
CS143
Lecture 3

1

Lexical Analysis

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

2

Outline

• Informal sketch of lexical analysis
– Identifies tokens in input string

• Issues in lexical analysis
– Lookahead
– Ambiguities

• Specifying lexers (aka. scanners)
– By regular expressions (aka. regex)
– Examples of regular expressions

• What do we want to do? Example:
if (i == j)

Z = 0;
else

Z = 1;

• The input is just a string of characters:
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Goal: Partition input string into substrings
– Where the substrings are called tokens

3

Lexical Analysis

4

What’s a Token?

• A syntactic category
– In English:

noun, verb, adjective, …

– In a programming language:
Identifier, Integer, Keyword, Whitespace, …

5

Tokens

• A token class corresponds to a set of strings

• Examples
– Identifier: strings of letters or
 digits, starting with a letter
– Integer: a non-empty string of digits
– Keyword: “else” or “if” or “begin” or …
– Whitespace: a non-empty sequence of blanks,

newlines, and tabs

var1
i

foo
ports

Person
…

Infinite set

6

What are Tokens For?

• Classify program substrings according to role

• Lexical analysis produces a stream of tokens
• … which is input to the parser

• Parser relies on token distinctions
– An identifier is treated differently than a keyword

7

Designing a Lexical Analyzer: Step 1

• Define a finite set of tokens

– Tokens describe all items of interest
• Identifiers, integers, keywords

– Choice of tokens depends on
• language
• design of parser

8

Example

• Recall
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Useful tokens for this expression:
Integer, Keyword, Relation, Identifier, Whitespace, (,),

=, ;

• N.B., (,), =, ; above are tokens, not characters

9

Designing a Lexical Analyzer: Step 2

• Describe which strings belong to each token

• Recall:
– Identifier: strings of letters or digits, starting with a letter
– Integer: a non-empty string of digits
– Keyword: “else” or “if” or “begin” or …
– Whitespace: a non-empty sequence of blanks,

newlines, and tabs

10

Lexical Analyzer: Implementation

• An implementation must do two things:

1. Classify each substring as a token

2. Return the value or lexeme (value) of the token
– The lexeme is the actual substring
– From the set of substrings that make up the token

• The lexer thus returns token-lexeme pairs
– And potentially also line numbers, file names, etc. to

improve later error messages

11

Example

• Recall:
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

12

Lexical Analyzer: Implementation

• The lexer usually discards “uninteresting” tokens
that don’t contribute to parsing.

• Examples: Whitespace, Comments

13

True Crimes of Lexical Analysis

• Is it as easy as it sounds?

• Sort of… if you do not make it hard!

• Look at some history

14

Lexical Analysis in FORTRAN

• FORTRAN rule: Whitespace is insignificant

• E.g., VAR1 is the same as VA R1

• A terrible design!

• Historical footnote: FORTRAN Whitespace rule
motivated by inaccuracy of punch card operators

15

FORTRAN Example

• Consider
– DO 5 I = 1,25
– DO 5 I = 1.25

16

Lexical Analysis in FORTRAN (Cont.)

• Two important points:

1. The goal is to partition the string. This is implemented
by reading left-to-right, recognizing one token at a time

2. “Lookahead” may be required to decide where one
token ends and the next token begins

17

Lookahead

• Even our simple example has lookahead issues
– i vs. if
– = vs. ==

18

Lexical Analysis in PL/I

• PL/I keywords are not reserved
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

19

Lexical Analysis in PL/I (Cont.)

• PL/I Declarations:
DECLARE (ARG1,. . ., ARGN)

• Cannot tell whether DECLARE is a keyword or
array reference until after the).
– Requires arbitrary lookahead!

20

Lexical Analysis in C++

• Unfortunately, the problems continue today

• C++ template syntax:
Foo<Bar>

• C++ stream syntax:
cin >> var;

• But there is a conflict with nested templates:
Foo<Bar<Bazz>>

Closing templates, not stream

21

Review

• The goal of lexical analysis is to
– Partition the input string into lexemes
– Identify the token of each lexeme

• Left-to-right scan => lookahead sometimes
required

22

Next

• We still need
– A way to describe the lexemes of each token

– A way to resolve ambiguities
• Is if two variables i and f?
• Is == two equal signs = =?

