


Lecture 3: Verification and

Validation

Software Quality Assurance (INSE
6260/4-UU)

Winter 2016



2

INSE 6260/4-UU

Software
Quality

Assurance

Software
Quality

 Factors and
Models

Metrics

Quality
Assurance

Inspection
Testing

Techniques
Reachability

Analysis



3

Overview

 Preliminary Notions

 Validation and Verification Approaches

 Software Inspection



4

 Verification:

 "Are we building the product right”

 The software should conform to its

specification

 Validation:

 "Are we building the right product”

 The software should do what the user

really requires

Verification vs. Validation



5

Verification - The process of evaluating a system or

component to determine whether the products of a given

development phase satisfy the conditions imposed at the

start of that phase

Validation - The process of evaluating a system or

component during or at the end of the development process

to determine whether it satisfies the requirements

Qualification - The process used to determine whether a

system or component is suitable for operational use

Verification, Validation and

Qualification



6

 Is a whole life-cycle process - V & V

must be applied at each stage in the

software process

 Has two principal objectives

 The discovery of defects in a system

 The assessment of whether or not the

system is useful and useable in an

operational situation

The V & V Process



7

V & V Goals

 Should establish confidence that the

software is fit for purpose

 Does NOT mean completely free of

defects

 Rather, it must be good enough for its

intended use and the type of use will

determine the degree of confidence that

is needed



8

Defect Origins & Discovery

When Validation is the Primary Removal Method:

Defect

Origins

Defect

Discovery

Defect

Origins

Defect

Discovery

With Technical Reviews and Verification:

Requirements Design Coding Documentation Testing Maintenance

Requirements Design Coding Documentation Testing Maintenance

Requirements Design Coding Documentation Testing Maintenance

Requirements Design Coding Documentation Testing Maintenance



9

Verification Reduces Project

Costs & Schedule

Project

Cost

Time Schedule

 Savings

With verification Without verification



10

Overview

  Preliminary Notions

 Verification Approaches

 Software Inspection



11

The Link to Software

Engineering

Models of Computation

Language

Models
e.g. -calculus

Machine

Models
e.g. Turing

Machines

Computational Problems
e.g. search in list

Program/Algorithm for

Solving Problem

Correctness Efficiency

Programming

Language

Theory

Computability

Theory

Complexity

Theory

Algorithms



12

 Static verification

 Concerned with analysis of the static
system representation to discover
problems

 May be supplemented by tool-based
document and code analysis

 Dynamic verification (testing)

 Concerned with exercising and observing
product behaviour

 The system is executed with test data and
its operational behaviour is observed

Two Approaches



13

Static and Dynamic Verification

Formal
specification

High-level
design

Requirements
specification

Detailed
design

Program

Prototype
Dynamic
validation

Static
verification



14

Formal and Informal

Verification

 Formal: Applying formal methods to software

verification

 Mathematics

 Logics

 Informal: Anything else is informal, including

review and inspection



15

Formal Verification

 Applying mathematics at large for modeling and

analyzing software

 Establishing software correctness with

mathematical rigor

 Two classes of formal verification techniques:

 Proof-based techniques: theorem proving

 Model-based techniques: model-based testing, model-

based simulation, model checking



16

Model Checking

 Model checking: Developed independently by Clarke,

Emerson, and Sistla and by Queille and Sifakis in

early 1980’s

 It consists of three parts:

1. A framework for modeling software (some kind of

specification language)

2. A specification language for describing the

properties to be verified

3. A verification method for establishing if the software

description satisfies the specification



17

Model Checking Approach



18

Model Checking

Property 

Temporal Logic

System Model M

Kripke Structure

Model Checker

Yes, the property is satisfied No, Counter example

The model turns out!



19

Testing Activity



20

Overview

  Preliminary Notions

  Verification Approaches

 Software Inspection



21

Software Inspection Activities



22

What are Inspections?

An inspection is a structured peer review:

 That Provides: To:

 Defect information Author

 Other perspectives on work Author

Accurate project status Product Management

 Generic defects (trends) Management



23

Candidates for Reviews and Inspections

 Strategic Plans

 Contracts

 Requirements

 High Level Designs

 Detailed Designs

 Architectural

Documentation

 Code

 Test Plans

 Test Designs

 User

Documentation

 Project Plans, etc.



24

Benefits

 Inspections provide a powerful way to:

 Detect defects early in the development
cycle

 Prevent the migration of defects to later
phases

 Improve the quality and productivity of the
development and test process

 Reduce cost and cycle time

 Reduce maintenance effort

Review early and often



25

Software Inspections (Static

Verification)

 Inspections do not require execution of a system so

may be used before implementation

 Not just program source code

 May be applied to any representation of the

system (requirements, design,configuration data,

test data, etc.)

 Have been shown to be an effective technique for

discovering program errors



26

Inspection Success

 Many different defects may be discovered in a single

inspection. In testing, one defect, may mask another,

so several executions are required

 Incomplete versions can be inspected

 Other quality attributes such as coding standards,

maintainability, portability can also be checked

 The reviewers reuse domain and programming

knowledge so they are likely to have seen the types

of error that commonly arise



27

Inspections and Testing

 Complementary and not opposing verification

techniques

 Both should be used during the V & V

process

 Inspections cannot check non-functional

characteristics such as performance,

usability, etc.



28

Program Inspections

 A systematic approach to document

reviews

 Intended explicitly for defect detection (not

correction)

 Defects may be logical errors, anomalies

in the code that might indicate an

erroneous condition (e.g. an uninitialised

variable) or non-compliance with

standards



29

Inspection Pre-conditions

 A precise specification must be available

 Syntactically correct code or other system

representations must be available

 An error checklist should be prepared

 Management must accept that inspection will

increase costs early in the software process

 Management should not use inspections for staff

appraisal i.e., finding out who makes mistakes



30

Automated Static Analysis

 Static analysers are software tools for source

text processing (e.g., GrammaTech, Coverity

Code Advisor, Klocwork, FindBugs, etc.)

 They parse the program text and try to

discover potentially erroneous conditions and

bring these to the attention of the V & V team

 They are very effective as an aid to

inspections



31

Stages of Static Analysis

 Control flow analysis. Checks for loops with

multiple exit or entry points, finds unreachable

code, etc.

 Data use analysis. Detects uninitialised

variables, variables written twice without an

intervening assignment, variables which are

declared but never used, etc.

 Interface analysis. Checks the consistency of

routine and procedure declarations and their

use



32

Stages of Static Analysis

 Information flow analysis. Identifies the

dependencies of output variables. Does not

detect anomalies itself but highlights

information for code inspection or review

 Path analysis. Identifies paths through the

program and sets out the statements executed in

that path. Again, potentially useful in the review

process



33

Use of Static Analysis

 Particularly valuable when a language such

as C is used which has weak typing and

hence many errors are undetected by the

compiler

 Less cost-effective for languages like Java

that have strong type checking and can

therefore detect many errors during

compilation



34

Key Points

 Verification and validation are not the same thing

 Verification shows conformance with specification

 Validation shows that the program meets the

customer’s needs

 Static verification techniques involve examination

and analysis of the program for error detection



35

Key Points

 Program inspections are very effective in

discovering errors

 Program code in inspections is systematically

checked by a small team to locate software faults

 Static analysis tools can discover program

anomalies which may be an indication of faults in

the code

