

Lecture 3: Verification and

Validation

Software Quality Assurance (INSE
6260/4-UU)

Winter 2016

2

INSE 6260/4-UU

Software
Quality

Assurance

Software
Quality

 Factors and
Models

Metrics

Quality
Assurance

Inspection
Testing

Techniques
Reachability

Analysis

3

Overview

 Preliminary Notions

 Validation and Verification Approaches

 Software Inspection

4

 Verification:

 "Are we building the product right”

 The software should conform to its

specification

 Validation:

 "Are we building the right product”

 The software should do what the user

really requires

Verification vs. Validation

5

Verification - The process of evaluating a system or

component to determine whether the products of a given

development phase satisfy the conditions imposed at the

start of that phase

Validation - The process of evaluating a system or

component during or at the end of the development process

to determine whether it satisfies the requirements

Qualification - The process used to determine whether a

system or component is suitable for operational use

Verification, Validation and

Qualification

6

 Is a whole life-cycle process - V & V

must be applied at each stage in the

software process

 Has two principal objectives

 The discovery of defects in a system

 The assessment of whether or not the

system is useful and useable in an

operational situation

The V & V Process

7

V & V Goals

 Should establish confidence that the

software is fit for purpose

 Does NOT mean completely free of

defects

 Rather, it must be good enough for its

intended use and the type of use will

determine the degree of confidence that

is needed

8

Defect Origins & Discovery

When Validation is the Primary Removal Method:

Defect

Origins

Defect

Discovery

Defect

Origins

Defect

Discovery

With Technical Reviews and Verification:

Requirements Design Coding Documentation Testing Maintenance

Requirements Design Coding Documentation Testing Maintenance

Requirements Design Coding Documentation Testing Maintenance

Requirements Design Coding Documentation Testing Maintenance

9

Verification Reduces Project

Costs & Schedule

Project

Cost

Time Schedule

 Savings

With verification Without verification

10

Overview

 Preliminary Notions

 Verification Approaches

 Software Inspection

11

The Link to Software

Engineering

Models of Computation

Language

Models
e.g. -calculus

Machine

Models
e.g. Turing

Machines

Computational Problems
e.g. search in list

Program/Algorithm for

Solving Problem

Correctness Efficiency

Programming

Language

Theory

Computability

Theory

Complexity

Theory

Algorithms

12

 Static verification

 Concerned with analysis of the static
system representation to discover
problems

 May be supplemented by tool-based
document and code analysis

 Dynamic verification (testing)

 Concerned with exercising and observing
product behaviour

 The system is executed with test data and
its operational behaviour is observed

Two Approaches

13

Static and Dynamic Verification

Formal
specification

High-level
design

Requirements
specification

Detailed
design

Program

Prototype
Dynamic
validation

Static
verification

14

Formal and Informal

Verification

 Formal: Applying formal methods to software

verification

 Mathematics

 Logics

 Informal: Anything else is informal, including

review and inspection

15

Formal Verification

 Applying mathematics at large for modeling and

analyzing software

 Establishing software correctness with

mathematical rigor

 Two classes of formal verification techniques:

 Proof-based techniques: theorem proving

 Model-based techniques: model-based testing, model-

based simulation, model checking

16

Model Checking

 Model checking: Developed independently by Clarke,

Emerson, and Sistla and by Queille and Sifakis in

early 1980’s

 It consists of three parts:

1. A framework for modeling software (some kind of

specification language)

2. A specification language for describing the

properties to be verified

3. A verification method for establishing if the software

description satisfies the specification

17

Model Checking Approach

18

Model Checking

Property

Temporal Logic

System Model M

Kripke Structure

Model Checker

Yes, the property is satisfied No, Counter example

The model turns out!

19

Testing Activity

20

Overview

 Preliminary Notions

 Verification Approaches

 Software Inspection

21

Software Inspection Activities

22

What are Inspections?

An inspection is a structured peer review:

 That Provides: To:

 Defect information Author

 Other perspectives on work Author

Accurate project status Product Management

 Generic defects (trends) Management

23

Candidates for Reviews and Inspections

 Strategic Plans

 Contracts

 Requirements

 High Level Designs

 Detailed Designs

 Architectural

Documentation

 Code

 Test Plans

 Test Designs

 User

Documentation

 Project Plans, etc.

24

Benefits

 Inspections provide a powerful way to:

 Detect defects early in the development
cycle

 Prevent the migration of defects to later
phases

 Improve the quality and productivity of the
development and test process

 Reduce cost and cycle time

 Reduce maintenance effort

Review early and often

25

Software Inspections (Static

Verification)

 Inspections do not require execution of a system so

may be used before implementation

 Not just program source code

 May be applied to any representation of the

system (requirements, design,configuration data,

test data, etc.)

 Have been shown to be an effective technique for

discovering program errors

26

Inspection Success

 Many different defects may be discovered in a single

inspection. In testing, one defect, may mask another,

so several executions are required

 Incomplete versions can be inspected

 Other quality attributes such as coding standards,

maintainability, portability can also be checked

 The reviewers reuse domain and programming

knowledge so they are likely to have seen the types

of error that commonly arise

27

Inspections and Testing

 Complementary and not opposing verification

techniques

 Both should be used during the V & V

process

 Inspections cannot check non-functional

characteristics such as performance,

usability, etc.

28

Program Inspections

 A systematic approach to document

reviews

 Intended explicitly for defect detection (not

correction)

 Defects may be logical errors, anomalies

in the code that might indicate an

erroneous condition (e.g. an uninitialised

variable) or non-compliance with

standards

29

Inspection Pre-conditions

 A precise specification must be available

 Syntactically correct code or other system

representations must be available

 An error checklist should be prepared

 Management must accept that inspection will

increase costs early in the software process

 Management should not use inspections for staff

appraisal i.e., finding out who makes mistakes

30

Automated Static Analysis

 Static analysers are software tools for source

text processing (e.g., GrammaTech, Coverity

Code Advisor, Klocwork, FindBugs, etc.)

 They parse the program text and try to

discover potentially erroneous conditions and

bring these to the attention of the V & V team

 They are very effective as an aid to

inspections

31

Stages of Static Analysis

 Control flow analysis. Checks for loops with

multiple exit or entry points, finds unreachable

code, etc.

 Data use analysis. Detects uninitialised

variables, variables written twice without an

intervening assignment, variables which are

declared but never used, etc.

 Interface analysis. Checks the consistency of

routine and procedure declarations and their

use

32

Stages of Static Analysis

 Information flow analysis. Identifies the

dependencies of output variables. Does not

detect anomalies itself but highlights

information for code inspection or review

 Path analysis. Identifies paths through the

program and sets out the statements executed in

that path. Again, potentially useful in the review

process

33

Use of Static Analysis

 Particularly valuable when a language such

as C is used which has weak typing and

hence many errors are undetected by the

compiler

 Less cost-effective for languages like Java

that have strong type checking and can

therefore detect many errors during

compilation

34

Key Points

 Verification and validation are not the same thing

 Verification shows conformance with specification

 Validation shows that the program meets the

customer’s needs

 Static verification techniques involve examination

and analysis of the program for error detection

35

Key Points

 Program inspections are very effective in

discovering errors

 Program code in inspections is systematically

checked by a small team to locate software faults

 Static analysis tools can discover program

anomalies which may be an indication of faults in

the code