23

Regular Languages

• There are several formalisms for specifying tokens

• Regular languages are the most popular
– Simple and useful theory
– Easy to understand
– Efficient implementations

24

Languages

Def. Let alphabet Σ be a set of characters.
A language over Σ is a set of strings of

characters drawn from Σ.

25

Examples of Languages

• Alphabet = English
characters

• Language = English
sentences

• Not every string of English
characters is an English
sentence

• Alphabet = ASCII

• Language = C programs

• Note: ASCII character set
is different from English
character set

26

Notation

• Languages are sets of strings.

• Need some notation for specifying which sets we
want

• The standard notation for regular languages is
regular expressions.

27

Atomic Regular Expressions

• Single character

• Epsilon

{ }' ' " "c c=

{ }""ε =
Not the empty set, but set with
a single, empty, string.

• Union

A* = ∪i≥0 Ai where Ai = AA . . . A

28

Compound Regular Expressions

{ }| or A B s s A s B+ = ∈ ∈

{ }| and AB ab a A b B= ∈ ∈

i times

• Concatenation

• Iteration

29

Regular Expressions

• Def. The regular expressions over Σ are the
smallest set of expressions including

*

' ' where
where , are rexp over
" " "
where is a rexp over

c c
A B A B
AB
A A

ε

∈∑

+ ∑

∑

30

Syntax vs. Semantics

{ }| and AB ab a A b B= ∈ ∈

B as a piece of syntax

• Notation so far was imprecise

B as a set
(the semantics of the syntax)

31

Syntax vs. Semantics

Syntax (label)

a b

L('a' + 'b') Semantics (content)

'a' + 'b'Box 'a'*

a
aa aaa

ϵ . . .

L('a'*)

32

Syntax vs. Semantics

• To be careful, we distinguish syntax and semantics.

{ }

*
0

() ""
(' ') {" "}
() () ()
() { | () and ()}
() ()i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=

=

+ = ∪

= ∈ ∈

= !L(A*) = ∪i≥0 L(Ai)

33

Segue

• Regular expressions are simple, almost trivial
– But they are useful!

• We will describe tokens in regular expressions

34

Example: Keyword

Keyword: “else” or “if” or “begin” or …

‘else’ + ‘if’ + ‘begin’ + . . .

Abbreviation: ‘else’ = ‘e’ ‘l’ ‘s’ ‘e’

35

Example: Integers

Integer: a non-empty string of digits

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

Abbreviation: A+ = AA*
Abbreviation: [0-2] = '0' + '1' + '2'

36

Example: Identifier

Identifier: strings of letters or digits, starting with a
letter

letter = ‘A’ + . . . + ‘Z’ + ‘a’ + . . . + ‘z’

identifier = letter (letter + digit)*

Is (letter* + digit*) the same as (letter + digit)*?

37

Example: Whitespace

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

()' ' + '\n' + '\t' +

38

Example: Phone Numbers

• Regular expressions are all around you!
• Consider (650)-723-3232

{ }
3

4

3

exchange = digit
phone = digit
area = digit
phone_number = '(' area ')-' exc

= digits -,(,)

hange '-' phone

∑ ∪

39

Example: Email Addresses

• Consider anyone@cs.stanford.edu

{ }
+name = letter

address = name '@' name '.'

letters

name '.

'

.,@

 name

∑ = ∪

40

Example: Unsigned Pascal Numbers

+

digit = '0' +'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
digits = digit
opt_fraction = ('.' digits)
opt_exponent = ('E' ('+' + '-' +) digits) +
num = digits opt_fraction opt_exponent

ε

ε ε

+

41

Other Examples

• File names
• Grep tool family

42

Summary

• Regular expressions describe many useful
languages
– We will look at non-regular languages next week

• Regular languages are a language
specification
– We still need an implementation

• Next time: Given a string s and a rexp R, is
()?∈s L R

