultrasound is Doppler shifted

Doppler Example: Quantitative

- An acoustic burglar alarm consists of a source emitting waves of frequency 28 kHz . What is the beat frequency between the source waves and the waves reflected from an intruder walking at an average speed of $0.95 \mathrm{~m} / \mathrm{s}$ directly away from the alarm?
- use $f^{\prime}=f\left(v-v_{D}\right) /\left(v+v_{s}\right)$
- beat freq. $=f-f^{\prime}=f\left(1-\left(v-v_{D}\right) /\left(v+v_{s}\right)\right)$
- with $v=343 \mathrm{~m} / \mathrm{s}, v_{D}=v_{S}=0.95, f-f^{\prime}=155 \mathrm{~Hz}$
- Important to note: there were two Doppler shifts in this problem!
- burglar receives waves, Doppler shifted
- burglar re-broadcasts the Doppler shifted waves, with another Doppler shifting!

What we learned

- Intensity of sound
- I = $P_{s} /\left(4 \pi r^{2}\right)$
- Pipes w/ ends
- Draw 'em
- Interference of waves
$\phi / 2 \pi=\Delta L / \lambda$
- Intensity of sound
$-f^{\prime}=f\left(v \pm v_{D}\right) /\left(v \pm v_{S}\right)$

Next Time

- Thermodynamics
- Zeroth Law of Thermodynamics
- Temperature
- Thermal expansion
- Heat

