Lecture 32 Analysis of Covariance II

STAT 512 Spring 2011

Background Reading KNNL: Chapter 22

Topic Overview

- ANCOVA with multiple factors
- ANCOVA with Blocking
- Use of Differences

ANCOVA Model

$$Y_{ij} = \mu + \alpha_i + \beta \left(X_{ij} - \bar{X}_{\bullet \bullet} \right) + \varepsilon_{ij}$$

- $\varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$ and $\sum \alpha_i = 0$ (or $\alpha_a = 0$)
- Centering covariate $(X_{ij} \overline{X}_{\bullet\bullet})$ means that μ will represent an overall mean
- Can extend this model to multiple factors or multiple covariates (or both)

Diagnostics

- Examine the data and residuals (check the three standard assumptions)
- Check the same-slope assumption (plots, interaction term)
- Look for outliers that are influential

Diagnostics / Remedial Measures

- Examine variances (standard deviations). Look at MSE for models run separately on each treatment group (use a BY statement in PROC REG or GLM)
- Transform if needed, use Box-Cox to assist in finding an appropriate transformation

Two-Way ANCOVA Model

• Multiple Factors: $Y_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \gamma \left(X_{ijk} - \overline{X}_{\bullet \bullet \bullet} \right) + \varepsilon_{ij}$

Two-Way ANCOVA Model (2)

- Basic idea remains the same. For each treatment combination we have a linear regression in which <u>the slopes are the same</u>, but the intercepts may differ.
- We make comparisons using least-square means, with the covariates set to their mean values (so that any differences will not be due to the level of the covariates)

Two-way ANCOVA example

- Cash Offers Example (cashoffers_ancova.sas)
- Y is offer made by a dealer on a used car
- Factor 1 is the age of person selling the car (young, middle, elderly)
- Factor 2 is gender of the person selling the car (male, female)
- Covariate is overall sales volume for the dealer

Interaction Plot with No Covariate

32-9

Plot of Offers against Factor Combinations w/o Covariate

factor

Plots w/o Covariate

• Plots (and previous analysis) with simple two-way ANOVA showed differences in that middle-aged appeared to do better than the other two groups; no interaction or gender differences. Plot of Offers vs Covariate

Covariate

- Clearly is a relationship to the covariate; higher sales means higher offers
- Plot suggests a slight interaction; maybe something different going on in the elderly-male group.
- Let's look at the ANCOVA

SAS Code for ANCOVA

```
proc glm data=cash;
  class age gender;
  model offer=sales age|gender;
  output out=diag p=pred r=resid;
  lsmeans age gender
      /tdiff pdiff cl adjust=tukey;
```

run;

• Note: May include interaction with SALES to check equality of slopes assumption.

Output

- SS Source DF MS F Value Pr > Fsales 1 63.37 63.37 221.58 <.0001 2 232.49 116.24 406.45 <.0001 age 0.0273 gender 1.55 1.55 5.40 1 age*gender 2 0.19 0.10 0.34 0.7142 8.3 0.286 Error 29 35 Total 398.9
 - Gender effect shows up once covariate included in model (size of effect is very small, but it is significant)

LSMEANS / Multiple Comparisons

age	LSMEAN	95% Conf	Limits
Elderly	22.03	21.70	22.35
Middle	27.24	26.91	27.56
Young	21.40	21.09	21.72
	age Elderly Middle Young	age LSMEAN Elderly 22.03 Middle 27.24 Young 21.40	ageLSMEAN95% ConfElderly22.0321.70Middle27.2426.91Young21.4021.09

i/j	1	2	3
1		<.0001	0.0241
2	<.0001		<.0001
3	0.0241	<.0001	

• Note: Different results here too!!! Effect we saw for age is still there, and additionally elderly get significantly better offer than young.

Multiple Comparisons (2)

gender	offer LSMEAN	Pr > t
Female	23.3464846	0.0273
Male	23.7646265	

 Gender effect is significant (Male > Female) but the size of the effect is quite small (only half the size of the difference between elderly/young)

Residual Analysis (1)

Residual plots

Residual Analysis (2)

Residual plots

Residual Analysis (3)

Residual plots

Gender

Residual Analysis (4)

Residual plots

Testing Equality of Slopes

- For one-factor, one covariate: Test interaction of factor and covariate
- For two-factor, one covariate: Test interaction of covariate and two-way factor interaction

sales	1	54.83	54.83	213.06	<.0001
age	2	30.49	15.25	59.24	<.0001
gender	1	0.03	0.03	0.10	0.7554
age*gender	2	0.68	0.34	1.32	0.2847
sales*age*gender	5	2.12	0.43	1.65	0.1863

Example (Auditor Training)

- See auditor_ancova.sas for data and coding
- Firm testing the effectiveness of three training methods (home-study, local training, or national training).
- 30 data points; Response variable is a proficiency score (higher = better)

Example (Auditor Training)

- Block on length of time since graduation (Block #1 is the most recent graduates)
- Additionally, a pretest score is available. This will be used as a covariate.
- Previous results (without the covariate) indicated national training was to be preferred. Local (group) training was 2nd best, not much better than home.

