Lecture 3: Verification and
Validation

Software Quality Assurance (INSE
6260/4-UU)

Winter 2016

INSE 6260/4-UU

Software

Quality
Assurance

Software Oua
Quality A Ance

| |
Inspection Testing Reachability
> Techniques Analysis

Factors and

Models Metrics

Overview

¢ Preliminary Notions
+ Validation and Verification Approaches

¢ Software Inspection

Verification vs. Validation

+ Verification:
"Are we building the product right”

¢ The software should conform to its
specification
¢ Validation:
"Are we building the right product”

¢ The software should do what the user
really requires

Verification, Validation and
Qualification

Verification - The process of evaluating a system or

component to determine whether the products of a given
development phase satisfy the conditions imposed at the
start of that phase

Validation - The process of evaluating a system or

component during or at the end of the development process
to determine whether it satisfies the requirements

Qualification - The process used to determine whether a
system or component is suitable for operational use

The V & V Process

¢ Is a whole life-cycle process -V & V
must be applied at each stage In the
software process

+ Has two principal objectives
¢ The discovery of defects in a system

¢ The assessment of whether or not the
system is useful and useable in an
operational situation

V &V Goals

¢ Should establish confidence that the
software is fit for purpose

¢ Does NOT mean completely free of
defects

+ Rather, it must be good enough for its
iIntended use and the type of use will
determine the degree of confidence that
IS needed

Defect Origins & Discovery

When Validation is the Primary Removal Method.:

Defect Requirements Design Coding Documentation Testing Maintenance

Origins
Defect \

Discovery _ _ _ _ _ _
Requirements Design Coding Documentation Testing Maintenance

With Technical Reviews and Verification:

Requirements Design Coding Documentation Testing Maintenance
Defect

Origins

Defect

Discovery Rrequirements Design Coding Documentation Testing Maintenance

Verification Reduces Project
Costs & Schedule

With verification Without verification

\ /

Project
Cost

Y

Time Schedule
Savings

Overview

L 4

+ Verification Approaches

¢

10

The Link to Software
Engineering

Models of Computation

Language Machine omputability

Programming M
odels Theory
Language egﬂfgglﬁs N

Theor Machines
omputational Problems

e.g. search in list CompIEXIty
Algorithms Program/Algorithm for Theory
Solving Problem

Correctness

11

Two Approaches

¢ Static verification

¢ Concerned with analysis of the static
system representation to discover
problems

+ May be supplemented by tool-based
document and code analysis

¢ Dynamic verification (testing)

+ Concerned with exercising and observing
product behaviour

¢ The system Is executed with test data and
Its operational behaviour is observed

12

Static and Dynamic Verification

Static
verification

High-level Formal Detailed 0
design speciﬁcation design xOE R
‘ Prot ': / Dynamic l
mioh validation

Requirements
specification

13

Formal and Informal
Verification

¢ Formal: Applying formal methods to software
verification
+ Mathematics
¢ Logics

¢ Informal: Anything else is informal, including
review and inspection

14

Formal Verification

+ Applying mathematics at large for modeling and
analyzing software

+ Establishing software correctness with
mathematical rigor

¢ Two classes of formal verification technigues:

¢ Proof-based techniques: theorem proving

+ Model-based techniques: model-based testing, model-
based simulation, model checking

15

Model Checking

+ Model checking: Developed independently by Clarke,
Emerson, and Sistla and by Queille and Sifakis in
early 1980’s

¢ It consists of three parts:
1. A framework for modeling software (some kind of
specification language)
2. A specification language for describing the
properties to be verified

3. A verification method for establishing if the software
description satisfies the specification

16

Model Checking Approach

GE}HET‘ETREH@ /f system \
-___T___- ‘l\\-\-__—____f‘-/

Formalizing Modeling

“property ™ tem model
Q}em’ﬁmﬁag/ @“ﬁﬁm model

~|Model Checking[™

’_ ‘-ﬂ.f'hﬁf‘d H\ 'irmfm‘fr.i + \\ Simulation i /Jéﬂr:at:;;;\
_ — rrmnt#wmmpif// N _E::I"?'ﬁ:l"_’/

Model Checking

Property ¢ System Model M
Temporal Logic Kripke Structure

Model Checker

Yes, the property is satisfied | No, Counter example

The model turns out!