Simple ANOVA

Source	DF	SS	MS	F Value	Pr > F
Method	2	1295	647.5	32.04	<.0001
Error	27	546	20.2		
Total	29	1841			

GRP	Mean	Ν	method
A	86.100	10	national
В	74.600	10	local
В	70.600	10	home

ANOVA with Blocks

ANOVA with Blocks

Source	DF	SS	MS	F Value	Pr > F
block	9	433	48.2	7.72	0.0001
method	2	1295	647.5	103.75	<.0001
Error	18	113	6.24		
Total	29	1841			
method		LSME	AN	GRP	
nationa	1	86.	1	Α	
local		74.	6	В	
home		70.	6	С	
*A11	p-va	lues <	0.05		

ANCOVA with Blocks

Source	DF	Squares	Mean Square	F Value	Pr > F
Model	12	1728.367335	144.030611	21.80	<.0001
Error	17	112.332665	6.607804		
Corrected Total	29	1840.700000			
R-Square Coeff	Var Roo	ot MSE post	test Mean		
0.938973 3.3340	066 2.5	570565	77.10000		
Source	DF	Type I SS	Mean Square	F Value	Pr > F
pretest	1	344.395741	344.395741	52.12	<.0001
block	9	91.787592	10.198621	1.54	0.2107
method	2	1292.184002	646.092001	97.78	<.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
pretest	1	0.000669	0.000669	0.00	0.9921
block	9	74.377119	8.264124	1.25	0.3298
method	2	1292.184002	646.092001	97.78	<.0001

ANCOVA with Blocks

- Type I SS : Pretest is significant alone, but block is not significant in a model with pretest (but we saw previously that it was significant when pretest was not in the model).
- Type III SS : Pretest and block are not significant when other factors in model.
- Method is significant when all other factors are in the model.

ANCOVA without Blocks

Source	DF	SS	MS	F Value	Pr > F
pretest	1	359	359	49.99	<.0001
method	2	1310	655	91.18	<.0001
Error	26	187	7.1		
Total	29	1841			

method	LSMEAN	GRP
national	86.14	Α
local	74.61	В
home	70.54	С
*All p-v	alues < 0.05	

Summary of Results

- In this case it turns out that you always will identify the national training as the best.
- Notice the slight differences in each analysis

 we don't actually need both concomitant variables (either use the block, or use the pretest, the information is about the same).

Block vs Pretest

Source	DF	SS	MS	F Value	Pr > F
BLOCK	9	3052	339	40.70	<.0001
Error	20	167	8.3		
Total	29	3219			

94% of pretest is explained by block – these variables are essentially performing identical functions in the analysis

Blocking vs. ANCOVA (1)

- Sometimes researchers have a choice between
 - o CRD with covariance analysis (ANCOVA)
 - RCBD with blocks formed by means of the concomitant variable

Blocking vs. ANCOVA (2)

- If regression between response and concomitant variable is linear, about equally efficient. If not linear RCBD more effective.
- RCBD are free of assumptions about the nature of relationship between concomitant (blocking) variable and response. ANCOVA assumes linear relationship w/equal slopes between groups.
- RCBD may require more df for blocking variable and thus leave less for the error.

Use of Differences

- For a posttest/prettest study, there are two possible options for analysis:
 - ANCOVA with posttest as response and prettest as a covariate
 - ANOVA using difference (posttestprettest) as the response.
- If the slope parameter $\beta=1$, then these analyses are essentially equivalent.
- If slope parameter is not near 1, then ANCOVA may be more effective than the use of differences.

Use of Differences

- For the cracker example from lecture 31, $\hat{\beta} = 0.9$ and also 1 is in the 95% CI. Using the difference of current-previous period sales as the response and conducting one-way ANOVA should be sufficient.
- For the auditor example $\hat{\beta} = 0.33$ and 1 is not in the 95% CI. Better to use ANCOVA.
- See KNNL section 22.5 for more details.

Upcoming...

• Multi-Factor ANOVA (Chapter 24)