18

Testing Activity

mdﬂmi or
! mmt? ype an&iem)

Modeling

@tem m@
Test Generation

— Test Execution ’(—Qst WD

CfLD &E‘@)

Overview

L 4

L 4

+ Software Inspection

20

Software Inspection Activities

|ﬂdi‘h"idUEl|2

Review

Aspentum
author

21

What are Inspections?

An inspection is a structured peer review:

That Provides: To:

Defect information Author

Other perspectives on work Author
Accurate project status Product Management

Generic defects (trends) Management

22

Candidates for Reviews and Inspections

¢ Strategic Plans ¢ Code
+ Contracts ¢ Test Plans
¢ Requirements ¢ Test Designs
¢ High Level Designs o User
« Detailed Designs Documentation
+ Architectural ¢ Project Plans, etc.
Documentation
2

Benefits

¢ Inspections provide a powerful way to:

¢

¢

¢

\ 4
\ 4

Detect defects early in the development
cycle

Prevent the migration of defects to later
phases

mprove the quality and productivity of the
development and test process

Reduce cost and cycle time
Reduce maintenance effort

Review early and often

24

Software Inspections (Static
Verification)

¢ Inspections do not require execution of a system so
may be used before implementation

+ Not just program source code

+ May be applied to any representation of the
system (requirements, design,configuration data,
test data, etc.)

+ Have been shown to be an effective technique for
discovering program errors

25

Inspection Success

¢ Many different defects may be discovered in a single
Inspection. In testing, one defect, may mask another,
S0 several executions are required

¢ Incomplete versions can be inspected

o Other quality attributes such as coding standards,
maintainability, portability can also be checked

¢ The reviewers reuse domain and programming
knowledge so they are likely to have seen the types
of error that commonly arise

26

Inspections and Testing

¢ Complementary and not opposing verification
techniques

+ Both should be used during the V & V
process

¢ Inspections cannot check non-functional
characteristics such as performance,
usabllity, etc.

27

Program Inspections

¢ A systematic approach to document
reviews

¢ Intended explicitly for defect detection (not
correction)

+ Defects may be logical errors, anomalies
In the code that might indicate an
erroneous condition (e.g. an uninitialised
variable) or non-compliance with
standards

28

Inspection Pre-conditions

+ A precise specification must be available

¢ Syntactically correct code or other system
representations must be available

¢ An error checklist should be prepared

¢ Management must accept that inspection will
Increase costs early in the software process

¢ Management should not use inspections for staff
appraisal i.e., finding out who makes mistakes

29

Automated Static Analysis

¢ Static analysers are software tools for source
text processing (e.g., GrammaTech, Coverity
Code Advisor, Klocwork, FindBugs, etc.)

¢ They parse the program text and try to
discover potentially erroneous conditions and
bring these to the attention of the V & V team

¢ They are very effective as an aid to
Inspections

30

Stages of Static Analysis

¢ Control flow analysis. Checks for loops with
multiple exit or entry points, finds unreachable
code, etc.

¢ Data use analysis. Detects uninitialised
variables, variables written twice without an
Intervening assignment, variables which are
declared but never used, etc.

¢ Interface analysis. Checks the consistency of
routine and procedure declarations and their
use

31

Stages of Static Analysis

¢ Information flow analysis. ldentifies the
dependencies of output variables. Does not
detect anomalies itself but highlights
Information for code inspection or review

o Path analysis. ldentifies paths through the
program and sets out the statements executed In
that path. Again, potentially useful in the review
process

32

Use of Static Analysis

+ Particularly valuable when a language such
as C iIs used which has weak typing and
hence many errors are undetected by the
compiler

¢ Less cost-effective for languages like Java
that have strong type checking and can
therefore detect many errors during
compilation

33

Key Points

+ Verification and validation are not the same thing
+ Verification shows conformance with specification

+ Validation shows that the program meets the
customer’s needs

¢ Static verification technigues involve examination
and analysis of the program for error detection

34

Key Points

¢ Program inspections are very effective in
discovering errors

¢ Program code in inspections is systematically
checked by a small team to locate software faults

¢ Static analysis tools can discover program
anomalies which may be an indication of faults In

the code

35

